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Abstract 

Maxwell's equations are one of the most important models in 

different fields. It describes electromagnetic phenomena such as micro, 

radios and radar waves. 

The  modeling of systems involving electromagnetic waves is widely 

spread and has attracted the attention of many authors and researchers. In 

this work, we will present some important analytical and numerical aspects 

of Maxwell's equations. We will review some  basic properties of 

electromagnetic theory, namely: electromagnetic fields, magneto-static 

fields, and time varying fields. Moreover, we will use these physical 

properties to derive Maxwell's equations in various forms. Though, it is 

well known that Maxwell's equations are hard to solve analytically, 

however, we will attempt to use some well known analytical methods to 

solve these equations in some particular domains such as a sphere and a 

circular cylinder. Such analytical methods include: separation of variables, 

series expansion method, conformal mapping and integral methods such as 

Laplace transforms and cosine and sine Fourier transforms. 

Numerical methods for solving Maxwell's equations are extensively used 

nowadays and are usually referred to as Computational Electro-magnetic 



x 

(CEM). Here  the Finite Difference and Finite Difference Time Domain 

Method (FDTDM)  known for its simplicity and efficiency will be 

proposed to solve Maxwell's  equations. And the Yee Algorithm will also 

be illustrated. Moreover, the convergence, stability and error analysis for 

these numerical methods will also be investigated. 
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1.1 Introduction 

Electromagnetic phenomena play a very prominent role in the modern age. 

The number of electric machines are uses on a daily basis without thinking 

about it is large, and only becomes imminent during an unfortunate power 

failure. Physicists have succeeded quite well in formulating the laws to 

which these phenomena must adhere. In the late 1860s, J.C. Maxwell 

constructed the mathematical framework combining the phenomenological 

finding of his predecessors concerning electromagnetism. This can be 

viewed as the birth of mathematical physics. Maxwell's achievement has 

stimulated many other people since, to construct similar basic sets of 

equations to describe other fields in physics, but it turned that not every 

field of physics could be as nicely and elegantly described as 

electromagnetism. The set of basic equations Maxwell constructed became 

known as the Maxwell Equations and are given in their differential 

formulation by [5,19]: 

       

1
( ) ( ).t t

t 


  


H E  

         

1
( ) ( ) ( )( ).t t t

t 


  


E H J  

   div ( ) ( ).t t E  

    div ( ) 0.t H  

Here 
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 E  is the electric field intensity ( in volts/meter). 

 H  is the magnetic field intensity ( in amperes/meter). 

 J  is the total electric current density ( in amperes/meter
2
), and 

equates     source  J J E  , where sourceJ  satisfies the 

continuity equation   

                 
     source t




  J . 

   is the magnetic permeability ( in henrey/meter). 

In this work we assume that the magnetic permeability does not 

depend on time (or consequently frequency). 

  is the electric permittivity ( in farads/meter), in vacuum we 

have   

1/2

0 0( )c  
  . The electric permittivity is also assumed not 

to depend on time. 

   is the electric conductivity ( in siemens/meter), 

   is the charge density ( in colomb/meter
3
). 

The variety of applications based on electromagnetism is enormous. 

Unfortunately, in the case where a solution of the Maxwell equations is 

required, it is not possible to solve them analytically. It can be solved 

analytically only for a simple domains such as a sphere and an infinite 

circular cylinder [31]. Numerical methods for the Maxwell's equations are 

usually referred to as Computational Electromagnetic ( CEM ). 

The modeling of systems are involving electromagnetic waves is now 

widely done through the solution of the time domain Maxwell's equations 
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on space grid. Such systems were solved with many different methods, the 

first method for the numerical simulation of time dependent 

electromagnetic wave, the Finite Difference Time Domain Method              

( FDTDM ), was proposed by K. Yee [31], it is clear that FDTDM, known 

due its simplicity and efficiency, but it is difficult to generalize to 

unstructured non-cartesian grids and suffer from the inaccurate 

representation of the solution on curred boundaries [31]. Moreover, 

FDTDM has accuracy limitations, for second order accuracy severely 

limits their ability to correctly represent wave motion over long distances 

unless the grid is prohibitively fine [35]. Many different methods have been 

proposed which are based on unstructured grids and can deal with complex 

geometries. Like Finite Element Time Domain Method (FETDM ) [7,21]. 

There are two difficulties appear when using the standard Finite Element 

Method ( FEM ). First, the method generally used on a globally conforming 

mesh, that mean, a mesh without hanging ( connecting ) nodes or mismatch 

of mesh points along internal boundaries. Second, how the corner 

singularities can be represented [6,22]. The Discontinuous Galerkin 

Methods ( DGM ) [6,14,17,20,33] are based on discontinuous finite 

element spaces. It is easily handle elements of various types and shapes, 

irregular non-conforming meshes and even locally varying polynomial 

degree. Moreover, continuity is weakly enforced across mesh interfaces by 

adding bilinear forms [33]. Either on tetrahedral meshes using Lagrange 

polynomials [10,32] or on hexahedral meshes using products of Lagrange 

polynomials [10,32]. On the other hand Variational Iteration 
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Method(VIM), [1,2,8,11,16,29,30] is proposed by J. He [16,30] on a 

modification of a general Lagrange multiplier method. This technique 

provides a sequence of functions which converges to the exact solution of 

the problem. It has been shown that this procedure is a powerful tool for 

solving various kinds of problems. This technique solves the problem 

without any need to discretization of the variables, therefore it is not 

effected by computation round off errors and one is not forced with 

necessity of large computer memory and time. This thesis is organized as 

follows: In chapter one, we review some of electromagnetic field theory. 

This includes electromagnetic fields, magnetostatic fields and time-varying 

fields. In chapter two, derivation of Maxwell's equations is presented in 

different forms. Chapter three, deals with some analytical methods used to 

solve electromagnetic problems. The most commonly used analytical 

methods that are presented here are: the separation of variables, eigen 

function expansion method, conformal mapping and integral methods. In 

chapter four we present some numerical methods for solving Maxwell's 

equations. These methods are the Finite Difference Method and Finite 

Difference Time Domain Method, and we also present Accuracy and 

Stability of FD Solutions ,  Convergence, Consistency, and Stability 

analysis of FD methods and the local truncation error. 
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1.2 Preliminaries in Physics and Mathematics 

Our modern society relies on electromagnetic devices and systems such as: 

radio, internet, microwave ovens, satellite communication systems, medical 

imaging systems and many more [26]. The understanding of 

electromagnetic phenomena is treated by electromagnetic field theory the 

study of interactions between electric charges at rest and in motion. 

(Electric charges in motion are often referred to as electric currents.). 

Electromagnetic field theory describes the interactions between electric 

charges by Maxwell's equations, a system of coupled partial differential 

equations that relate sources (charges and currents) to the electromagnetic 

fields and fluxes. To this end, we will state some important theorems 

together with definitions for some physical quantities that will help us later 

to derive the Maxwell's equations. 

Electromagnetic Feld Theory 

I must begin with answering  some questions which relate directly to 

electromagnetism [15], these questions are: What is a field? Is it scalar field 

or vector field? What is the nature of the field? The primary purpose of this 

text is to answer some of these questions pertaining to electromagnetic 

fields. 
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Field Concept 

The region throughout which a physical quantity is so specified is a field, a 

field may be scalar or vector. The scalar field is specified by a single 

number at each point. Well-known examples are temperature and pressure 

of a gas [15]. A vector field is specified by both a magnitude and a 

direction at each point in space,well–known examples are velocity and 

acceleration. 

Static Field 

If a field does not vary with time we refer to it as a static field. Static fields 

are also known as time-invariant fields [15,26]. The fields produced by 

stationary charges are called (electrostatics), and the fields created by a 

steady motion of charges are called (magnetostatics). 

Time Varying Field 

This field deals with charges in motion which create a current [15,26]. If 

the movement of charges is restricted in such a way that the resulting 

current is constant in time, the field thus created is called magnetic field. 

Since the current is constant in time, the magnetic field is also constant in 

time. 

Vector Calculus  

Vector calculus (or vector analysis) is a branch of mathematics concerned 

with differentiation and integration of vector fields, primarily in 3 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Vector_field
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dimensional Euclidean space The term "vector calculus" is sometimes 

used as a synonym for the broader subject of multivariable calculus 

[15,34], which includes vector calculus as well as partial differentiation and 

multiple integration. Vector calculus plays an important role in differential 

geometry and in the study of partial differential equations. It is used 

extensively in physics and engineering, especially in the description of 

electromagnetic fields, gravitational fields and fluid flow. 

The Gradient of a Scalar Field 

In vector calculus, the gradient of a scalar field is a vector field that points 

in the   direction of the greatest rate of increase of the scalar field [15,34], 

and whose magnitude is the greatest rate of change. Which is often written 

using the standard vectors    , ,i j k : 

.u u u
x y z
     
  

F i j k                                                                   (1.1) 

Divergence of Vector Field 

In vector calculus, divergence is a vector operator that measures the 

magnitude of a vector field's source or sink at a given point, in terms of a 

signed scalar. More technically, the divergence represents the volume 

density of the outward flux of a vector field from an infinitesimal volume 

around a given point. For example, consider air as it is heated or cooled. 

The relevant vector field for this example is the velocity of the moving air 

http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Multivariable_calculus
http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Multiple_integral
http://en.wikipedia.org/wiki/Differential_geometry
http://en.wikipedia.org/wiki/Differential_geometry
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Electromagnetic_field
http://en.wikipedia.org/wiki/Gravitational_field
http://en.wikipedia.org/wiki/Fluid_flow
http://en.wikipedia.org/wiki/Vector_calculus
http://en.wikipedia.org/wiki/Scalar_field
http://en.wikipedia.org/wiki/Vector_field
http://en.wikipedia.org/wiki/Magnitude_(mathematics)
http://en.wikipedia.org/wiki/Euclidean_vector
http://en.wikipedia.org/wiki/Vector_calculus
http://en.wikipedia.org/wiki/Vector_operator
http://en.wikipedia.org/wiki/Vector_field
http://en.wikipedia.org/wiki/Flux
http://en.wikipedia.org/wiki/Velocity
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at a point, the divergence of a continuously differentiable vector field is 

equal to the scalar-valued function: 

  =  = .
u u u

x y z
div

  
  

  
F F

                                               
(1.2) 

The Divergence Theorem 

In vector calculus, the divergence theorem, also known as Gauss' theorem 

is a result that relates the flow (that is, flux) of a vector field through a 

surface to the behavior of the vector field inside the surface [15,26,34]. 

More precisely, the divergence theorem states that the outward flux of a 

vector field through a closed surface is equal to the volume integral of the 

divergence of the region inside the surface. And expressed mathematically 

as: 

    ( ) (  n) .
V S

dV dS  F F

                                  

(1.3) 

This equation relates the volume integral of the divergence of a vector field 

to the surface integral of its normal component.  

The Curl of Vector Field 

The line integral of a vector field F around a closed path is called the 

circulation of F and the curl of F  is its measure. The direction of the curl is 

the axis of rotation, as determined by the right-hand rule, and the 

magnitude of the curl is the magnitude of rotation [15,26]. A vector field 

whose curl is zero is called irrotational or conservative. The corresponding 

http://en.wikipedia.org/wiki/Continuously_differentiable
http://en.wikipedia.org/wiki/Vector_field
http://en.wikipedia.org/wiki/Scalar_(mathematics)
http://en.wikipedia.org/wiki/Vector_calculus
http://en.wikipedia.org/wiki/Flux
http://en.wikipedia.org/wiki/Vector_field
http://en.wikipedia.org/wiki/Surface
http://en.wikipedia.org/wiki/Flux
http://en.wikipedia.org/wiki/Volume_integral
http://en.wikipedia.org/wiki/Divergence
http://en.wikipedia.org/wiki/Right-hand_rule
http://en.wikipedia.org/wiki/Irrotational
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form of the fundamental theorem of calculus is Stokes' theorem, which 

relates the surface integral of the curl of a vector field to the line integral of 

the vector field around the boundary curve. Expanded in Cartesian 

coordinates,   F  is, for F  composed of [Fx, Fy, Fz]: 

  

               

    .

        x y z

x y z

F F F

  
  

i j k

 

Where i , j and k  are the unit vectors for the x, y, and z axes, respectively. 

This expands as follows:  

  +   +   .
y yz x z x

F FF F F F

y z z x x y

        
      

         
i j k

                        

(1.4)

 

Thus, we will always write curl F as   F . 

Stokes' Theorem 

It states that the  integral of  the normal component of the curl of a vector 

field over an area is equal to the line integral of the vector field along the 

curve bounding the area [26]. The only contribution is from the integration 

over the path C. thus: 

   ( ). . .
C

S

  F Fds dl                                        (1.5) 

 

 

http://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
http://en.wikipedia.org/wiki/Stokes%27_theorem
http://en.wikipedia.org/wiki/Surface_integral
http://en.wikipedia.org/wiki/Line_integral
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Unit_vector
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1.3  Classification of Fields 

In our study of electromagnetic fields, we will find that fields have four 

basic classifications. In solving field problems it is necessary to know 

which class of field we are working with because this will dictate the 

procedure we must use to solve the problem [15]. Therefore let us now 

examine the features of the fields belonging to each class. 

Class 1 field  : A vector field F is to be of class 1 everywhere in a given 

region if  0 F  and 0 F  [15]. However, if the curl of a vector is 

zero, then the vector can be written in terms of a gradient of a scalar 

function  f , that is f F  . Electrostatic fields in charge free medium 

and magnetic fields in current free medium are examples of class 1 field. 

Class 2 field : A vector field F is to be of class 2 everywhere in a given 

region if 0 F  and  0 F  [15], once again 0 F implies 

f F , because 0 F , we can write it as  F , where   is either a 

constant or a known function within the region, thus : 2f     which is 

Poisson's equation, thus class 2 field can be found by solving Poisson's 

equation within the constraints of the boundary condition. We can then find 

the vector field F as f F . An electrostatic field in a charged region is 

an example of class 2 field. 

Class 3 field: A vector field F is to be of class 3 everywhere in a given 

region if 0 F  and  0 F , if the divergence of a vector is zero [15], 

then the vector can be expressed in terms of the curl of another vector. For 
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0 F , we can express F as F = A .Where A is another vector field, 

because  0 F , we can write it as  F J . Where J  is a known 

vector field. Substituting F A , we get  A J , using the vector 

field identity, we can express this equation as 2( )   A A J .  For A  to 

be a unique vector field, we must define its divergence. If we set an 

arbitrary constraint that 0 A , thus we obtain, 2  A J . Which is 

called Poisson's vector equation, therefore class 3 fields require a solution 

of Poisson's vector equation. The vector field F can be computed from A  

as F A . The constraint 0 A  is known as Coulomb's gauge. The 

magnetic field within a current-carrying conductor falls into class 3 field. 

Class 4 field : for  a vector field F to be of class 4, neither its divergence 

nor its curl is zero [15]. Then we can decompose F  into two vector fields 

G and H such that G satisfies class 3 and H satisfies class 2 requirements. 

That is,  F G H , 0 G , 0 G , 0 H , and 0 H . Thus 

f H and  G A , lead us to conclude that   = f F A . 

Hydrodynamic fields in a compressible medium  are examples of class 4 

field. 

1.4  Charges and Coulomb’s Law 

Coulomb stated that the force between two very small objects separated in 

a vacuum or free space by a distance which is large compared to their size 

is proportional to the charge on each and inversely proportional to the 

square of the distance between them. Expressed mathematically [25,34],  



13 

1 2

2
.

Q Q
F k

R


                                                 
(1.6) 

Where Q1 and Q2 are the positive or negative quantities of charge , R is the 

distance, and k is the proportionality constant, k is written as   

 
0

1
.

4
k


                                                                    

The  constant 
0  is called the permittivity of free space and has the 

magnitude  

                                                

12 9

0

1
8.854 10 10

36
                                     

Coulomb's law is now  

1 2

2

0

.
4

Q Q
F

R


                                                
(1.7) 

Electric Field Intensity 

The electric field intensity (or electric field strength) denoted by E is the 

force per unit charge when placed in the electric field [34]. Thus the 

electric field intensity E simply is given as  

F
E = 

Q
                                                      (1.8) 

Electric Flux and Electric Flux Density 

If we place a test charge at a point in an electric field and allow it to move, 

then the force acting on the test charge will move it along a certain path 

[25,26]. This path is called a line of force or a flux line. It is customary to 
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state that the number of lines of force due to a charge is equal to the 

magnitude of the charge in coulombs. The field lines are said to represent 

the electric flux. These electric flux lines have no real existence, but they 

are a useful concept in the representation of the electric field. One can  

realize that the electric flux density D can be defined in terms of electric 

field intensity E as, 

 0= E  .D                                                   (1.9) 

Substituting for E due to a point charge Q  in the equation above, we obtain 

the electric flux density at a radius r as, 

2
D=   .

4
r

Q

r
a                                             (1.10) 

The Electric Flux 

We can now define the electric flux    in terms of electric flux density D 

as, 

 D   ..s

closed
surface

d d     S                                    (1.11) 

Where dS is the differential surface element on surface S [33]. The flux 

passing through surface S is maximum if D and dS are in the same 

direction. 

