Direct Asymmetric Catalytic Oxidation of Ketones to α-Hydroxy Ketones Using a Chiral Bimetallic Pd(II) Complex

Othman A. Hamed, a* Emad M. Hamed, b Patrick M. Henry, c† and Daniel P. Becker

da Department of Chemistry, An-Najah National University, Corresponding author. Tel.: 00972 92687799; fax: 00972 92345982; e-mail: ohamed@najah.edu
b Department of Chemistry, Hashemite University, Zaraqa, Jordan
c Department of Chemistry, Loyola University Chicago, 6525 N. Sheridan Road, Chicago, Illinois 60626, USA
†Deceased October 19, 2008.

Abstract:

Chiral bimetallic palladium (II) complex B was used in a catalytic air oxidation process to convert ketones directly into optically active α-hydroxyketones. The reaction was carried out in an aqueous solution of THF or dioxane, and in the presence of a catalytic amount of an acid. The enantiomeric excess (e.e.) of produced α-hydroxyl ketones ranged from 61% to 91%.

Keywords: asymmetric hydroxylation, palladium catalysis, bimetallic palladium complex, optically active, chiral α-hydroxyketone

(IYC-2011) 52