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in this papér elastic buckling loads for thin rectangular
orthotropic plates are determined using a recently introduced
technique [1] which utilizes the principle of a2 mixed comple-
mentary energy approach. Buckling loads are found for vai:ous
edge and loazding conditions of plate. The edge conditions may
vary from simply supported all around to clamped plates, with
the loading being of uniaxial, biaxial or of shear type.
Results using the potential energy method which yield an upper
beund to the scluticn are used for ccmparison. Convergence 0F
the solution is discussed for different édge and loading condi

ticns of rectangular certliotropic plates.
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One may eliminate Mxy by using equilibrium which yields for
the twisting moment
N = uIf e+ N , 5w i N w dy
ny 1 ,(N ¥, kxy”'y)d} A I(Ny”,_ N w,.)dx

- JM_ _dy - Fa.. 06X} L&)

Also, work done by inplane f{orces, W, is given by the follow-
ing expression

3w 3w

xyax ay] dxdy (3)

J = ] ?.‘i 2 2

Wp = s S DN N (G 2N
The principle of mixed complementary energy states that the
variation of the quantity (u*- WF) should be zero, i.e.

§(U*- W) = 0 (4)

The same procedure of analysis suggested in [1] is used here.

One assumes the following expansions for w, Mx' and My

Ny, Ny
wiX;¥) =  Tw T @i eL(x) ¢y 5
RN PR O ()
N 15
“}‘1:( '\I‘ax
£ w e = 3 : oy . r
;x(“,)] i i bkf_ ;k,xx()\) vi{}) \6)
My Sy
M,(x,y) = L L Cop 9p(x) ¥y vy () (7)
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where

w(x,y)

¢i{x)’¢j

In order to formulate the problem, equations (2),
and (7) are substitured into

substituting the results in

= lateral deflection of the plate

(y) =

eigenfunctions of free vibration of beams

+ L.

having the same boundary cenditicns Lhe

s c
-

vleate in the x and y directions, res-

i = 4y % pres a1 il [
{as tabulatea in [55
-

pectively 3
= number of terms used in the expansion of

w(x,y)

= bending moment per unit length of sections

of plate perpendicular to the x and y axes,
respectively.
= number of terms used in the expansion of

My My series, respectively.

(s), (6)
equations (1) and (3) and on

equation (4) subsequently yields

s(u* - Wp) 5o
: = — = 0 1:j = 1;21""N1\' (E]
cﬂlj caij
i 0 ke = 1,2 N (®)
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*
am = 0 m,n = 1,2,...,NyM (10)
ac 7

mn

The inplane loads are expressed as

Nx & Pnxx
N, = Pny, (11
“xy = any
where
P = common load parameter
n n_, = ratios of inplane forces

xx? nyy’ Xy
Equatiocns (8) to (10)will yield simultaneous algebraic equa-

“tions of the form :

P2Cy, PC,, |PByy O q,
o = {0} (12)
PCzl Cz2 0 0 q:

where

[C11], [sz], [BH.]; {C1z}, {Cz1] are submatrices

{q:} = {Ell 12 ... @y, N } (13)

n

{C;z]' ibyy b1z ... b,. N Cyy Ga o€y } (12)
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Eliminating {q.} from equation (12), one ‘gets

P2([Cy:] - ‘:C::}[sz].:l {C211) {q:} = P(B;,]

NUMERICAL RESULTS

TIEYam was Geveloped to formnlate znd zoloc
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the problems of buckling of isotropic and orthotropic thin
rectangular plates.
The following cases of plate boundary conditions were

studied
1. All edges simply supported.
2. Simply supported in x-direction and clamped - simply
supported in y-direction .
3. Clamped - simply supported on oppcsite edges

4. Clampasd on all edges.

The following loadings were applied to the plates

1. N_ =1.0, N, =N = 0.0 (Uniaxial buckling)

X y Xy
* — =4 1 = - 1 =1 1Y i =~
2 hx = hy = il \xy = 0.0 (Biaxial buckling)
= : i aw e 8 R
3. hxv_ 10, hx = hy = 0.0 (Shear puckling)
Tezults are presented in Tables 1, 1T znd III Z5r a piate
clamped sn 21) four edper ¢nd saliected to uniaxis

tiaxizl ané shear inplane fcrces, respectively.
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All computations for the eigenvalues were made using

materiz] rigidities [2]

D;, = 181.8 N.m
D,: = 2.897 N.m
D;> = 10.34 N.m
Deg = 7.17 N.m

DISCUSSTION OF RESULTS AND CONCLUSIONS

118 Regarding the method of solution itself, this method
araves to be reliable and versatile. This is because
tlhe variables in the energy functional namely, Mx’ My

and w, can be modified to satisfy any force and boundary

sondition and serve @s & good approximation to the

eract solution.