 2

vol

D= a .
4

v
r

dv

R




                                           

(1.12)                                                            
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Gauss's Law 

Gauss's law states that the net outward flux passing through a closed 

surface is equal to the total charge enclosed by that surface [12,34], that is, 

                 D charge enclosed= ..S
S

Q dS
                       

(1.13)                                  

Gauss's law can also be expressed in terms of electric field intensity in free 

space as, 

                                  

S 0

.
Q


 E ds                                                 (1.14)                              

If the charges are distributed in a volume bounded by a surface the 

eq.(1.13) Can be written as  

 .. v
S v

dv D ds                                         (1.15)                                            

By applying the divergence theorem for the eq.(1.15) we now obtain                                         

                     .. v
v v

dv dv  D                                    (1.16)                                            

This must be true for any volume v bounded by a surface, so that the two 

integrals must be equal. Thus  

          
  = .Vdiv D

                                               (1.17)                                                          

or  

   .. V D
                   (1.18) 
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This equation is called the point or differential form of Gauss's law, which 

states that: lines of electric flux  emanate from any point in space at which 

there exists a positive charge density. If the charge density is negative, the 

lines of electric flux converge toward the point. Now Gauss's law may be 

written in terms of the charge distribution as  

 s

vol

.. V

s

d dv D S                                         (1.19) 
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2.   Modeling of Maxwell's equations                                     

2.1  Maxwell's First Equation 

Our aim in this chapter is to use the physical quantities and the theorems 

presented in chapter one to derive the Maxwell's four equations. Now using 

the divergence theorem as it relates to electric flux density. The divergence 

of A is defined as [12,34], 

          
 

0
=  = lim  .Divergence of div 

.
S

v V  

 A
A A

dS
       (2.1)                                   

Where the divergence of the vector flux density A is the outflow of flux 

from a small closed surface per unit volume as the volume shrinks to zero. 

The expression developed above for the electric flux density may be 

written as : 

                             

 

0

 
 = lim  .div 

.
S

v V  

 D
D

dS
     

                            
 

 div  =  .
yx z

DD D

x y z

 
 

  
D                                                   

and  

                                   div  =  .vD
                                         (2.2) 

Using the concept of divergence as defined in (2.1) and (2.2) the Gauss's 

law states 

                                      =  ..
S

d Q A S                                             (2.3) 

Per unit volume  
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 .
.

S
d Q

v v


 

 A S
        

And as the volume shrinks to zero 

               
            

 

0 0

 
lim lim  .

.
S

v v

d Q

v v   


 

 A S
                                   (2.4)                                                

We should see div D on the left and volume charge density on the right, 

                                       div  = VD  

or               . v D =   .                                                         (2.5) 

This is the first of Maxwell's four equations as they apply to electrostatic 

and steady magnetic fields, and it states that the electric flux per unit 

volume leaving a vanishingly small volume unit is exactly equal to the 

volume charge density there. This equation is called the point form of 

Gauss's law or the differential form of Gauss's law [12], and conversely, 

Gauss's law is recognized as the integral form of Maxwell's first equation. 

Starting from Gauss's law, 

          ..
S

Q D ds                                               (2.6)
  
 

and letting                  .v

vol

Q dv                                                 (2.7) 

and then replacing v  from eq.(2.5) , 

So we obtain 
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vol vol

 =  . .vS
Q dv dv    D Dds

                       

 (2.8)   

The first and last expressions constitute the divergence theorem, 

                          

vol

 . .
S

dv  D Dds

                                

  (2.9)                                           

Which may be stated as follows: The integral of the normal component of 

any vector field over a closed surface is equal to the integral of the 

divergence of this vector field throughout the volume enclosed by that 

closed surface. 

2.2 Maxwell's second equation 

Definition of Potential Difference and Potential 

Another way we will discuss now of obtaining  the electric field intensity 

E is from the electric scalar potential V to be defined [34]. If we wish to 

move a point charge Q from point A to point B in an electric field E , then 

from Coulomb's law the force on Q is QF E so that the work done in 

displacing the charge by dL is                          

      . W .  = Ed d Q d  F L L                                                 (2.10) 

The negative sign indicates that the work is being done by an external 

agent. Thus the total work done, or the potential energy required in moving 

Q from A to B is 

  

B

A

.dW Q   L E.                                                  (2.11) 
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Dividing W  by Q in the equation above gives the potential energy per unit 

charge. This quantity denoted by VAB  is known as the potential difference 

between points A and B, thus                                                              

                   .

B

AB

A

W
d

Q
V     LE.       (2.12)                                                     

If the field E is due to a point charge Q located at the origin, then 

2

0

 =  .E
4

r

Q

r
a                                               (2.13) 

and so 

                              

0

2
 

4

r

r r

r

AB

Q
dr

r
V


  a a.

B

A

 

      
0

1 1
  .

4 B A

Q

r r

 
  

 
                                                                      

   .AB B AV V V       (2.14)                                                                                                             

It is customary to choose infinity as reference, that is; we assume the 

potential at infinity is zero. Thus if  VA = 0 as    Ar   , then the 

potential at any point  Br r   due to a point charge Q located at the 

origin is     

                              
 0

 .
4

Q
r

V 
        

          (2.15) 

The potential difference VAB can be found generally from 

                          .

B

AB B A

A

W
Q

dV V V    E L.                (2.16) 
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The Relationship Between E and V 

As mentioned before, the potential difference between two points A and B 

is independent of the path taken [12,34], hence,  

                                    BA ABV V       

That is,   

                       0BA AB dV V   L.E .           (2.17)                                                                                         

or                                        0d  E L. .                                     (2.18) 

This shows that the line integral of E  along a closed path must be zero. 

Physically, this implies that no net work is done in moving a charge along a 

closed path in an electrostatic field. Applying Stokes's theorem to equation 

(2.18) gives, 

  = ( ) 0 .d d  E L E s. .       (2.19) 

 or simply 

                                              0 Ε                        (2.20) 

Any vector field which satisfies eq.(2.20) is said to be conservative field, or 

irrotational  [26,34], thus an electrostatic field is a conservative field. Eq. 

(2.20)  is referred to as The second Maxwell's equation for static electric 

field . 

From the way we defined potential,  
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                                 dV  Ε L ..       (2.21)   

and thus  

                               .V Ε      (2.22) 

That is the electric field intensity is the gradient of V, the negative sign 

shows that the direction of E is opposite to the direction in which V 

increases. Since the curl of the gradient of a scalar function is always zero  

( 0)V   this implies that E must be a gradient of some scalar 

function. 

2.3  Maxwell's Third Equation          

Current and Current Density 

Electric charges in motion constitute a current [25,34]. So current is 

defined as a rate of movement of charge passing a given reference point of 

one coulomb per second, it is symbolized as I,and therefore, 

                                        .
dQI =
dt                                                 

(2.23) 

The current density is the electric current per unit area of cross section,  and 

it’s a vector represented by J .The increment of the current I crossing an 

incremental surface S normal to the current density is 

                                       
 .NI J S    

http://en.wikipedia.org/wiki/Electric_current
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and in the case where the current density is not perpendicular to the surface                        

                                                J  ..I S     

The total current is obtained by integrating  

                                       ..
S

I = d J s

                                              

(2.24) 

Current density may be related to the velocity of volume charge density at a 

point in general by   

      =  .Vρ J        (2.25) 

This last result shows clearly that the charge in motion constitutes a 

current, we call this type of current convention current, and J or is the 

convention current density.  

Continuity of Current 

The principle of conservation of charge states simply that charges can be 

neither created nor destroyed [12,26,34]. The continuity equation follows 

from this principle when we consider any region bounded by a closed 

surface. The current through the closed surface is  

  ..
S

I d  J s        (2.26) 

And this outward flow of positive charge must be balanced by a decrease of 

positive charge (or perhaps an increase of negative charge) within the 

closed surface. If the charge inside the closed surface is denoted Qi then the 
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rate of decrease is 
idQ /dt   and the principle of conservation of charge 

requires 

                                            ..
S

idQ

dt
I d   J s             (2.27) 

The minus sign is to indicate the outward-flowing current. This equation is 

in the integral form of the continuity equation, and the differential or point 

form is obtained by using the divergence theorem to change the surface 

integral into a volume integral : 

 

  

vol

( ) .. .
S

d dv  J s J                            (2.28) 

We next represent the enclosed charge Qi by the volume integral of charge 

density : 

                         

vol vol

( ) =. V
ddv  dv  .
dt

  J

                            

(2.29)                                          

If we keep the surface constant, the derivative becomes a partial derivative 

and may appear within the integral, 

                  

vol vol

( )   .. vdv dv
t





 
 J

  

                  (2.30)                                                  

Since the expression is true for any volume, however small, it is true for an 

incremental volume : 

                        
    .( )  =. vv v

t


   


J
                           

      (2.31) 
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From which we have our point form of the continuity equation, 

     .( )=. v

t


 


J
                                          

(2.32) 

This is the third of  Maxwell's equations which indicates that the current, or 

charge per second diverging from a small volume per unit volume is equal 

to the time rate of decrease of charge per unit volume at every point. 

2.4  Maxwell's fourth equation 

Biot-Savart Law 

We assume a current I flowing in a different vector length of the filament 

dl , the law of Biot-Savart then states that at any point P the magnitude of 

the magnetic field intensity which is denoted by H  produced by the 

differential element is proportional to the product of the current, the 

magnitude of the differential length, and the sin of the angle lying between 

the filament and a line connecting the filament to the point P  at which the 

field is desired, also the magnitude of the magnetic field intensity is 

inversely proportional to the square of the distance from the differential 

element to the point P  [34]. The Biot-Savart law described above can be 

written concisely using vector notation as : 

                       

2 3

L L R
H=  .

4 4

R
Id Id

d
R R 

 


a

                                  
 (2.33)                                           

 

 The Biot-Savart law is sometimes called Ampere's law for current element. 

It is impossible to check experimentally the law of Biot-Savart as expressed 
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in eq. (2.33), because the differential current element cannot be isolated. 

We have restricted our attention to direct currents only, since the charge 

density is not a function of time. The continuity equation  

    V  =  .. v

t





J  

therefore shows that  

                          V = 0 ..J        (2.34) 

or by applying the divergence theorem we obtain 

      

 0 ..
S

d  J s

                             

                    (2.35) 

The total current crossing any closed surface is zero, the condition may be 

satisfied only by assuming a current flow around a closed path.  

     
  

2

L
=  .

4

R
Id

R




a
H                                      (2.36)                                             

Ampere's Circuital Law 

Ampere's circuital law states that: the line integral of H  about any closed 

path is exactly equal to the direct current enclosed by that path [12,34], 

and expressed mathematically as; 

                                      =  ..d I H L
                                          

(2.37) 

The application of Ampere's circuital law involves finding the total current 

enclosed by a closed path. Our objective here is to obtain the point form of 
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Ampere's circuital law. Which is also may be written in terms of the vector 

operator, 

                curl  =  .H H                   (2.38) 

We may now describe the curl as circulation per unit area. The closed path 

is vanishingly small, and curl is defined at a point. The curl of E must be 

zero, for the circulation is zero. The curl of H  is not zero, however the 

circulation of H  per unit area is the current density by Ampere's circuital 

law. We may now combine the two eq.(2.37) & (2.38) and have, 

curl = = 
y yz x z x

x y z

H HH H H H

y z z x x y

        
          

         
H H a a a J  

And write the point form of Ampere's circuital law, 

                                 =  .H J       (2.39) 

This is the third of Maxwell's four equations as they apply to non-time 

varying conditions. It is easy now to obtain Ampere's Circuital law from 

H =J . we merely have to dot each side by dS, integrate each side over 

the same (open) surface S , and apply stokes' theorem: 

         ( ) =  =  .. . .
S S

d d d  H s J s H L               (2.40)                                                 
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The integral of the current density over the surface S is the total current I 

passing through the surface, and therefore: 

                                    =  ..d I H L                                               
 
(2.41) 

 
     =  .. .

S
d I d H L J s           (2.42) 

 

Magnetic Flux and Magnetic Flux Density 

In free space we define the magnetic flux density B as 0 = B H , where 0  

is the   permeability of free  space and has the value   
7

0  = 4 10    .The 

relation 0 = B H  and 0D =  E  leads to an analogy between B and D. Let 

us represent the magnetic flux by   and define   as the flux passing 

through any designated area [25,34]: 

                                             =  ..
S

d  B s             (2.43) 

Our analogy remind sus of the electric flux  , and of coulomb's law, 

which states that the total flux passing through any closed surface is equal 

to the charge enclosed, 

                            
   = =  ..

S
d Q   D s                                (2.44) 

charge Q is the source of the electric flux lines and these lines begin and 

terminate on positive and negative charge, respectively. No such source has 

ever been discovered for the lines of the magnetic flux. The magnetic flux 
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lines are closed and do not terminate on a 'magnetic charge'. For this reason 

Gauss's law for the magnetic field is, 

                                      = 0 ..
S

d B s
                                         

 (2.45) 

And the application of the divergence theorem gives, 

                                    =0 .. Β           (2.46) 

This is the last of Maxwell's four equation as they apply to static electric 

field and steady magnetic field [34], when collecting these equation we 

have for static electric fields and steady magnetic fields: 

                                  =  .. v D        (2.47) 

 = 0 .E                        (2.48) 

 =  .H J                        (2.49) 

   = 0 .. B       (2.50)                                                                     

To these four equation we may add the two expression relating D to E and 

B to H in free space; 

                                        0 = D E  

                                        0 = B H  

And also it may be helpful to add the electrostatic potential equation, 

                                         = VE  
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The above four equations spesify the divergence and curl of an electric and 

magnetic field  [34]. The corresponding set of four integral equations that 

apply to static electric field and steady magnetic field is; 

                            =  .. v
S vol

d Q dv D s
              

                   (2.51) 

 
 

   = 0 ..d E L
                                  

      2.52) 

      =  .. .
S

d I d H L J s           (2.53) 

            = 0 ..
S

d B s                  (2.54)  

The Scalar Electric Potential and The Vector Magnetic Potential 

Let us first assume the existance of a scalar magnetic potential, which we 

designate mV  [34], whose negative gradient gives the magnetic field 

intensity, 

                                 =  .mVH                   (2.55) 

If we take the curl for both sides this will not conflict the previous result for 

the magnetic field, and therefore; 

 =  = ( ) .mV  H J
                     (2.56) 

But the curl of the gradient of any scalar is zero, therefore we see that if H 

is to be defined as the gradient of a scalar magnetic potential, then the 

current density must be zero throughout the region in which the scalar 

magnetic potential is so defined,we then have :  
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 =         (  = 0) .mVH J                   (2.57) 

We know that           

            = 0 .E    

so                                         = 0 ..d E L                                        (2.58) 

and therefore the line integral                                                                                         

                                  ..
a

ab
b

V d E L  

is independent of the path, in the magnostatic case however  

                               wherever   = 0 = 0          ( ) . JH  

but                                  =  ..d I H L  

Even if  J  is zero along the path of integretion, if no current I is enclosed 

by the path, then a single valued potential function may be defined. In 

general however, 

                        

,
 ..

m ab

a

b

V d  LH       (specified path)    

Magnetic Forces and Inductance 

A magnetic field may be produced by moving charges and may exert forces 

on moving charges; a magnetic field cannot arise from stationary charges 

and cannot exert any force on a stationary charges. 
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Force on a Moving Charge 

We know that the force on a charged particle  is given by   = QF E . F and 

E are in the same direction (for positive charges ) [26,34], if the velocity of 

a charged particle is v  , and it is moving in a magnetic field of flux density 

B, then the force's magnitude is proportional to the product of the 

magnitudes of the charge Q, its velocity v , and the flux density B. The 

direction of the force is perpendicular to both v  and B and  mathematically 

expressed as : 

                        = .Q F B v
                                               (2.59) 

Then the force on a moving particle due to combined electric and magnetic 

fields is obtained easily by super position  

         = ( + ) .Q F E Bv                                         (2.60) 

This equation is known as Lorentz force equation. 

The Magnetic Circuit 

Let us begin with the electrostatic potential and its relationship to electric 

field intensity 

.V E                                               (2.61) 
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There is analogous relationship between electric field intensity and 

magnetic field intensity that is :    

        
.mV H
                                            (2.62) 

In magnetic circuits we call mV magnetomotive force, or mmf. 

The electric potential difference between points A and B may be written as: 

  ..
B

AB
A

V d E L

    
            (2.63) 

And the corresponding relationship between the mmf and the magnetic 

field intensity : 

                     

  ..
B

mAB
A

V d H L                         (2.64) 

Ohm's law for electric circuit has the point form: J E , and we can see 

that the magnetic flux density will be the analog of the current density, 

B H , and then we must integrate to find the total current  

    ..
S

I d   J s                              (2.65) 

A corresponding operation is then used to determine the total magnetic flux  

     ..
S

d   B s      (2.66) 
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We then define the resistance as the ratio of potential difference and 

current, or: 

 .V IR                                       (2.67) 

We shall now define the reluctance as the ratio of the magnetomotive force 

to the total flux, thus: 

               .
m

V 
                      (2.68) 

But 
d

R
S

 , where R is the resistance, d is the length, and S is the uniform 

cross section of the resistor, and we have also   
d

S
  ,where   is the 

reluctance, d and S are as in equation above [34]. We know that the closed 

line integral of E is zero,    = 0.d E L . 

In other words, Kirchhoff's voltage law states that the rise in potential 

through the source is exactly equal to the fall in potential through the load. 

The expression for magnetic phenomena takes on a slightly different form, 

          . totald IH L .    (2.69) 

2.5  Time-varying Fields for Maxwell's Equations 

Two new concepts will now be introduced, the electric field produced by a 

changing magnetic field and the magnetic field produced by a changing 

electric field [26]. The first concept resulted from experimental research by 

Michael Faraday. And the second from the theoretical efforts of James 

Clerk Maxwell. 
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Faraday's Law 

A time-varying magnetic field produces an electromotive force (emf) 

which may establish a current in a suitable closed circuit. An electromotive 

force is merely a voltage that arises from conductors moving in a magnetic 

field or from changing magnetic fields. 

Faraday's Law is expressed mathematically as: 

  emf=  .
d

dt


       (2.70)   

The emf is obviously a scalar. We define the emf as: 

  emf d  E . L , it is the voltage about a specific closed path. 

For an electric field intensity resulting from a static charge distribution 

must lead to zero potential difference about a closed path [34]. In electro-

static, the line integral leads to a potential difference; with time-varying 

fields the result is an emf or a voltage, replacing  in eq. (2.70) by the 

surface integral of B, we have: 

emf =  .
S

d
d d

dt
 E . L = B . s

                                
(2.71) 

We first consider a stationary path. The magnetic flux is the only time-

varying quantity on the right side of equation above, and a partial 

derivative may be taken under the integral sign, 

    emf =  .
S t

d d


 
BE . L =  . s         (2.72) 
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Now applying Stokes' theorem to the closed line integral, we have : 

   ( .  .
S S t

d d


  
BE) . s = s          (2.73) 

Where the surface integrals may be taken over identical surfaces, thus we 

obtain: 

 ( .  .
t

d d


  BE) . s = s  

and     
                       

 .
t




  BE =                     (2.74) 

This is one of Maxwell's four equations as written in point form, and the 

eq. (2.73) is the integral form of this equation and is equivalent to Faraday's 

Law when applied to a fixed path. If B is not a function of time, then these 

two equations evidently reduce to the electro-static equations, 

    
      

0 .d E . L =              (electrostatics) 

           0E =              (electrostatics) 

Displacement Current 

Faraday's Law has been used to obtain Maxwell's equation (2.74)  which 

shows that a time-changing magnetic field produces an electric field [34]. 

Now let us turn our attention to the time-changing electric field. We should 

first look from the point of Ampere's circuital law as it applies to steady 

magnetic fields, 

 H J  
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Now by taking the divergence of each side, 

      . .   H 0 = J  

The divergence of a curl is identically zero, so J  is also zero, however 

the equation of continuity,
    

        
 . v

t


 


J =    

which shows that        

                                     0. J  if 0v

t





. 

But this is an unrealistic limitation, and the equation  H J  must be 

mended before we can accept it for time-varying fields. Suppose we add an 

unknown term G to the equation  . H J  

 Thus   

        . H J +G       

again taking the divergence, we have : 

          0 . . J + G  

Thus  

     . v

t





G =  

Replacing        v  by   . D  
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We get :                        ( ). . .
t t

 
  

 

D
G = D                  

From which we obtain the simplest solution for G,   .
t





D
G =  

Ampere's circuital law in point form therefore becomes: 

                
 .

t






D
H = J +                       (2.75) 

We now have a second one of Maxwell's equations, and we shall 

investigate its significance. Since the additional term  / t D results from a 

time-varying electric flux density (or displacement density), Maxwell 

termed it a displacement current density. It is sometimes denoted by  .
d

J
 

The eq.(2.75)  then becomes; 

 .dH = J + J                                              (2.76) 

     

d
t






D
J    

 this is the third type of current density we have met [34]. Conduction 

current density, J = E . And the convection current density is vvJ = . In 

nonconducting medium J=0, and then we have: 

t






D
H = ,        (if J=0) .                   (2.77) 
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We now notice the symmetry between  H and E . The total displacement 

current crossing any given surface is expressed by the surface integral 

     .. .
S S

d d t
I d d


  

DJ s = s                     (2.78) 

And we may obtain the time-varying equation of Ampere's circuital law by 

integrating the eq.(2.75)  over the surface S then we obtain
  

 
 

     
   ( ) =  .. . .

S S S t
d d d


   

DH  s J s s          (2 .79) 

And applying Stokes' theorem we get:
 
 

   .. .d
S t

d I I I d


   
DH L = s

   
                  (2.80) 

Maxwell's Equations in The Point Form 

 We have already obtained two of maxwell's equations for time-varying 

fields [26,34], 

                                 t


  



B
E                             (2.81) 

and                     
   t


 



D
H J +

                    
          (2.82) 

The remaining two equations are unchanged from their non-time-varying 

form: 

    . v D =                                             (2.83) 

    . B = 0                                             (2.84) 
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Equation (2.83) states that charge density is a source (or sink) of electric 

flux lines. Note that we can no longer say that all electric flux begins and 

terminates on charge. Because the point form of Faraday's law (2.81)shows 

that E and hence D, may have circulation if a changing magnetic field is 

present. Thus the lines of the electric flux may form closed loops. 

However, the converse is still true, and every coulomb of charge must have  

one coulomb of electric flux diverging from it. Equation (2.84) again 

acknowledges the fact that "magnetic charges" are not known to exist. 

Magnetic flux is always found in closed loops and never diverges from a 

point source. 

These four equations form the basis of all electromagnetic theory. They are 

partial differential equations and relate the electric and magnetic fields to 

each other and to their sources, charge and current density. The auxiliary 

equations relating D and E: 

            D E  

Relating B and H,  

                HB  

Defining conduction current density, J E  

Defining convection current density in terms of the volume charge density 

v , vJ v ; are also required to define and relate the quantities appearing 

in Maxwell's equations. 
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Finally, because of its fundamental importance we should include the 

Lorentz  Force equation, written in its point form as the force per unit 

volume, 

            ( )v F E + v B  

Maxwell's equations in The Integral Form 

The integral forms of Maxwell's equations are usually easier to recognize in 

terms of the experimental laws from which they have been obtained by a 

generalization process. Experiments must treat physical macroscopic 

quantities, and their results therefore are expressed in terms of integral 

relationship. A differential equation always represents a theory. Let us now 

collect the integral forms of Maxwell's equations of the previous section 

[34]. Integrating (2.81) over a surface and applying Stokes' theorem, we 

obtain Faraday's law, 

                
   =  .. .

S t
d d


 

BE L s
 
                           (2.85) 

And the same process is applied to (2.82) yields Ampere's circuital law, 

               
   =  +  .. .

S t
d I d

 
DH L s      (2.86) 

Gausse's law for the electric and magnetic fields are obtained by integrating 

(2.83) & (2.84) throughout a volume and using the divergence theorem: 

     .. v
S vol

d dv D s =     (2.87) 

    0.
S

d B s =  .      (2.88) 
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These four integral equations enable us to find the boundary conditions on 

B, D, H and E which are necessary to evaluate the constants obtained in 

solving Maxwell's equations in partial differential form. These boundary 

conditions are  in general unchanged from their forms for static or steady 

fields. And the same methods may be used to obtain them. It is always 

desirable to idealize a physical problem by assuming a perfect conductor 

for which  is infinite, but J is finite. From Ohm's law, then, in a perfect 

conductor 0E , and it follows from the point form of Faraday's law that 

0 .H  For time-varying fields; the point form of Ampere's circuital law 

then shows that the finite volume of  J is  0 .J  

The Related Potentials  

The time-varying potentials, usually called retarded potentials [26], we 

may summerize the use of potentials by stating that a knowledge of the 

distribution of v and J  throughout space theoretically enables us to 

determine V  and A  from: 

   
 

4
 .v

vol R
V dv




      (2.89) 

and  

   4
A  .

vol R
dv





 
  
J

    (2.90) 

The electric and magnetic fields are then obtained . If the charge and 

current distribution are unknown ,or reasonable approximations cannot be 
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made for them,these potentials usually offer no easier path toward  the 

solution than does the direct application of  Maxwell's equations. 

2.6  Time-Harmonic Fields for Maxwell's Equations 

Up to this point,we have considered the general case of arbitrary time 

variation of EM fields. In many practical situations, especially at low 

frequencies, it is sufficient to deal with only the steady-state (or 

equilibrium) solution of  EM fields when produced by sinusoidal currents. 

Such fields are said to be sinusoidal time-varying or time harmonic [26], 

that  is, they vary at a sinusoidal frequency  . An arbitrary time-dependent 

field ( , , , )x y z tF  or ( , )tF r  can be expressed as, 

 

   ( , ) Re ( ) j t

st e    F r F r                                        (2.91) 

Where ( ) ( , , )s s x y zF r F  is the phasor form of ( , )tF r  and is in general 

complex, Re[] indicates “taking the real part of” quantity in brackets, and 

  is the angular frequency (in rad/s) of the sinusoidal excitation. The EM 

field quantities can be represented in phasor notation as 

 

 

 

 

 

( )( , )

( )( , )
 =  

( , ) ( )

( , ) ( )

s

s

s

s

j t

t

t

t

t

e 

  
  
  
  
  

   

E rE r

D rD r

H r H r

B r B r

                                        (2.92) 

Using the phasor representation allows us to replace the time derivations 

t  by j  since 

 

 

 

j t
j te

j e
t








                                           (2.93) 
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Thus Maxwell’s equations, in sinusoidal steady state, become 

 s vs D                                                    (2.94) 

 0s B                                                        (2.95) 

     s s msj   E B J                                   (2.96) 

 s es sj  H J D                                      (2.97) 

We should observe that the effect of the time-harmonic assumption is to 

eliminate the time dependence from Maxwell’s equations, thereby reducing 

the time-space dependence to space dependence only. A non-sinusoidal 

field can be represented as 

 

  ( , ) Re ( , ) j t

st e d 




 
  F r F r                                   (2.98) 

Thus the solutions to Maxwell’s equations for a nonsinusoidal field can be 

obtained by summing all the Fourier components ( , )s F r  over  . Hence 

forth, we drop the subscript s denoting phasor quantity when no confusion 

results. Replacing the time derivative in the wave equation   

 
2

2

2 2

1
0

u t

 
  


                                            (2.99) 

By 
2( )j  yields the scalar wave equation in phasor representation as 

2 2 0k                                                   (2.100) 
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Where k  is the propagation constant (in rad/m), given by 

2 2f
k

u u

  


                                                 (2.101) 

We recall that the wave equation for the electric and magnetic field 

respectively are 

 

2
2

2
0

t



  



E
E                                            (2.102)

 

2
2

2
0

t



  



H
H                                           (2.103) 

which is the time-dependent wave equation. The velocity (in m/s) of wave 

propagation is            
1

u


  

Where  8 3 10u c     m/s in free space. These two equations were 

obtained assuming that 0 .v   J  If  0 ,v  J  Eq. (2.100) will have the 

general form 

2 2k g                                              (2.104) 

We notice that this Helmholtz equation reduces to: 

(1)   Poisson’s equation 

2 g                                                    (2.105) 

When 0k   (i.e., 0   for static case). 
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(2)   Laplace’s equation 

 
2 0                                                    (2.106) 

When 0k g  . 

Thus Poisson’s and Laplace’s equations are special cases of the Helmholtz 

equation. Note that function  is said to be harmonic if it satisfies 

Laplace’s equation. 

2.7  The Relation Between Maxwell's Equations and The 

Wave Equation 

As we have mentioned above, Maxwell’s equations are coupled first-order 

differential equations which are difficult to apply when solving boundary-

value problems. The difficulty is overcome by decoupling the first-order 

equations [26], thereby obtaining the wave equation which is  a second-

order differential equation is more efficient and useful for solving 

problems. In section 2.6 we finally ended up with Maxwell's equations, the 

four equations which encapsulate everything we know about electricity and 

magnetism. These equations are: 

 . 4 E                                               (2.107) 

 . 0 B                                                     (2.108) 

      
c t

   

HE                                           (2.109) 

or                         1
c t
  

BE  
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4 1
c c t
   


EB J                                      (2.110) 

To obtain the wave equation for a linear, isotropic, homogeneous, source-

free medium, then setting 0   and  0J   so we obtain : 

   . 0 E                                                 (2.111) 

     . 0 B                                                 ( 2.112) 

    
1
c t
  

BE                                          (2.113) 

     

1
c t
 

EB  .                                          (2.114) 

variations in E  act as a source for B , which in turn acts as a source for E , 

which in turn acts as a source for B , which ... The goal we need now is to 

fully understand this coupled behavior. To do so, we will find it easiest to 

first uncouple these equations. We do this by taking the curl of each 

equation. Let's begin by taking the curl of equation (2.109). 

 1( )  .
c t
   

BE  
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The curl of the left-hand side of this equation is 

              2 2
     E E E E  

The simplification follows because we have restricted ourselves to the 

source free equations 0  and so 0 E  . Now, look at the curl of the 

right-hand side: 

      
2

2 2

1 1 1
c t c t c t

        
  

B EB  

Putting the left and right sides together, we end up with 

   
2

2 2

2
0c

t

   


E E                                         (2.115) 

Repeating this procedure for the other equations, we end up with something 

that is essentially identical, but for the magnetic field: 

2
2 2

2
0c

t

   


B B                                         (2.116) 

We will simplify things initially by imagining that E only depends on x  

and t . The equation we derived for E  then reduces to 
2 2

2

2 2
0c

t x

  
 

E E
                                         2.117) 

which is the time-dependent vector Helmholtz equation or simply wave 

equation. If we had started the derivation with Eq.(2.82) we would obtain 

the wave equation for H  as 

2
2 2

2
0c

t

  


HH                                      (2.118) 
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It should be noted that each of the vector equations in (2.116) and (2.118) 

has three scalar components, so that altogether we have six scalar equations 

for , ,x y zE E E  ,x yH H , and zH . Thus each component of the wave equations 

has the form 

2
2

2 2

1 0
u t

   


                                       (2.119) 

The velocity (in m/s) of wave propagation is 

   
1

u


  

Where 
8 3 10u c    m/s in free space. 

2.8  The Relation Between Maxwell's Equations and The 

Potentials Functions 

Although we are often interested in electric and magnetic field intensities 

( E and H ), which are physically measurable quantities, it is often 

convenient to use auxiliary functions in analyzing an EM field. These 

auxiliary functions are the scalar electric potential V and vector magnetic 

potential A . Although these potential functions are arbitrary, they are 

required to satisfy Maxwell’s equations. Their derivation is based on two 

fundamental vector identities 

0                                                  (2.120) 

and             0 F                                                (2.121) 
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which an arbitrary scalar field   and vector field F  must satisfy. 

Maxwell’s equation (2.112) along with equation (2.121) is satisfied if we 

define A such that 

   B A                                                (2.122) 

Substituting this into Eq. (2.109) gives 

  0
t

  

AE                                            (2.123)   

Since this equation has to be compatible with equation (2.120) we can 

choose the scalar field V  such that 

 V
t

  

AE                                          (2.124) 

or         V
t

  

AE                                          (2.125) 

Thus, if we knew the potential functions V and A , the fields E and B  

could be obtained from Eqs. (2.122) and (2.124). However, we still need to 

find the solution for the potential functions. Substituting Eqs. (2.122) and 

(2.124) into Eq. (2.82) and assuming a linear, homogeneous medium, and 

make the substitutions required we obtain: 
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2 ( )
V

t





 
    



A
E                               (2.126) 

or          
2
V

t




    


A                                          2.127) 

According to the Helmholtz theorem of vector analysis, a vector is 

uniquely defined if and only if both its curl and divergence are specified. 