Expanding w, Mx’ My in gen?ralized Fourier series gives
a greater freedom in controlling the variables that
aifect the comvergence of the solution in comparison to
the potential energy method, where only w is expanded

in Fourier series. In éddition, in the mixed complemen-
tary energy hethod, the number of terms in series expan-
sion for w, Mx, and My are taken independent of each
6ther, whereas the pure complementary energy approach of

Oran [3,4] uses the same number of terms for all

variables in the functional.
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The general program used in the solution was first

tested for isotropic plates. This program gave the same
numerical values for PCr as those given in [1]. Upon
studying the results in more detail and running several
cases, it was concluded that it is not necessary for the
buckling load to be associated with the  fundamental node
shape (i.e. m = 1, n = 1) as was emphasized in [1]. As

@ matter of fact, it is very difficult to predict the
mode shape that is associated with the lowest buckling
load. In the results tabulated in [1], the diffcrences
between éhe converged potential energy and mixed
complementary energy answers for critical leoad rceach more
than 50%,which is difficult to justify. Mixed cowmplenen-
tary energy method solutions should converge to unswers
which should not differ too much from answers given by
potential energy method.

Based on the above conclusions, several cases of plate
buckling problems were rTun with various loading and
boundary conditions. In each of these cases, one observel
all values of pcr obtained from the mixed complementary
energy method and which are less than the critical
buckling lcad obtained by the upper bound potential
energy method. From all such values one chooses the

highest value as the critical buckling load using the

mixed complementary energy method.
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Ci.z should be careful in choosing the variables N,
&+, and N, . For some cases of plate buckling, there

% }
w.ll be convergence if N, is increased together with
N and N“_. In other cases, convergence will be

s s, 2
c.served if N and N are increased at constant N .

My M,, W

1-e conclusions given in [1] about this point contr;dicts
t ¢ conclusion here. In [17,it was suggested not to tale

N+ N nor Nw > N since it was claimed that this

. My L
w.uld result-in erroneous eigenvalues for higher modes

and N

t..at could not be simulated by values of Nh Nyg
[ l\.

I

1.wer than Nw'

T.2 reasoning given in [1] for the above conclusion was
2:30 based on the premise that the correct eigenvalue i
t:: one associated with the fundamental buckling mode.
T:i5 hypothesis is not correct as one may note results
f-r buckling of simply supported rectangular plates with
a pect ratio a/b > 1.

B.:kling of plates loaded by inplane shear was not
d_scussed in [1] at all. There is no predominant form
i: the eigenvectors in this case, i.e.,buckling occurs in
a wixed mode.” This result makes the hypothesis used by
Sindararajan for interpreting buckling loads somewhat

a.piguous.
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In studying the two available complementary energy
apprvaches [1,4], it appears that the method presented

in [l as mor; versatile in terms of treatment of plates
with a variety of boundary conditions. Oran's approach
in [!] essentially is based on a Rayleigh-Ritz solution
techuique which involves approximate expansions for the
bending moments, twisting moment and a transverse shear
resu tant stress function, Such expansions are relative-
ly s1-aightforward for simply supported plates, the

only cype of boundary conditions for rectangular plates
as s;tudied by Oran. Such expansions will, in general,
not b so straightforward for plates with other types of
bounc:.ry conditions, whereas the mixed energy approach of
[1] 1.nds itself very conveniently inasmuch as the dis-
placenent function w is retained in the final formulation
of the problem, alongwith the bending moments Mx and My‘
The stability criterion

§2r* = 0

may b- used for extraction of the eigenvalues in the
mixed complementary energy approach. Such a criterion,
if implementéd successfully, would avoid the multiplicity

of eivrenvalues yielding stable equilibrium configurations.
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Takle T - Uniaxial Buckling of Clamped Plate

N _=0.0

Potential Energy

Mixed Complementary
Energy

4
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8241.83

8001.84

8001.85

7988.04

7986.41

5285.24
3629.85
4939.59
4939.58
4962.53
4962.52
4405.20
4939.59
6174.57
6175.75
6175.75
7914.74
7914.73
7916.09
7916.07
7914.73
7916.07
7916.04
7732.66
7732.65
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Table II - Biaxial Buckling of Clamped Plate

N =N =1.0, N =0.0
x B 4 xy

NM -Potential Energy Mixed Complementary
y Energy

L]

~ o W D~ W~ O B W

-~ O~ O W~ v

2568.21 1344.06
2644 .97
2444.98
2075.57
2088.22
20€8.22
2466.82 2115.31
2115.32
1997.18
2009.35
2009.34
2416.13 2332.86
2335.31
2337.25
2337.25
2416.03 2335.08
2336.99
2337.00
2415.76 2335.47
2335.47

~ o W D W W W

N NN

209



T:blzx III - Shear Buckling of Clamped Plate

=0.0, ¥ =1.0
Xy

*Potencial Energy
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5539.89
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