We have only specified the curl of A in Eq. (2.122); we may choose the 

divergence of A so that the differential equations (2.124) and (2.125) have 

the simplest forms possible. We achieve this in the so-called Lorentz 

condition: 

 
V
t

   


A                                            (2.128) 

Incorporating this condition into Eqs. (2.124) and (2.125) results in 

2
2

2
t

    


AA J                                         (2.129) 

and 

    
2

2

2

vVV
t





   


                                       (2.130) 

which are inhomogeneous wave equations. Thus Maxwell’s equations in 

terms of the potentials V and A  reduce to the three equations (2.128), 

(2.129), (2.130). In other words, the three equations are equivalent to the 

ordinary form of Maxwell’s  potentials satisfying these equations always 

lead to a solution of Maxwell’s equations for E  and B  when used with 
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Eqs. (2.122) and (2.125). Without proofs the integral solutions to Eqs. 

(2.129) and (2.130) are the so-called retarded potentials 

      4
 .v

vol R
V dv



     

and  

    4
A  .

vol R
dv





 
  
J

 

Where R  is the distance from the source point to the field point, and the 

square brackets denote v  and  J  are specified at a time 
1 2

( )R  earlier 

than for which A or  V  is being determined. 
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3.  Analytical Methods for Maxwell's Equations 

3.1  Introductionto Analytical Methods 

The analytical methods provide the most satisfactory solution for the 

Maxwell's equations. However, the range of problems which can be solved 

using the analytical methods are very much limited [26]. The reasons for 

this limitation are: irregular shape of the structure, dielectric 

inhomogeneity, and/or inhomogeneous boundary conditions. Therefore, 

approximation methods, computational methods or any other methods are 

employed in such situations. The analytical solutions, although limited, are 

useful in validating the results of the computational methods. Also, one is 

able to appreciate the need for computational methods better after seeing 

the limitations of other methods. The general methods for solving the 

Maxwell's equations may be classified into two broad categories: analytical 

methods and computational methods. Some of the analytical methods are 

listed below. 

Analytical Methods (Exact Solutions). 

(1) Method of Separation of Variables: Here the PDE is split into ordinary 

differential equations that may be solved easily. This analytical method 

may not always work, but it is often the simplest when it does work . 

(2) Eigen-Function Expansion Method: We use this method to solve non-

homogeneous problems which could not be solved by the previous method. 
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(3) Green’s Function: This analytical method produces a solution in the 

form of an integral. 

(4) Conformal Mapping: This method is limited to solving the Laplace 

equation in two dimensions . 

(5) Integral Transforms: May be used to solve the Maxwell's equations. 

This involves Laplace and Fourier transforms methods . 

3.2  Interface and Boundary Conditions 

The material medium in which an EM field exists is usually characterized 

by its constitutive parameters  ,  , and  . The medium is said to be 

linear if  ,  , and   are independent of E  and H  or nonlinear otherwise. 

It is homogeneous if  ,  , and   are not functions of space variables or 

inhomogeneous otherwise [26]. It is isotropic if , , and   are 

independent of direction (scalars) or anisotropic otherwise. 

 

The electromagnetic fields obtained from the solution of Maxwell's 

equations must also satisfy the boundary conditions at the interface 

between different media. As it turns out, that  the boundary conditions for 

time-varying fields are exactly the same as those for static fields. We state 

these boundary conditions without  their proofs. 
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These conditions are summarized as follows [15] : 

 Scalar Form       Vector Form 

 1 2t tE E     1 2( ) 0n   a E E    (3.1) 

  1 2t t sH H J     1 2( )n s  a H H J   (3.2) 

  1 2n nB B     1 2( ) 0n   a B B    (3.3) 

 1 2n n sD D        1 2( )n s a D D    (3.4) 

 1 2n nJ J                                       1 2( ) 0n  a J J                               (3.5) 

1 2

1 2

t tJ J

 
         

1 2

1 2

0n
 

 
   
 

J J
a    (3.6) 

The subscripts 1t  and 2t refer to components of fields tangential to the 

boundary in media 1 and 2, respectively. Similarly, the subscripts 1n  and 

2n  indicate the field components normal to the boundary. The unit vector 

na  at the interface points into medium 1, s is the free surface charge 

density, and sJ is the free surface current density. Equation (3.1) states that 

the tangential components of 1E  and 2E  are equal at the interface 

(boundary). However (3.2) asserts that the tangential components of 1H  

and 2H  at any point on the interface are discontinuous by an amount equal 

to the surface current density at that point. Equation (3.3) states that the 

normal components of 1B  and 2B  at the interface are continuous. However 

, (3.4) states that the normal components of  1D  and 2D  are discontinuous 

at any point on the interface by an amount equal to the surface charge 
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density at that point. Equation (3.5) states that the normal components of 

1J  and 2J  are equal at the interface. Equation (3.9) states that the ratio of 

the tangential components of current densities at the interface is equal to 

the ratio of the conductivities. 

When applying the boundary conditions, we must keep in mind the 

followings: 

(1) The electromagnetic fields inside a perfect conductor ( )   are zero. 

Thus, on the surface of a perfect conductor, both s and sJ can exist. 

(2) Time-varying fields can exist inside a conductor ( )  . Hence, sJ is 

zero, but s can exist at the boundary between a conductor and a perfect 

dielectric. 

(3)  At the interface between two perfect dielectrics sJ  is zero. However, 

s is zero unless the charge is physically placed at the interface. 

Electromagnetic fields existing in any medium must satisfy Maxwell's 

equations. When we seek solutions of Maxwell's equations in two or more 

media, we must ascertain that the fields are matched at the boundaries. 

3.3  General wave Equation  

Consider a uniform but source-free medium having dielectric constant , 

magnetic permeability  , and conductivity . The medium is source free 

as long as it does not contain the charges and currents necessary to generate 

the fields. The conduction current density can exist as determined by Ohm's 
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Law ( )J E  in a finitely conducting medium. Under these conditions, 

Maxwell's equations are [15]: 

                               ,
t




  


H
E        (3.7)        

,
t

 


  


E
H E         (3.8) 

  0 0   B H      (3.9) 

0 0   D E             (3.10) 

Where 

             B H ,  and   .D E  

For linear ( D  is parallel to E , and B  is parallel to H ), homogeneous 

(medium properties are the same at all points), and isotropic (  and are 

independent of direction) medium, both  and  are scalar constant. Such 

a medium is called uniform medium. The preceding equations are in terms 

of two variables, let us now obtain an equation in terms of one variable. 

Say the electric field E  only, to do this we take the curl of eq.(3.7) and 

obtain 

      .
t


 

    
 

H
E             (3.11) 

Using the vector identity 

                
2( . )  .   E E E  

and substituting  
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                 . 0 , E   

we have 

                                     
2  .  E E  

where the Laplacian of a vector quantity is defined in the rectangular 

coordinate system as  

 
2 2 2 2  .x x y y z zE E E   E a a a           (3.12) 

and the Laplacian operator is 

   

2 2 2
2

2 2 2
 .

x y z

  
   

  
             (3.13) 

Now changing the order of differentiation with respect to space and time, 

we can write (3.11) as   

             

2  .
t




  


E H                                         (3.14) 

Setting equ. (3.8) into equ.(3.14), we get 

                

2
2

2
 .

t t
 

 
  

 

E E
E                                (3.15) 

We can also obtain a similar equation in terms of the H field as 

   

2
2

2
 .

t t
 

 
  

 

H H
H                    (3.16) 

The set of six independent equations given by (3.15) and (3.16) are known 

as the general wave equations. These equations govern the behavior of all 
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electromagnetic fields in a uniform but source-free conducting medium. 

The presence of the first-order term in a second-order differential equation 

indicates that the fields decay (lose energy) as they propagate through the 

medium. For this reason, a conducting medium is called a lossy-medium. In 

the next section we will solve these equations and show that each equation 

does, in fact, represent an electromagnetic wave. 

3.4  Plane Wave in Dielectric Medium 

Let us consider a dielectric medium in which the conduction current is 

almost nonexistent in comparison with the displacement current [15], such 

a medium is called perfect dielectric or lossless medium ( 0)  . Thus, by 

setting ( 0)  in (3.15) and (3.16), we obtain the wave equation for a 

lossless medium as 

 

2
2

2
=0 ,

t



 



E
E             (3.17) 

and  

 

2
2

2
 =0.

t



 



H
H                 (3.18) 

These equations are called the time-dependent Helmholtz equations. The 

absence of the first-order term signifies that the electromagnetic fields do 

not decay (not losing energy) as they propagate in a lossless medium. The 

velocity of wave propagation is 
1

c


  where
83 10  m/sc   . Thus, the 

wave equation in general has the form 
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2
2

2 2

1
0 .

u
u

c t


  


                    (3.19) 

Also one can show that the time-varying potentials equations are as follows 

   

2
2

2
 ,

t
 


   



A
A J             (3.20) 

and  

   

2
2

2
 ,vV

V
t







   


            (3.21) 

which are inhomogeneous wave equations. 

3.5  Separation of Variables Method 

The method of separation of variables (sometimes called the method of 

Fourier) is a convenient method for solving the Maxwell's equation. 

Basically, it entails seeking a solution which breaks up into a product of 

functions, each of which involves only one of the variables [26]. For 

example, in two variables, The solution ( , )u x y  can be written as: 

 ( , ) ( ) ( )u x y X x Y y   

This separates out the partial differential equation into two or three 

ordinary differential equations which are related by a common constant 

(usually Eigen-Values). 
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3.5.1  One Dimensional Wave Equation 

We begin the application of separation of variables by finding the product 

solution of the homogeneous scalar one dimensional wave equation [4,26], 

which is special case of Maxwell's equations, 

                     

2 2
2

2 2

u u
c

t x

 


 
 

Subject to the boundary conditions  

  (0, ) 0u t     and      ( , ) 0u L t   for all 0t   

and the initial conditions  ( , 0) ( )u x f x  and  ( , 0) ( )
u

x g x
t





 for 

0 x L  . 

 One can show that the general solution to this initial boundary value 

problem 

                    

1

( , ) sin ( cos sin )n n n n

n

nu x t x A t B t
L
  





   

where 

                  

0

2 ( ) sin

L

n
nA f x x dx

L L
     ,     

0

2 ( ) sin

L

n
nB g x x dx

cn L



   

and    

                   ,   1,2,...n
nc n
L
   . 
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3.5.2  Two Dimensional Wave Equation 

Now we consider the two dimensional wave equation [4,26], 

             

2 2 2
2

2 2 2

u u uc
t x y

     
   

, 0  ,   0  ,   0x a y b t      

Where    ( , , )u u x y t , subject to the boundary conditions 

              (0, , ) 0u y t    and    ( , , ) 0u a y t    for  0 y b   and  0t   

              ( ,0, ) 0u x t    and    ( , , ) 0u x b t    for  0 x a   and  0t   

and the initial condition 

                    ( , ,0) ( , )u x y f x y     and  
  

   ( , ,0) ( , )u x y g x y
t

 


 

With the help of separation of variables, 

        ( , , ) ( ) ( ) ( )u x y t X x Y y T t  

one can show that the solution is 

         

1 1

( , , ) ( cos sin )sin sinmn mn mn mn

n m

m nu x y t A t B t x y
a b
  

 

 

   

where         

0 0

4 ( , )sin sin

b a

mn
m nA f x y x y dx dy

ab a b
                

      

0 0

4 ( , )sin sin

b a

mn
mn

m nB g x y x y dx dy
ab a b

 


   
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and     

2 2

2 2mn
m nc
a b

   . 

3.5.3   Two-Dimensional Wave Equation in Polar Coordinates 

Coordinate geometries other than rectangular Cartesian are used to describe 

many EM problems whenever it is necessary and convenient. For example, 

a problem having cylindrical symmetry is best solved in cylindrical system. 

It is sometimes called "cylindrical polar coordinates" and " polar cylindrical 

coordinates. electromagnetic fields produced by an electric current in a 

long, straight wire is an example of it. The two dimensional wave equation 

in polar coordinates now is given by: 

            

2 2 2
2

2 2 2 2

1 1( ).u u u uc
r rt r r 

     
  

 

 Here we will assume that the solution depends only on the radius r and 

does not depend on , that is 0u    , then the equation becomes  

2 2
2

2 2

1( ),u u uc
r rt r

   
 

     (3.22) 

Where            ( , )u u r t ,  and  0 ,r a   and 0t  , 

with the boundary condition ( , ) 0,  0 ,u a t t   

and initial conditions are ( , 0) ( )u r f r , ( ,0) ( ),u r g r
t

 


0  .r a    

we will solve this boundary value problem using separation of variables 

method, and reduce the problem into two ordinary differential equations in 

http://en.wikipedia.org/wiki/Electromagnetic_fields
http://en.wikipedia.org/wiki/Electric_current
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r and t . Hence the solution in t will consist of sins and cosines [4], the 

equation in the spatial variable r is new , and its solution will involve the 

Bessel-Functions. We assume that the solution is of the form  

  ( , ) ( ) ( ).u r t R r T t . After differentiating and plugging into equation (3.22) 

and separating the variables we get  

2 2 2( ) ( ) ( ) 0 ,  ( ) 0.r R r rR r r R r R a                      (3.23) 

   
2 2( ) ( ) 0.T t c T t                                          (3.24) 

Equation (3.23) is known parametric form of Bessel's equation of  order 

zero (here   is the parameter), since the equation is second order and 

homogeneous, we need only two linearly independent solutions to be able 

to write its general solution. By convention, these two linearly independent 

solutions are called Bessel functions of the first and second kind. And are 

denoted by 0 ( )J r and 0 ( )Y r , respectively. Hence the general solution to 

the parametric form of Bessel's equation is                       

   1 0 2 0( ) ( ) ( )R r c J r c Y r   ,  where 0r   

Since on physical grounds the solutions to the wave equation are expected 

to be bounded, It follows that the spatial part of the solution, ( )R r , has to 

be bounded near 0.r   This is effectively a second boundary condition 

on R . Now the fact that  0Y  is unbounded near 0 forces us to choose 2 0c   

in (3.22). To avoid trivial solution, we will take 1 1c   and get 

0( ) ( )R r J r the solution, ( ) 0R a  , implies that 0( ) 0J a  , and so a  
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must be a root of the Bessel function 0J  , this suggests 0J has infinitely 

many positive zeros, which we denote by  1 2 ... ...n       

Thus,     ,  1,2,...n
n n

a


     

and the corresponding solutions are 

           0( ) ( ),   =1,2,...n
nR r J r n

a


  

Where n is the thn positive zero of 0J . And for the T equation we get 

              ( ) ( ) cos sin  .n n n n nT t T t A c t B c t     

We thus obtain the product solution  

       0

1

( , ) ( cos sin ) ( )   n n n n n

n

u r t A c t B c t J r  




  . 

We determine the unknown coefficients by evaluating the series at  0t  , 

and using the initial condition, thus we get  

             0

1

( ,0) ( ) ( ),  0  .n n

n

u r f r A J r r a




     

This series representation of ( )f r is known as Bessel or Fourier-Bessel 

expansion, thus the Bessel coefficients nA are given by 

                     02 2
1

0

2 ( ) ( )
( )

a

n n

n

A f r J r r dr
a J




   
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where 1J is the Bessel function of order 1. Now differentiating the series for 

u with respect to t , and then setting 0t  , we get from the second initial 

condition 

 .0

1

( ,0) ( ) c  ( ) .t n n n

n

u r g r B J r 




   

Thus,    c n
n n nB c B

a


   

is the thn Bessel coefficient of g  and so 

       

  

02
1

0

2 g( ) ( )
( )

a

n n

n n

B r J r r dr
c a J


 

   

this completely determines the solution. 

Thus the solution of the radially symmetric two-dimensional wave equation  

with the boundary and the initial conditions is 

    0

1

( , ) ( cos sin ) ( )   n n n n n

n

u r t A c t B c t J r  




   

where               02 2
1

0

2 ( ) ( )
( )

a

n n

n

A f r J r r dr
a J




   

               

  

02
1

0

2 g( ) ( )
( )

a

n n

n n

B r J r r dr
c a J


 

  . 

and            
n

n a


      and  n is the thn positive zero of  0J . 
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3.5.4   Laplace Equation in Spherical Coordinates 

Spherical coordinates are ( , , )r   ; where 0 r   ; 0    ; 

0 2   . In this system, the wave equation becomes 

2
2 2 2 2

2 2 2 2 2

1 1 1( )   (sin ) 0 .
sin sin

v v vU k U r k v
r rr r r


   

          
    

 

Here we will solve Laplace’s equation in two dimensions as it is related to 

potential theory. This is often written as 0   or 
2 0  , where 

2   is the Laplace operator and   is a scalar function. The general 

theory of solutions to Laplace's equation is known as potential theory 

[4,26]. 

Consider a spherical symmetric system. If we want to solve Laplace's 

equation it is natural to use spherical coordinates. Assuming that the system 

has azimuthal  symmetry  0v


    
. Let us consider the problem of finding 

the potential distribution due to an uncharged conducting sphere of radius r  

located in an external uniform electric field as then Laplace's equation 

reads: 

            
2

2 2

1 1( )   (sin ) 0 .
sin

v vr
r rr r


 

    
   

 

Multiplying both sides by 2r  we obtain : 

           
2 1( )   (sin ) 0.

sin
v vr

r r


  
    
   

 

http://en.wikipedia.org/wiki/Laplace_operator
http://en.wikipedia.org/wiki/Potential_theory
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Consider the possibility that the general solution of the equation is the 

product of a function ( )R r  which depends only on the distance r , and a 

function  ( ) , which depends only on the angle . 

  ( , ) ( ) ( ) .V r R r   

Substituting this "solution" into Laplace's equation and dividing each term 

of this equation by  ( ) ( )R r   we obtain : 

    

21 1 1( ) sin ( ) 0 
( ) sin( )

( ) ( )r R r
R r r r

 
  




    
   

 

The first term of this expression depends only on the distance r  while the 

second term depends only on the angle  . This equation can only be true 

for all r and   if : 

   

21 ( ) ( 1) constant
( )

( )r R r m m
R r r r

  
 

   

and 

   

1 1 sin ( ) ( 1)
sin( )

( )  .m m 
  




  
 

   

Consider a solution for R  of the following forms: 

   ( )  .kR r A r  

Where A and k are arbitrary constants. Substituting this expression in the 

differential equation for  ( )R r  we obtain : 

       

2 11 ( ) ( 1) ( 1) .k

k k

kk r A r k m m
rAr r

    

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Therefore, the constant k  must satisfy the following relation : 

2( 1) ( 1) .k k k k m m      

This equation gives us the following expression for k    

 

1
2

1 2( )1 4 ( 1)
1  or ( 1)

2 2

mm m
k m m

  
      

The general solution for ( )R r is thus given by: 

 

1
( )  k

k

BR r A r
r 

   

where A and B are arbitrary constants. The angle dependent part of the 

solution of Laplace's equation must satisfy the following equation: 

   (sin ( )) ( 1) ( )sin 0 .m m   
 

     
 

 

The solution of this equation is known as the Legendre Polynomial 

 (cos )mP  . Associated Legendre polynomials are the most general solution 

to the Legendre's Equation and Legendre polynomials [4] are solutions that 

are azimuthally symmetric. In mathematics, Legendre functions are 

solutions to Legendre's differential equation: 

http://en.wikipedia.org/wiki/Associated_Legendre_polynomials
http://en.wikipedia.org/wiki/Mathematics
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2(1 ) ( ) ( 1) ( ) 0 .n n
d dx P x n n P x
dx dx

    
  

 

These solutions for    0,1,2,...n    (with the normalization (1) 1nP  form a 

polynomial sequence of orthogonal polynomials called the Legendre 

polynomials. Each Legendre polynomial ( )nP x  is an  thn degree 

polynomial. It may be expressed using Rodrigues' formula: 

            

21( ) ( 1)  .
2 !

n

n
n

n n
dP x x

n dx
     

The first few Legendre polynomials are 

n  ( )nP x  

0  1 

1 x  

2  

21(3 1)
2

x   

Combining the solutions for ( )R r and ( )  we obtain the most general 

solution of Laplace's equation in a spherical symmetric system as: 

     

1
0

( , ) ( ) (cos ) .m m
m mm

m

B
V r A r P

r
 






   

If the potential at the surface of a sphere is given by  

 0( ) cos(3 )V k   

where k is some constant. Find the potential inside and outside the sphere, 

as well as the sphere charge density ( )   is on the sphere. (Assume that 

there is no charge inside or outside the sphere). 

http://en.wikipedia.org/wiki/Polynomial_sequence
http://en.wikipedia.org/wiki/Orthogonal_polynomials
http://en.wikipedia.org/wiki/Rodrigues%27_formula


73 

The general solution of Laplace's equation in spherical coordinates as we 

have got above is  

   

1
0

( , ) ( ) (cos ) .m m
m mm

m

B
V r A r P

r
 






   

First: consider the region inside the sphere where ( )r R , in this 

region 0mB  , since otherwise  ( , )V r   would blow up at 0r  . Thus, 

   

0

( , ) (cos ) .m
m m

m

V r A r P 




  

The potential at r R is therefore equal to  

     

0

( , ) (cos )= (cos3 ) .m
m m

m

V r A R P k  




  

Using the trigonometric relations we can rewrite   cos(3 )  as  

            

3
3 1

8 3cos(3 ) 4cos 3cos (cos ) (cos ) .
5 5

P P         

Substituting this expression in the equation for  ( , ) V r   we obtain 

        3 1

0

8 3( , ) (cos ) (cos ) (cos ) .
5 5

m
m m

m

V R A R P kP kP   




    

This equation immediately shows that 0mA   unless 1m  or 3m   then   

       1
3
5

kA
R

  , 3 3

8  .
5

kA
R

  

Therefore, the electrostatic potential inside the sphere is equal to 
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3

3 13

8 3( , ) (cos ) (cos )
5 5

r rV r k P k P
RR

     

Now, one can show that the solution of the electrostatic potential outside 

the sphere ( )r R is thus equal to 

               

2 4

1 32 4

3 8( , ) (cos ) (cos ) .
5 5

R RV r k P k P
r r

     

3.6  The Method of Eigen-Function Expansion  

The separation of variables technique requires the boundary value problem 

(BVP) to have a homogeneous partial differential equation (PDE) and 

homogeneous boundary conditions (BCs). The initial conditions are not 

generally homogeneous and they do not prevent the BVP from being 

solved. Here we will solve the case of non-homogeneous boundary 

conditions [4]. To highlight the power of Eigen-function expansion 

method, we will tackle a Poisson boundary value problem on a rectangular 

region, as described by figure(3.1) below, involving Poisson's equation. 
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3.6.1 Eigen-Function Expansion Method for Poisson's Equation 

Poisson’s Equation is an elliptic linear inhomogeneous partial differential 

equation of the second order. It is given by  

       
2
u f    

or                         
2 2

2

2 2
( , )u uu f x y

x y

    
 

                                   (3.24) 

The solution of the equation u , is the unknown scalar potential function. 

When the Poisson equation is satisfied by a scalar potential in a given 

domain  . We can find the scalar potential inside the domain by solving 

the Poisson equation with the help of boundary conditions prescribed at the 

boundary . Poisson equation arises in a variety of branches 

mathematical and physical It is used to describe the steady state conditions 

of a given system as it involves no time variable. 

 

Figure (3.1): A general Poisson problem of a rectangle 
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The first step is decomposing the problem into simpler sub-problems, the 

decomposition is described by figure (3.2) 

 
 

Figure (3.2): Decomposition of a general Poisson problem 

Figure (3.2.b) describes a Dirichlet problem on a rectangle when 1f , 1g ,and 

2f , 2g  are all equal zeros, by solving a boundary value problem using the 

method of separation of variables, we will arrive with the general form of 

the solution  

 

1

( , ) sin sinh  .n

n

n nu x y B x y
a a
 





  

and               2

0

n 1,2,...
2 ( )sin

sinh
,   

a

n n b
a

nB f x x dx
aa 


   

if we consider ( , )mn x y  to be sin sinm nx y
a b
   which clearly satisfies 

the zero boundary conditions in figure(3.2.a). computing the Laplacian of  

( , )mn x y we find 
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2 2
2

2 2
( , ) sin (sin ) sin (sin )n m m nx y y x x y

b a a bx y

       
 

 

           
2 2

 sin  sin  .m n m nx y
a b a b
    

   
 

 

but we call the constant    
2 2

   (m,n=1,2,...)mn
m n
a b
     

an eigenvalue of the Laplacian and ( , ) sin  sinmn
m nx y x y
a b
    

the corresponding eigenfunction. So we arrive with the solution  

1 1

( , ) sin  sin  ,mn

n m

m nu x y E x y
a b
 

 

 


 

Differentiating twice and plugging into (3.24) gives  

 
      

2 2

1 1

 sin  sin  = ( , )mn

n m

m n m nE x y f x y
a b a b
   

 

 

 
  

 
  

This is a double Fourier sine series expansion of ( , )f x y , solving for mnE  

we get 

                    

0 0

4
( , )sin  sin .

b a

mn
mn

m n
E f x y x y dx dy

ab a b

 




    
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3.6.2   Eigen-Function Expansion Method for The IBVP 

Now suppose we have  the non-homogeneous wave equation [24] 

  

 

2
( , )tt xx Su c u x t   

 

Subject to the conditions  

  

( ,0) ( )u x f x  ,  ( ,0) 0tu x   

 (0, ) ( , ) 0u t u l t   

Solution 

                          

  

1

( , ) ( ) ( )n n

n

u x t u t x




  

                            

  

1

( , ) ( ) ( )n n

n

S x t s t x




  

                              

2

( ) sin
  1,2, . . .

    ( )

n

n

nx x
L

n
n
L












 

                        

 

0

2

0

( , )sin

( )

sin

L

n L

nS x t x dx
L

s t
n x dx
L








 

 
          

   

2 2
( ) ( ) ( ) ( )n n n

nu t c u t s t
L
   
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         1 2

0

sin ( )
( ) cos sin ( )

t

n n

n
L
n
L

c tn nu t c ct c ct s d
L L c





   


     

 

 

   

0
1

2

0

( )sin

(0)    since ( ,0) ( )

sin

n
L

n

n
L

f x x dx

u c u x f x

x dx








  




 

  2 2(0) 0   since  ( ,0) 0    0n t
nu c c u x c
L
      

             1
0

1

( , ) cos ( )sin ( ) sin
t

n

n

n L n nu x t c ct s c t d x
L cn L L
    







     

Where 1c  is given above. 

3.7  Integral Transforms 

3.7.1  Laplace Transform 

Let  ( , )u x t  be an arbitrary function defined for  a x b   and 0t  , then  

the Laplace transform of  ( , )u x t   with respect to t  is defined as  

                           

0

~
[ ( , )] ( , ) ( , ) stu x t U x s u x t e dt



  L  

In order to use Laplace transforms in practice, a formula is required to 

transform back from 
~

( , )U x s  to  ( , )u x t  that is; 

 

1

0

~ ~
[ ( , )] ( , ) ( , ) stU x s u x t U x s e ds



   L  

 As the range of integration for Laplace transforms is infinite [9], only those 

independent variables for which the dependent variable of the partial 

differential equation is defined over an infinite range are suitable as 
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variables of transformation. Laplace transforms are Particularly suited to 

problems where boundary conditions are given at 0t   Such problems 

arise in the solution of the heat equation and wave equation, the 

independent variable t  being interpreted there as the time variable. Here 

attention is confined to transforming the time variable t . 

Also we have the Laplace's transform for the first derivative as:  

      

0
00

( , ) ( , )stst stu u
e dt u x t e s u x t e dt

t t




  



  
     

L  

 

~
( , ) ( ,0)

u
sU x s u x

t

 
   

L  

In a similar fashion we have Laplace's transform for the second derivative 

as: 
 

  

2 2

2 2 0
0 0

( , )st st stu u u x t u
e dt e s e dt

t t t t

 


      
   

    
 L  

or   

2

2
( ,0)t

u u
s x

t t
u

   
       

L L    

                    

2
~

( , ) ( ,0) ( ,0)ts U x s s u x xu   . 

 

Also, in similar fashion; we can obtain Laplace's transform for the first 

derivative and the second derivative respectively, as: 

 

~
d ( , )

d

u U x s

t x

 
  

L    

 

2 2

2 2

~
d ( , )

d

u U x s

t x

 
 

 
L  
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Example (3.1) 

Consider this one dimensional wave problem and we want to solve it by 

Laplace Transform; 

    

2 2

2 2
( , ) 4 ( , ) ,

u u
x t x t

x t

 


 
  0t   ,  0x  ,  

subject to the conditions: 

       ( ,0) 0 , ( ,0) 1 , 0.tu x u x x     

        (0, )  ,  0.u t t x   

            lim ( , ) 
x

u x t


exists for a fixed 0t  . 

Solution: 

Taking Laplace transform  relative to t  since x has condition at ( 0)x   , 

gives 

    

0

~
( , ) ( , ) ( , ) .

st
u x t U x s u x t e dt




  L   

 
 

 
2

2
4x x tt

u
u u

x


 



LL L  

2
2

2

~ ~
4( 1)U s U

x

  


    or 
2

2

2

~ ~
4 4U s U

x

  


 

This ODE has the solution               

                 

2 2

1 2 2

~ 1( , ) ( )  .
sx sx

U x s c s e c e
s


    
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But,   lim ( , ) 
x

u x t


exists, so we can  

write             

0 0

~
[ lim ( , ) ] lim ( , ) lim ( , )

st st

x x x
e u x t dt e u x t dt U x s

 

 

  
    

Thus, we obtain 2 ( ) 0c s  ,  

thus      

2

1 2

~ 1( , ) ( )
sx

U x s c s e
s


   

since we have  (0, )u t t , then taking Laplace transform to  (0, )u t t , we 

obtain 

     

2

0

~ 1(0, ) (0, )
st

u t U s t e dt
s




  L  

Substituting this for  

~
( , )U x s , we have 

  1 2 2

~ 1 1(0, ) ( )  ,U s c s
s s

      means that    1 2

2( ) .c s
s

  

so     

2

2 2

~ 2 1( , )
sx

U x s e
s s


   

The solution to the original problem is by taking the inverse of Laplace 

transform,  

       ( , ) 2( 2 ) ( 2 ).u x t t t x u t x      

3.7.2  The Fourier Transform Method 

Maxwell's equations are a system of eight first-order partial differential 

equations in four independent variables: three space coordinates and time, 



83 

whose solution is often quite complicated [4,9]. It may be advantageous to 

eliminate the dependence of the field quantities upon one or more of the 

independent variables by applying a Fourier (or Laplace) transform , 

solving the resulting equations in the transform domain, and then obtaining 

the desired field quantities by an inverse transformation. Obviously, the 

main advantage of a transform technique with respect to an independent 

variable is to change the dependence of the equations on that variable from 

a differential one to an algebraic one; thus, a four-fold Fourier transform 

can change the differential system to an algebraic system in the transform 

domain.  

The Fourier transform pair: 

 

   ( , ) ( , ) ,j tt e dt






 r rE E

 
 

   

1
( , ) ( , ) ,

2
j tt E e d 







 r rE  

allows us to transform the electric field from the time domain, where the 

appropriate field vector is  ( , )trE , to the frequency domain, where the 

appropriate field vector is  ( , )rE , and vice versa. Identical 

transformations can be applied to all field variables in Maxwell's equations 

system. 

When modeling problems over regions that extend very far in at least one 

direction, we can often idealize the situation to that of a problem having 

infinite extent in one or more directions. Here we will develop the Fourier 
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transform method and apply it to solve the wave equations on the real line. 

The appropriate tools for solving a problems on the semi-infinite interval 

include the cosine and sine of Fourier transforms and the Laplace  

transforms. Here we will suppose that  ( , )u x t is a function of two variables 

x  and t , where  x  and 0t  . For fixed t , the function 

 ( , )u x t  becomes a function of the spatial variable x , and so we can take 

its Fourier transform with respect to the x variable [9]. We denote the 

transform by  

~
( , )U t ,  thus 

     

~ 1
( ( , ))( ) ( , ) ( , )  .

2

 








  
j xF u x t U t u x t e dx            (3.25) 

Fourier Transform and Partial Derivatives 

  

~
( ( , ))( ) ( , ) ;  





d
F u x t U t

t dt
                                         (3.26) 

    

~
( ( , ))( ) ( , ) ;  n=1,2,...  .

n n

n n

d
F u x t U t

t dt
 





                     (3.27) 

  

~
( ( , ))( ) ( , ) ;  





F u x t j U t
x

                                          (3.28) 

    

~
( ( , ))( ) ( ) ( , ) ;  n=1,2,...  .

n
n

n
F u x t j U t

x
  





                     (3.29) 

Example (3.2) 

Let us consider the one dimensional wave equation with its initial 

conditions as follows: 
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2 2
2

2 2
,      ( ,   0) ,

u u
c x t

t x

 
     

 
 

with the initial conditions 

         ( , 0) ( )u x f x          

        ( , 0) ( )





u x g x
t

    

Solution :  

We take the Fourier transform of both sides of this partial differential 

equation and the initial conditions with respect to x , using Eq.(3.27) and 

Eq.(3.29)  with n=2, we get 

                           

2
2 2

2

~ ~
( , ) ( , )

d
U t c U t

dt
                                                (3.30) 

                           

~ ~
( ,  0) ( ) , U f                                                                (3.31) 

                  
~ ~

( ,  0) ( ) . 
d

U g
dt

                                                             (3.32) 

It is clear that equation (3.30) is an ordinary differential equation in 

 

~
( , )U t , where t  is the variable. If we write (3.30) in the standard form 

   

2
2 2

2

~ ~
( , ) ( , ) 0   

d
U t c U t

dt
 

The general solution of this equation is  

   

~
( , ) ( )cos ( )sin  ,     U t A c t B c t  
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Where ( )A  and ( )B  are constants in t , we determine ( )A  and ( )B  

from the initial conditions (3.31) and (3.32) as follows: 

 

~ ~
( , 0) ( ) ( ) ,   U A f  

 

~ ~
( , 0) ( ) ( ) .

d
U c B g

dt
      

so  

              

~ ~ ~1
( , ) ( )cos ( )sin  .    


 U t f c t g c t

c
 

To obtain the solution we use the inverse Fourier transform and get 

                      

~ ~1 1
( , ) [ ( )cos ( )sin ]  .

2

    
 





 
j xu x t f c t g c t e d

c
 

3.7.3   The Fourier Sine and Cosine Transform 

Without proofs, the Fourier cosine and sine integral representation are 

given [28] respectively : 

The Fourier cosine Transform of u is 

         

0

~
( , ) ( , ) cos    ( 0) .cU t u x t x dx  



   

With an inverse transform 

        

0

~2( , ) ( , ) cos (x> 0)   cu x t U t x d  




   
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in similar way, we define the Fourier sine Transform of  u  by 

        

0

~
( , ) ( , ) sin    ( 0) .sU t u x t x dx  



   

With an inverse Fourier sine transform  

                       

0

2
~

( , ) ( , ) sin (x>0) .   su x t U t x d


  



   

The sine transform of 



u
x

 with respect to x  is given by 

                            0

0 0

sin [ sin ] ( , ) cos  .u x dx u x u x t x dx
x

  
 

  
   

 

Provided  ( , ) 0    u x t as x (which is often the case in physical 

problems), then 

                       

0

~
sin ( , ) .c

u x dx U t
x

  


  
  

Similarly the cosine transform of 



u
x

 with respect to x  is  

                           0

0 0

cos [ cos ] ( , ) sin  .u x dx u x u x t x dx
x

   
 

  
 

       

~
( , ) (0, ),sU t u t    

 provided  ( , ) 0    . u x t as x  
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The transform of the second derivative 
2

2




u
x

may be obtained in a like 

fashion, and we easily can find 

                      

2
2

2

0

~
sin ( , ) (0, ),s

u x dx U t u t
x

   


   
  

and          

2
2

2
0

0

~
s ( , )

x

c
u uco x dx U t

x x
  





   
   

where, in addition to assuming that  ( , ) 0    u x t as x , we have 

further assumed that 0    .  


u as x
x

 

other commonly used notation is the following 

                   
~

( )  ccF f f    and   

~
( ) . ssF f f   

Example (3.3) 

A Dirichlet-Neumann Problem in a Semi-Infinite Strip 

Consider the Dirichlet- Neumann problem of an infinitely long rectangular 

conducting strip which cross section is shown in figure (3.3). This is a 

boundary value problem [4], and the PDE to be solved is : 
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2 2

2
2 2

0,  0 ,  y>0,      
 

u uu x a
x y                         (3.33) 

( ,0) 0,  0 ,   


u x x a
y

                                            (3.34) 

(0, ) 0,  ( , ) ( ), 0.  u y u a y f y y                         (3.35) 

As illustrated in the figure below : 

 

Figure (3.3):  Dirichlet-Neumann problem in a semi infinite strip 

Solution: 

 Since the domain of the variable y  is semi-infinite ( the domain of the 

variable x is finite) we choose to transform the equations with respect to 

the variable y . Also, since the boundary condition (3.34) involves the 

derivative at 0y , the cosine transform is the right choice. So we obtain 

   

2
2 2

2

~ ~
( ) ( , ) ( ,0) ( , ),        
 c c c

u uF U x x U x
y y

 

  

2
2

2

~ ~
( , ) ( , ) 0,   c c

d U x U x
dx
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~ ~ ~

(0, ) 0, ( , ) ( ),   c c cU U a f  

The general solution of the second order ordinary differential equation is   

  

~
( , ) ( )cosh ( )sinh ,cU x A x B x       

Where ( )A and ( )B are constants that depend on . Setting 0x and 

then x a , we get  

( ) 0, A  
 

~
( )

( ) .
sinh





 cf

B
a

 

Putting this into  

~
( , )cU x   and taking inverse Fourier cosine transform , we 

get the solution in the form    

        

 

0 0

~
~ ( )

( , ) ( , )cos sinh cos  .
sinh


    



 

  
c

c

f
u x y U x y d x y dy

a
 

  

Example (3.4) 

Suppose we want to determine the potential function for the region inside 

the rectangular trough of infinite length , this is a two dimensional Laplace 

equation 

                     
2 2

2 2
0,  

 
u u

x y  

in the half plane 0y  subject to the boundary condition ( ,0) ( )u x f x  

( )  x  and the condition  

2 2( , ) 0    .  u x t as x y   
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Solution: 

Using a Fourier transform [9] with respect to x  

     

~
( ( , y)) ( , y) ( , y) 





   j xF u x U u x e dx . 

and      
2 2

2 2

~

( ) , 
 

u UF
y y

     
2

2
2

~
( ) ( ) .  


uF j U
x

 

which implies 

   
2

2
2

~ ~
0.  


U U
y  

with the solution 

    

~
( , ) .

 



 

y y
U y A e Be  

The boundary conditions give 

 

~
( , 0) ( ) ( )  U F f F  

and    

~
( , y) 0    U as y  

if 0,   we must have 0,  ( ), A B F  

0,  we must have 0,  ( ), B A F  

which gives 

~
( , ) ( )


 




y
U y F e  
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Now  taking the inverse gives 

 

1

2 2

1( )









y y
F e

x y
 

so the convolution theorem yields 

  

2 2

1( , ) ( )






 

y

u x y f x u du
u y

 

  

2 2

( )











y f x u

du
u y

 

    

2 2

( )
 .

( )






 

y f u
du

u x y
 

3.8  Green’s Function 

Physically, Green's functions associated with the wave type problems, and 

represents the way in which a wave propagates from one point in space to 

another. For this reason, they are sometimes referred to as propagators [9]. 

In this case, the Green's function is a function of the "path length" between 

x and 0x , irrespective of whether 0x x   or 0x x . The path length is 

given by   0x x , and the Green's function is a function of this path length 

which is why, using the notation   0 0x x x x   ,we write 0( )g x x . 
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3.8.1 Green's Function for The One-Dimensional Inhomogeneous 

Wave Equation. 

Consider the equation 

 

2
2

2
( ) ( , ) ( )k u x k f x

x

  


                          (3.36) 

where k (the wave number) is a constant and ( )f x  is the source term, the 

solution being required over all space ( , )x     subject to the conditions 

that  u and u x  are zero at  . This equation describes the behavior of 

"steady waves" (constant wavelength 2 / k  ) due to a source ( )f x . 

We define the Green's function as being the solution to the equation 

obtained by replacing the source term with a delta function which 

represents a point source at 0x , giving the equation 

 

2
2

0 02
( ) ( , ) ( )k g x x k x x

x
   

                           

(3.37) 

where   has the following fundamental property 

     0 0( ) ( ) ( ).u x x x dx u x




   

Multiplying equation (3.36) by  g  gives 

    

2
2

2
( ) ,g k u gf

x

  


 

and multiplying equation (3.37) by u gives 
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2
2

02
( ) ( ).u k g u x x

x
   


            (3.38) 

Now subtract the two results and integrate to obtain 

            

22

02 2
( ) ( ) .

gug u dx f g dx u x x dx
x x



  

  

    
     

Using the generalized sampling property of the delta function given above 

and evaluating the second integral on the right-hand side and using  the 

conditions above, we obtain the Green's function solution to equation 

(3.36) in the form  

     0 0( , ) ( ) ( , ) .u x k f x g x x k dx





   

where g  is the Green's function. This solution is of course worthless 

without an expression for the Green's function which is given by the 

solution to the equation 

 

2
2

0 02
( ) ( , ) ( )k g x x k x x

x
   


   

subject to, 0( , ) 0,g x x k

  and 0[ ( , ) / ] 0.g x x k x     

The solution to this equation is based on employing the properties of the 

Fourier transform discussed above. Writing      0 ,X x x   we express g and 

  as Fourier transforms, that is  

   

1( , ) ( , )
2

iuX
g X k G u k e du







                             (3.39) 
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and       
1( )

2

iuX
X e du







   

Substituting these expressions into equation  (3.38) and differentiating 

gives 

        

2 2

1( , )  .G u k
u k




 

Substituting this result back into equation (3.39) we obtain 

   

2 2

1 1( , )  .
2 2 ( )( )

iuX iuX
e eg X k du du

u k u ku k 

 

 

 
                            (3.40) 

3.8.2 Green's Function Solution to Maxwell's Equations Time-

Dependent Problems 

Here we will introduce the Green's function as a tool for predicting the 

behavior of electromagnetic fields. We start by considering the basic 

equations of electromagnetism (Maxwell's equation) and show how these 

can be manipulated (under certain conditions) to form inhomogeneous 

wave equations for related electromagnetic field potentials [9]. The Green's 

function is then used to solve these equations which leads directly to a 

description of the properties of an electromagnetic field. The previous 

discussions having been related to the time-independent case. 
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The motion of electrons (and other charged particles) gives rise to electric 

field E  and magnetic field B  fields. These fields are related by the 

(microscopic) Maxwell's equations which are as follows: 

Coulomb's law    

4  . E                                       (3.41)     

where   is the charge density. 

Faraday's law 

                        
1  .
c t
  

BE                                (3.42)         

where c is the speech of light (in a vacuum). 

No free magnetic poles law  

0 . B                           (3.43) 

Modified (by Maxwell) Ampere's law 
 

1 4  .
c t c

  

EB J

                     
(3.44) 

where J  is the current density. These microscopic Maxwell's equations are 

used to predict the point wise electric and magnetic fields given the charge 

and current densities (   and J  respectively). 

 

 



97 

3.8.3  The Wave Equation Solution of Maxwell's Equations 

 If we take the curl of equation (3.42) 

1  ,
c t

   

BE  

 and use the vector identity  

2
( ) ( )  ,    A A A                                      (*) 

 then from equations (3.41) and (3.42), we obtain   

2 1 1 4(4 ) ( ).
c t c t c

      
 

EΕ J  

 After rearranging, 

    

2
2

2

1 44 .
c t tc

      
 

Ε JΕ  

  

                (3.45) 

Taking the curl of equation  (3.44), using the same vector identity as above 

(*), substituting for equations (3.42) and (3.43) and rearranging the result 

gives 
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2
2

2

1 4 .
c t c

    


BB J                (3.46) 

Equations (3.45) and (3.46) are the inhomogeneous wave equations for E  

and B  .They are related or coupled with the vector field J  (which is related 

to B ). If we define a region of free space where 0  and 0J  , then both 

E  and B  satisfy 

    

2
2

2 2

1 0 ,
c t

  


FF  

which is the homogeneous wave equation prescribed above. 

3.8.4  The General Solution of Maxwell's Equations 

The basic method of solving Maxwell's equations (i.e. finding E and B  

 given   and J ) [9] involves the following : 

 Expressing E  and B  in terms of two other fields U  and A . 

 Obtaining two separate equations for U  and A . 

 Solving these equations for U  and A  from which E  and B  

 can then be computed. 

  

For any vector field A  

          . 0 A  

Hence, if we write 
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  B A                                    (3.47) 

Equation (3.43) remains unchanged, and equation (3.42) can then be 

written as 

                                    
1 ,
c t
   


E A  

or 

           
1( ) 0.
c t
  

AE  

The field A  is called the magnetic vector potential. Similarly, for any 

scalar field U  

                                             0,U   

and thus equation (3.42) is satisfied if we write 

     
1U
c t
  

AE  
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or      

        
1U
c t
  

AE                                (3.48) 

The field U  is called the electric scalar potential. Substituting equation 

(3.48) into Maxwell's equation (3.41) gives 

  
1.( ) 4 ,AU
c t

    
  

or     

  
2 1 . 4  .U

c t
    


A                                                (3.49) 

Substituting equations (3.47) and (3.48)   into Maxwell's equation 

(3.44) gives 

        
1 1 4( )  .U
c t c t c

     
 

AA J  

Using the identity  

                                

2
.  A A A  

 

This becomes 

     

2
2

2 2

1 1 4( . )  .
c t cc t

       


A AA A J                       (3.50)     
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If we could solve equations (3.49) and (3.50) for U and A  then E  and B   

could be computed. However, these equations are coupled. They  can be 

decoupled if we introduce a condition known as the Lorentz condition: 

   

1. 0 .U
c t
  


A      (3.51)      

Substituting equation  (3.51)  into equations (3.49) and (3.50) gives 

2
2

2 2

1 4  ,UU
c t

   


 

  
 

2
2

2 2

1 4  .
cc t

    


AA  

respectively. These equations are uncoupled inhomogeneous wave 

equations. Unlike the wave equations that we have considered before, these 

equations are time dependent  and it is therefore pertinent at this point to 

consider the Green's function for a time-dependent wave equation. 

3.8.5 Green's Functions for Time-Dependent Inhomogeneous 

Wave Equations  

First we will consider three-dimensional problem but stress that the 

methods of solution discussed here can be applied directly to problems in 

one and two dimensions [9]. Thus, consider the case in which a time 

varying source function  ( , )f tr  produces a wave field U  which is taken to 

be the solution to the equation. 

   

2
2

2 2

1 ( , ) ( , ) .U U t f t
c t

   


r r  

                       
(3.52) 
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As with the time-independent problem, the Green's function for this 

equation is defined as the solution to the equation obtained by replacing 

 ( , )f tr  with 
3

0 0( ) ( )t t  r r  that is the solution to the equation  

  

2
2 3

0 0 0 02 2

1( ) ( , ) ( ) ( ) .G t t t t
c t

     


r r r r                    (3.53) 

where G  is used to denote the time-dependent Green's function, 0r is the 

position of the source and 0 0t t t t  . To obtain the equation for the time- 

independent Green's function, we write G and 0( ) t t  as Fourier 

transforms,     

0[ ]

0 0 0

( )1( , ) ( , )
2

i t t
G t t g de 

 







 r r r r  

and    
0

0

[ ( )]1( )
2

i t t
t t de 

 







    

where   is the angular frequency. Substituting these equations into 

equation (3.53) we then obtain 

 

2 2 3

0 0( ) ( , ) ( )k g k     r r r r  

which is the same equation as that used previously to define the time- 

independent Green's function. Thus, once g  has been obtained, the time- 

dependent Green's function can be derived by computing the Fourier 

integral given above. Using the expression for g derived earlier in section 

(3.9.1), 



113 

   0 0 0 0

0

1 1( , ) exp( ) exp[ ( )]
2 4

G t t ik r r i t t d
r r

 
 





  
r r

0 0

0

1 ( / )
4

.t t r r
r r

c


   


 

3.9  Conformal Mapping Method 

Conformal mapping is an important technique used in complex analysis 

and has many applications in different physical situations. If the function is 

harmonic (i.e it satisfies Laplace’s equation 
2

0f   ) then the 

transformation of such functions via conformal mapping is also harmonic. 

A large number of problems arising in fluid mechanics, electrostatics, heat 

conduction, and many other physical situations can be mathematically 

formulated in terms of Laplace's equation, i.e, all these physical problems 

reduce to solving the equation 

0x x yy                                             (3.54) 

in a certain region D  of the z  plane. The function ( , )x y , in addition to 

satisfying this equation also satisfies certain boundary conditions on the 

boundary C  of the region D [18] . From the theory of analytic functions we 

know that the real and the imaginary parts of an analytic function satisfy 

Laplace's equation. It follows that solving the above problem reduces to 

finding a function that is analytic in D and that satisfies certain boundary 

conditions on C . It turns out that the solution of this problem can be greatly 

simplified if the region D  is either the upper half of  the z plane or the unit 

disk. What makes conformal mapping so useful is that they map a solution 
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of Laplace's equation into another solution of Laplace's equation.The 

driving force behind many of the applications of complex analysis is the 

remarkable connection between harmonic functions of two variables. 

solutions of the planar Laplace equation and complex functions. To wit, the 

real and imaginary parts of any complex analytic function are automatically 

harmonic. We interpret this operation as a complex changes of variables 

,also known as a conformal mapping since it preserves angles [18]. There 

are several ways to motivate the link between harmonic functions  ( , )u x y  , 

meaning solutions of the two-dimensional Laplace equation in equation 

(3.54), and complex functions ( )f z . One natural starting point is to return 

to the D’Alembert solution of the one-dimensional wave equation, which 

was based on the factorization 

2 2 2
( )( )t x t x t xc c c           

of the linear wave operator. The two-dimensional Laplace operator 

2 2

x y     has essentially the same form, except for a “minor” change in 

sign. The Laplace operator admits a complex factorization,  

2 2
( i )( i ) ,x y x y x y            

into a product of first order differential operators, with complex “wave 

speeds”  c i   . The solutions to the Laplace equation (3.54) should be 

expressed in the form 
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( , ) ( iy) ( i ) ,u x y f x g x y                                   (3.55) 

i.e., a linear combination of functions of the complex variable 

iz x y  and its complex conjugate iz x y  . The functions ( i )f x y  

and ( i )g x y formally satisfy the first order complex partial differential 

equations 

i  ,f f
x y

 
 

          i  ,
g g

x y

 
 

                                     
(3.56) 

In most applications, we are searching for a real solution to Laplace 's 

equation, and so our complex D’Alembert-type formula (3.55) is not 

entirely satisfactory. As we know, a complex number iz x y  is real if 

and only if it equals its own conjugate, z z . Thus, the solution (3.55) 

will be real if and only if 

                  ( i ) ( i ) ( iy) ( i ) .f x x g x y f x g x y        

To equate the two sides of this equation, we should require 

   ( i ) ( i )g x y f x x    

and so 

( , ) ( iy) ( iy) 2Re ( i )u x y f x f x f x y      . 

Our main objectives goals of study are complex-valued functions 

( )f z depending on a single complex variable iz x y  . In general, the 
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function f :   will be defined on a sub-domain z   of the 

complex plane. Any complex function can be written as  

 

where ,  ( , ) Re ( )u x y f z  is the real part of f , and  ( , ) Im ( )v x y f z  

is the imaginary part of f . 

Theorem  3.9.1  

A function ( ) ( , ) i ( , ) ,f z u x y v x y  where iz x y  , is analytic at z if 

and only if its real and imaginary parts are continuously differentiable and 

satisfy the Cauchy–Riemann equations 

  ,u v
x y

 
 

   ,u v
y x

  
                                       

(3.57) 

In this case, the complex derivative of ( )f z  is equal to any of the 

following expressions: 

( ) i i i  .f u v f v uf z
x x x y y y

            
                        

(3.58) 

3.9.1  Harmonic Functions. 

We began by motivating the analysis of complex functions through 

applications to the solution of the two-dimensional Laplace equation. Let 

us now formalize the precise relationship between the two subjects. 

 

( ) ( i ) ( , ) i ( , ) ,f z f x y u x y v x y   
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Theorem 3.9.2 

The real and imaginary parts of an analytic function are harmonic. They are 

harmonic conjugate to each other, (i.e.  ( , )u x y ,  ( , )v x y , are both harmonic 

functions). 

Proof: Differentiating the Cauchy–Riemann equations (3.57), and invoking 

the equality of mixed partial derivatives, we find that 

         

2 2 2

2 2
( ) ( ) ( ) ( )  .u u v v v u u

x x x y x y y x y yx y

                 
          

 

Therefore, u   is a solution to the Laplace equation  0.xx xxu u   The 

proof  for v  is similar.  

3.9.2  Analytical Mapping 

The intimate connections between complex analysis and solutions to the 

Laplace equation inspires us to look at changes of variables defined by 

complex functions. To this end, we will re-interpret a complex analytic 

function 

  ( )g z      or      ( , ) i ( , ).i p x y q x y                        (3.58) 

as a mapping that takes a point  iz x y    belonging to a prescribed 

domain   to a point i     belonging to the image domain 

( )D g    . In many cases [18], the image domain D  is the unit disk. 

In order to unambigouously relate functions on   to functions on D  , we 

require that the analytic mapping (3.10.5.58) be one-to-one so that each 
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point D   comes from a unique point z   . As a result, the inverse 

function 
1
( )gz 


  is a well-defined map from D  back to , which we 

assume is also analytic on all of D . The calculus formula for the derivative 

of the inverse function  

                 
1 1( )

( )
d g

d g z








  at  ( ),g z   

which remains valid for complex functions, implies that the derivative of 

( )g z  must be nonzero everywhere in order that 
1
( )g 


 be differentiable. 

This condition, 

   ( ) 0g z     at every point  z    

Finally, in order to match the boundary conditions, we will assume that the 

mapping extends continuously to the boundary   and maps it, one-to-

one, to the boundary D  of the image domain. 

Proposition 3.9.1 

 If ( )w f z  is an analytic function of the complex variable iz x y  , 

and ( )g w   is an analytic function of the complex variable iw u v  , 

then the composition ( ) ( ) ( ( ))h z g f z g f z     is an analytic 

function of z . 
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3.9.3 Applications of Conformal Mapping to Harmonic Functions and 

Laplace’s Equation: 

We are interested in solving a boundary value problem for the Laplace 

equation on a domain 
2

R . Our strategy is to map it to a corresponding 

boundary value problem on the unit disk D [18] . To this end, suppose we 

know a conformal map =g(z) that takes z    to D    . As we know, 

the real and imaginary parts of an analytic function ( )f   defined on D  are 

harmonic. Moreover, according to Proposition (3.10.3), the composition  

( ) ( ( ))f z F g z  defines an analytic function whose real and imaginary 

parts are harmonic functions on  . Thus, the conformal mapping can be 

regarded as a change of variables between their harmonic real and 

imaginary parts. 

Proposition 3.9.2 

If ( , )U    is a harmonic function of  ,   and 

    i ( , ) i ( , ) ( )x y x y g z          

is any analytic function, then the composition 

      ( , ) ( , ), ( , )( )u x y U x y x y   

is a harmonic function of x , y . 

We conclude that whenever   ( , )U    is any harmonic function, and so 

solves the Laplace equation  (in the ,  variables), then  ( , )u x y  is a 
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solution to the Laplace equation 0u  in the x , y variables, and is thus 

also harmonic. 

Example (3.5): Using the Argument Function 

Consider the Dirichlet problem 
2

0u   in the half plane 0y   [18] , given 

the boundary values 

                                      

 100  if 0,
( , 0)

 50    i f  0.
x

u x
x



  

Solution: 

 since the boundary condition is constant on the rays 0x   and  0x  , it 

is reasonable to expect that the solution be constant on rays in the upper 

half plane. We try for a solution the function            

                                                    ( , ) Arg ,u x y a z b   

where a  and b  are real numbers and iz x y  . The function is harmonic 

in the upper half-plane , its values on the boundary are   ( , 0 )u x b if 

0x   

and   ( ,0)u x a b   if  0x  . Thus, to satisfy the boundary conditions, 

take  

  100b   and 100 50a   , so 
50a


   .  

Hence  
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50( , ) Arg 100u x y z


    

In terms of x  and y , we can use   

1
Arg ( ) cot ( )xz

y


   and get 

  

150( , ) cot ( ) 100.xu x y
y


    

As  

1
0 , cot ( )xy

y

 
  tends to 0 if 0x   and  if 0x  , which shows 

that u  satisfies the boundary condition. 

Example (3.6): Dirichlet Problem in The First Quadrant 

Consider the Dirichlet problem in the first quadrant   as shown in figure 

(3.4)  

 

Figure (3.4): Solving the Dirichlet problem in the first quadrant  

 

Solution: 

We use the method of conformal mapping to transform the given problem 

into a problem on the upper half plane [4] . We choose 
2

( )f z z  takes   

in the z plane onto the upper half of the w plane figure (3.5). Moreover , 

the boundary of   is mapped onto the boundary of the upper half plane as 
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follows, the nonnegative real line ( 0)x  is mapped onto the nonnegative 

( 0)u   real line, and the imaginary semi-axis iy with ( 0)y   is mapped to 

the non-positive ( 0)u  . Now we will describe the boundary function in the 

Dirichlet problem in the  w  plane . The boundary function in w  plane is 

1
( )b f w


, where ( )b z is the boundary function in the z  plane [3]. With 

the help of figure(3.5) we see that  
1
(( ,0)) 0b f u


  if   1u  and 

1
(( ,0)) 100b f u


  if    1u  . The transformed Dirichlet problem in the 

upper half plane is described by figure (3.5) and given by: 

  
2

0U  ,  w in the upper half plane.     

  
    ( ,0) 0, 1,   ( ,0) 100, 1.U u u U u u     

 

Figure (3.5): Transforming a Dirichlet problem from the first quadrant onto the upper 

half-plane. Notice the boundary correspondence 

To solve the boundary value problem in the w  plane , we obtain  

  
100( ) (Arg( 1) Arg( 1)).U w w w


     

The solution to the original Dirichlet problem in the z -plane is  

   
                       

2 2100( ) ( ( )) Arg( 1) Arg( 1)  .z U f z z z


        
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In terms of x and y , we have  

                               
2 2 2

1 1 2i ,z x y x y      

and   
2 2 2

1 1 2i   .z x y x y      

Since the imaginary parts of 
2

1z   and 
2

1z   are positive, we use the 

inverse cotangent, and get 

2 2 2 2100( , ) Arg( 1 2i ) Arg( 1 2i )x y x y x y x y x y


           

   

2 2 2 2
1 11 1100 cot ( ) cot ( )  .

2 2

x y x y

x y x y
     

  
 

 

We will quickly verify some of the boundary conditions. If  

 0 1  and  0x y


   , then 

    

2 2
1

 
2

x y

x y

 
    and   

2 2
1

 
2

x y

x y

 
  .  

 Hence  

 

2 2 2 2
1 1

0

1 1
lim cot ( ) cot ( )  0  .

2 2y

x y x y

x y x y
 



 



    
    

 
 

and so 
0

lim (x,y)=100
y





 if 0 1x    , which is in agreement with the 

boundary condition. 
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4. Finite Difference Methods for Maxwell's Equations 

In this chapter we will try to solve the Maxwell's equations by well-known 

advanced numerical methods. Namely the Finite Difference Method and 

the Finite Time Domain Method. 

4.1  Introduction to Finite Difference Methods 

The finite difference method (FDM) was first developed by A.Thom in the 

1920s under the title “the method of squares” to solve nonlinear 

hydrodynamic equations. Since then, the method has found applications in 

solving different field problems [26]. The finite difference techniques are 

based upon approximations which permit replacing differential equations 

by finite difference equations. These finite difference approximations are 

algebraic in form; they relate the value of the dependent variable at a point 

in the solution region to the values at some neighboring points. Thus a 

finite difference solution basically involves three steps [26]: 

 dividing the solution region into a grid of nodes. 

 approximating the given differential equation by finite difference 

equivalent that relates the dependent variable at a point in the 

solution region to its values at the neighboring points. 

 solving the difference equations subject to the prescribed boundary 

conditions and/or initial conditions. 
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Maxwell’s equations are usually formulated as differential equations. 

Therefore, it is quite natural to solve them by finite difference methods. 

This essentially involves estimating derivatives numerically, where the 

derivatives are approximated by differences between neighboring points on 

a grid. 

4.2  Finite Difference Scheme for The Wave Equation 

We will focus on the equation for E ; everything we do will obviously 

pertain to the B equation as well. Furthermore, we will simplify things 

initially by imagining that E  only depends on x and t . The equation we 

derived in chapter two section (2.7) for E then reduces to 

  

2 2
2

2 2
c

x t

 
 

E E

                                                        
(4.1) 

At this point, it is worth taking a brief detour to talk about equations of this 

form more generally. This equation for the electric field is a special case of 

the wave equation in general 

                                        

2 2
2

2 2

u uc
x t

 
 

 

where c is the speed of the wave [26]. An equivalent finite difference 

formula is 

                 
  

2 1, , 1, , 1 , , 1

2 2

2 2

( ) ( )

i j i j i j i j i j i ju u u u u u
c

x t

      


   
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where ,  ,  , 0,1,2,.. .x i x t j t i j       

This equation can be written as 

 , 1 , 1, 1, , 12(1 ) [ ]i j i j i j i j i ju r u r u u u                            (4.2) 

where ,i ju  is an approximation to ( , )u x t  and r  is the “aspect ratio” [26] 

given by 

   
2

c tr
x



                                                       (4.3) 

Equation (4.2) is an explicit formula for the wave equation. For the solution 

algorithm in Eq.(4.2) to be stable, the aspect ratio must be 1r   , If we 

choose 1r  , Eq. (4.2) becomes 

        , 1 1, 1, , 1i j i j i j i ju u u u     
                                            

(4.4) 

 The two-step schemes of equations (4.2) and (4.4)  require that the values 

of  u  at times j  and 1j    be known to get u at time 1j   . Thus, we must 

derive a separate algorithm to “start” the solution of Eq. (4.2) or  Eq.(4.4); 

that is, we must compute ( ,1)u i  and ( ,2)u i  . To do this, we utilize the 

prescribed initial condition. For example, suppose the initial condition on 

the PDE in Eq.(4.1) is 

    
0

0
t

u
t 

 
 . 
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We use the centered-difference formula 

                                              

,1 , 1( ,0)
0

2
i iu uu x

t t



   

or  

,1 , 1i iu u 
                                                   (4.5) 

Substituting Eq. (4.5) into Eq. (4.2) and taking  j = 0  (i.e., at t = 0),  we get 

 ,1 ,0 1,0 1,0(1 ) [ ]
2

i i i i
ru r u u u    

                             
(4.6) 

Using the starting formula in Eq. (4.6) together with the prescribed 

boundary and initial conditions, the value of ( , )u x t  at any grid point ,i ju   

can be obtained directly from Eq. (4.2).  

An application on this formula is the following example on the one 

dimensional initial boundary value problem; 

Example (4.1) 

We consider the one-dimensional wave equation 

 ,   0 1,  0tt x xu u x t     
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subject to the boundary conditions 

    (0, ) 0 (1, ),  0u t u t t    

and the initial conditions 

  ( ,0) sin ,  0 1,u x x x    

  ( ,0) 0,  0 1,tu x x    

Solution: 

This IBV problem has already been solved in chapter 3  section (3.5.1), and 

its exact solution is given as: 

    ( , ) sin cosu x t x t 
                                         (4.7) 

Using the explicit finite difference scheme of Eq. (4.2) with 1r  , we 

obtain the finite difference equation 

, 1 1, 1, , 1,  1i j i j i j i ju u u u j      
                           (4.8) 

For  0j  , substituting 

,1 , 1
0

2
i i

t

u u
u

t


 


                                               (4.9) 

or                  ,1 , 1i iu u   

into Eq. (4.8) gives the starting formula 

                                
  ,1 1,0 1,0

1 [ ]
2

i i iu u u    
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Since 1.0c   , and 1.0r   , t x   . Also, since the problem is 

symmetric with respect to 0.5x   , we solve for ,i ju using Eqs. (4.8) and 

(4.9) within 0 0.5, 0.x t    The result shown in Table 4.1 is obtained 

for 0.1t x    . The finite difference solution agrees with the exact 

solution in Eq. (4.7) to six decimal places [26]. The accuracy of the Finite 

Difference solution can be increased by choosing a smaller spatial 

increment x and a smaller time increment t . 

Table 4.1: FD Solution of the Wave Equation. 

x 0 0.1 0.2 0.3 0.4 0.5 0.6  

t        … 

0 0 0.309 0.5879 0.889 0.9511 1 0.9511 … 

0.1 0 0.2939 0.559 0.7694 0.9045 0.9511 0.9045 … 

0.2 0 0.25 0.4755 0.6545 0.7694 0.809 0.7694 … 

0.3 0 0.1816 0.3455 0.4755 0.559 0.5878 0.559 … 

0.4 0 0.0955 0.1816 0.25 0.2939 0.309 0.2939 … 

0.5 0 0 0 0 0 0 0 0 

0.6 0 -0.0955 -0.1816 -0.25 -0.2939 -0.309 -0.2939 … 

0.7 0 -0.1816 -0.3455 -0.4755 -0.559 -0.5878 -0.559 … 

 

4.3 Finite Difference Solution of Laplace Equation 

Here, we will apply the Finite Difference method for solving Laplace and 

Poisson equations, because various physical phenomenon are governed by 

these well-known equations in physical and engineering applications such 

as: steady heat condition, seepage through porous media [27], distributional 

potential etc. First we consider the Laplace equation in two dimensions 
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2 2

2 2
0,u u

x y

  
                                                       

(4.10) 

We take a rectangular region R for which  ( , )u x y is known at the 

boundary, (i.e. , Dirichlet boundary conditions) . We divide this region into 

a network of square mesh of side h as shown in figure (4.1). 

 

Figure (4.1): FD Solution to Laplace and Poisson equation with 5-points star 

Replacing the derivatives in (4.10) by their finite difference approximation, 

we have 

  1, , 1, , 1 , , 12 2

1 1[ 2 ] [ 2 ] 0i j i j i j i j i j i ju u u u u u
h h

          

, 1, 1, , 1 , 1
1[ ],
4

i j i j i j i j i ju u u u u      
                          

(4.11) 

Equation (4.11) is known as standard 5-point formula. Sometimes we may 

use another formula 

, 1, 1 1, 1 1, 1 1, 1
1[ ],
4

i j i j i j i j i ju u u u u          
                

(4.12) 
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This formula is called diagonal  5-point formula. Equation (4.12) serves as 

reasonably good approximation for obtaining starting values at the mesh 

points. We use the diagonal five-point formula in (4.12) to find the initial 

values of u at the interior mesh points and compute 

3,3 2,4 4,4 4,2 2,2, , ,  and u u u u u  in this order. We have  

3,3 1,5 5,1 5,5 1,1
1

4
( )u b b b b    , 

2,4 1,5 3,3 3,5 1,3
1

4
( )u b b b b    , 

4,4 3,5 5,5 5,3 3,3
1

4
( )u b b b b    , 

2,2 1,3 3,1 3,3 1,1
1

4
( )u b b b b    . 

2,4 1,5 3,3 1,3 3,5
1

4
( )u b b b b     

The values at the remaining interior points i.e.     2,3 3,4 4,3 3,2, , andu u u u  are 

computed by the standard 5-point formula. Thus, we obtain 

2,3 1,3 3,3 2,4 2,2
1

4
( )u b b b b     

3,4 2,4 4,4 3,5 3,3
1

4
( )u b b b b     

4,3 3,3 5,3 4,4 4,2
1

4
( )u b b b b     

3,2 2,2 4,2 3,3 3,1
1

4
( )u b b b b    . 
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After determining ,i ju once, their accuracy is improved either by using 

Jacobi's iterative method or using Gauss-Seidel iterative method. But, it can 

be shown that the Gauss-Seidel scheme converges [27] approximately 

twice as fast as Jacobi's method. The process is repeated till the error   a 

given tolerance.  Here we have Jacobi's Iterative Method Formula is 

( 1) ( ) ( ) ( ) ( )

, 1, 1, , 1 , 1
1
4

n n n n n

i j i j i j i j i ju u u u u


          

and Gauss-Seidel Iterative Method Formula is 

( 1) ( 1) ( ) ( 1) ( )

, 1, 1, , 1 , 1
1
4

n n n n n

i j i j i j i j i ju u u u u
  

          

4.4  Finite Difference Solution of Poisson Equation 

Now, we consider the Poisson equation in two dimensions
 

  
2 2

2 2
( , )u u f x y

x y

  
 

                                               (4.13) 

The method of solving equation (4.13) is similar to that of Laplace equation 

(4.10). Here the standard 5-point formula for (4.13) taken the form 

2

1, 1, , 1 , 1 , ,4i j i j i j i j i j i ju u u u u h f                          (4.14) 

Using (4.14) at each interior mesh point, we arrive at a system of linear 

equations in the nodal values ,i ju , which can be solved by Gauss-Seidel 

method. 
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Example (4.2) Application of Finite Difference Method for an 

Electrostatic Potential Problem (Laplace Equation) 

Given the values of electrostatic potential  ( , )u x y  on the boundary of the 

square as shown in figure (4.2), we can evaluate the function  ( , )u x y  

satisfying Laplace's equation
2

0u   at the mesh  points of figure (4.2) by 

Jacobi's method [27]. 

Solution:  

For initial values of    1 2 3 4, , ,u u u u , we first assume that 4 0u   then we 

obtain 

 

Figure (4.2):  Solution to an electrostatic potential (Laplace Equation) 

1
1(1000 0 1000 2000) 1000
4

u         (by diagonal formula) 

 2
1(1000 500 1000 0) 625
4

u             (by standard formula) 

3
1(2000 0 1000 500) 875
4

u             (by standard formula) 
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4
1(875 0 625 0) 375
4

u                      (by standard formula) 

Upon  using  the Jacobi's method 

( ) ( ) ( )

1 2 3

1 1(2000 1000 ),
4

n n n
u uu 

     

( ) ( ) ( )

2 1 4

1 1( 500 1000 ),
4

n n n
u uu 

     

( ) ( ) ( )

3 4 1

1 1(2000 500),
4

n n n
u uu 

   
 

 
( ) ( ) ( )

4 3 2

1 1( 0 0),
4

n n n
u uu 

     

We carry out successive iteration using the above formula as given in the 

table below. 

Table 4.2: FD Solution of Laplace Equation.  

Iteration (n)     

1 1125 719 969 375 

2 1172 750 1000 422 

3 1188 774 1024 438 

4 1200 782 1032 450 

5 1204 788 1038 454 

6 1206.5 790 1040 456.5 

7 1208 791 1041 458 

8 1208 791.5 1041.5 458 

Since there is no significant difference between the seventh and eight 

iteration values, therefore, we obtain: 

1 2 3 41208 792 1042 458,  ,  ,  ,u u u u     

This is the required solution. 

1u 2u 3u 4u
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Example (4.3) Application of Finite Difference to an Electrostatic 

Potential Problem (Poisson  Equation) 

Given the values of electrostatic potential on the boundary of the square in 

as shown in figure (4.3), we want to evaluate the function  ( , )u x y  

satisfying Poisson equation [27] 

   

2 2 2
10( 10)u x y      

over the square with the boundary conditions sides (0 3)x   and 

(0 3)y  on the boundary and mesh size 1.0  by the Gauss-Seidel 

method. 

 

 

 

 

 

Figure (4.3):  Solution to an electrostatic potential (Poisson Equation) 

Solution:  

here 1h  , therefore the standard 5-point formula for the given equation is 

given by 

 
2 2

1, 1, , 1 , 1 ,4 10( 10)i j i j i j i j i ju u u u u i j                        (4.15) 
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For 1( 1, 2)u i j   from (4.15), we get 

  2 3 10 4 10(1 4 10)u u u        

  1 2 3
1( 150)
4

u u u    

For 2( 2, 2)u i j   formula (4.15) gives us  

  2 1 4
1( 180)
4

u u u    

For 3( 1, 1)u i j  , we get 

  3 1 4
1( 120)
4

u u u    

For 4( 2, 1)u i j  , we obtain 

  4 2 3 1
1( 150)
4

u u u u     

Thus, the above equations reduce to  

1 2 3
1( 150),
4

u u u    2 1
1( 90)
2

u u  , 3 1
1( 60)
2

u u   

Now we solve these equations by the Gauss-Seidel iteration method and the 

solution is given in table below. 
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Table 4.3: FD Solution of Poisson Equation.  

Iteration (n)    

1 37.5 64 49 

2 66 78 63 

3 73 82 67 

4 75 82.5 67.5 

5 75 82.5 67.5 

Because there is no difference in the values of 4
th

 and 5
th
  iterations, 

therefore we have.   

   1 2 3 475, 82.5, 67.5, 75u u u u     

This is the required solution. 

4.5  Finite Difference Time Domain (FDTD) Method and The 

Yee Algorithm 

The Finite-Difference Time-Domain (FDTD) method was originally 

proposed by Kane S. Yee in the seminar paper published in 1966 [13,28]. 

Yee proposed a discrete solution to Maxwell’s equations based on central 

difference approximations of the spatial and temporal derivatives of the 

curl-equations. The novelty of Yee’s approach was the staggering of the 

electric and magnetic fields in both space and time in order to obtain 

second-order accuracy. Yee derived a full three-dimensional formulation, 

and he validated the method with two-dimensional problems. The basic 

Yee-algorithm is restricted to a regularly-spaced orthogonal grid. This is 

not amenable to high-fidelity modeling of very complex geometries. 

3u2u1u
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4.5.1  The Yee Algorithm for Maxwell’s Equations 

We recall the Maxwell's equations stated in chapter 2, these equations are 

listed below [13]; 

Faraday’s Law:   
  t
   

B E M                                               (4.16) 

Ampere’s Law:     
t

   

D H J                                              (4.17) 

  Gauss’s Laws:     
 D  

   
*

 B                                                   (4.18) 

Continuity Equations: 
   t

  


J  

                

*

t
  


M

                                        
(4.19) 

Where, using MKS units [28], B  is the magnetic flux density (Wb/m
2
), D   

is the electric flux density (C/m
2
), E  is the electric field intensity (V/m), 

H is the magnetic field intensity (A/m), J  is the electric current density 

(A/m
2
), M is the magnetic current density (V/m

2
),   is the electric charge 

density (C/m
3
), and 

*
 is the magnetic charge density (Wb/m

3
). The flux 

densities and the field intensities are related through the constitutive 

relations. For linear, isotropic media, these are: 

  0 r   D E E                                                     (4.20) 

0 r   B H H                                                    (4.21) 
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where 0 is the free-space permittivity (8.854 × 10−12 F/m), r is the 

relative permittivity, and  is the permittivity (F / m) of the media. 

Similarly, 0 is the free-space permeability (4π × 10−7 H/m), r is the 

relative permeability, and  is the permeability (H / m) of the media. 

4.5.2 The Yee-Algorithm 

In 1966, Kane S. Yee derived an elegant, yet simple, time-dependent 

solution of Maxwell’s equations based on their differential form using 

central difference approximations of both the space and the time-

derivatives [13,28]. The formulation is based on discretizing the volume 

domain with a regular, structured, staggered, rectangular grid. Yee 

discovered that in order to maintain second-order accuracy of the central 

difference operators, the electric and magnetic fields must be staggered in 

both space and time. The novel scheme he derived to achieve this, now 

referred to as the Yee-algorithm, is detailed in this section. Consider a 

uniformly spaced rectangular grid in three-dimensions. Each grid cell has 

dimensions ,  ,  and x y z   along each Cartesian axis. The coordinate 

of a node of the grid can be expressed in discrete form as: 

  , ,( , , ) ( ,  ,  )i j kx y z i x j y k z     , where ,  ,  and i j k are integers. 

Similarly, the time is uniformly discretized as t n t  .An arbitrary 

function    ( , , , )f x y z t  can be expressed at any node within the discrete 

space using the notation: 
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  , ,( , , , ) ( , , , ) .

n
i j kf x y z t f i x j y k z n t f                     (4.22) 

Within this uniform grid, the projections of the vector electric field parallel 

to a grid edges are sampled at edge grid edge center. Dual to this, the 

projection of the magnetic field normal to each grid cell face is sampled at 

the center of a grid face. This is illustrated in figure (4.4). Observing figure 

(4.4), it is apparent that the tangential electric field projected on the edges 

bounding a cell face circulate about the normal magnetic field vectors.  

 

Figure (4.4): Primary grid cell of the regular, structured, rectangular, staggered grip. 
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This provides the essential pieces to formulate a curl operation. To 

illustrate this, consider the x-projection of Faraday’s law in (4.16): 

 

  
 

yx z
x

EH E
M

t z y


 
  

  
 

where a linear isotropic material is assumed. Using the discretization of  

fig. (4.4), the time derivative and the spatial derivatives from the curl 

operator are approximated via central differences, leading to a discrete 

form of Faraday’s law: 

1 1
2 2

1 1 1 1 1 1, , , , , , 1 , ,
2 2 2 2 2 2

1

  
i j k i j k i j k i j k

n nn n
x x y yE EH H

t z


      

     
   
        

 

 

  

1 1
2 2

1 1 1, 1, , ,
2 2 2

1 1, ,
2 2

  .
i j k i j k

i j k

n n

z z
n

x

E E
M

y

  

 

 



 
  
  
 

               (4.23) 

It is observed from (4.23) that the central difference approximations of both 

spatial derivatives of the electric field projections are second-order accurate 

at the face center, which is the sample location of the normal magnetic 

field. By staggering the magnetic field and the electric field in time, the 

time-derivative is also second-order accurate. Consequently, the difference 

operator in (4.23) is second-order accurate in both space and time. 
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Following the same procedure, one can derive similar expressions for the y 

and z-projections of Faraday’s law as well: 

1 1
2 2

1 1 1 1 1 1, , , , 1, , , ,
2 2 2 2 2 2

1

  
i j k i j k i j k i j k

n nn n
y y z zE EH H

t x


      

     
   
        

 

  

1 1
2 2

1 1 1, , 1 , ,
2 2 2

1 1, ,
2 2

  ,
i j k i j k

i j k

n n

x x
n

y

E E
M

z

  

 

 



 
  
  
 

                                 

 (4.24) 

1 1
2 2

1 1 1 1 1 1, , , , , 1, , ,
2 2 2 2 2 2

1

  
i j k i j k i j k i j k

n nn n
z z x zE EH H

t y


      

     
   
        

 

  

1 1
2 2

1 1 11, , , ,
2 2 2

1 1, ,
2 2

  .
i j k i j k

i j k

n n

y y
n

z

E E
M

x

  

 

 



 
  
  
 

                           

 (4.25) 

The discrete form of Ampère’s law is derived via a secondary grid cell, as 

illustrated in figure ( 4.5). The secondary grid cell edges connect the cell 

centers of the primary grid cells illustrated in Fig. (4.4). The secondary grid 

cell also has dimensions ,  ,and x y z   . Thus, the edges of the 

secondary grid pass through the centers of the faces of the secondary grid 

cells. Dually, the edges of the primary grid 
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Figure (4.5): Secondary grid cell of the regular, structured, rectangular, staggered grip. 

pass through the face centers of the secondary grid cells. Consequently, the 

electric and magnetic field vectors have dual roles in the primary and 

secondary grids. Observing a secondary grid face in Fig. (4.5), it is 

apparent that the magnetic field lines on a cell face circulates about the 

normal electric field line. Again, this provides the essential components of 

a curl operation. The x-projection of Ampère’s law is expressed in a 

discrete form as: 
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(4.26) 

where an isotropic, linear, lossless media has been assumed. Similar 

expressions can be derived for the y and z-projections of Ampère’s law. The 

discrete form of Faraday’s and Ampère’s laws lead to a total of six 

equations, which can then be used to solve for the time-dependent vector 

field intensities. Yee proposed to do this with an explicit time-marching 

scheme. To this end, it is assumed that the initial values of the discrete 

fields are known over all space. Subsequently, a recursive solution scheme 

can be used to advance the fields through time. For example, from (4.23), 

assuming that 
1 1
,

n n
y zE E
 

 and 
n
xH  are known at all spatial samples, an 

explicit update operator used to solve for 1n
xH
  is expressed as: 
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    (4.27) 
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Similarly, we obtain 
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               (4.32) 

Equations (4.27)–(4.32) are the first-order difference equations defining 

Yee’s algorithm and are the foundation of the FDTD method [4]. These 

equations provide an explicit recursive update scheme of the 

electromagnetic fields in linear, isotropic, lossless media throughout the 

entire volume. 

4.5.3 Gauss’s Laws 

The discrete approximations of Maxwell’s curl equations must also satisfy 

Gauss’s laws [28]. If they do not, then spurious charge can corrupt the 

numerical solution. First consider Gauss’s law for the magnetic field as 

presented in (4.18). Assuming a charge-free region, then: 
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  0 B                                                     (4.33) 

Must hold true if this is differentiated with respect to time, then: 

0
t
  


B                                                (4.34) 

must also be true. The spatial derivative is then approximated with a central 

difference approximation, leading to a discrete form of Gauss’s law: 
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Substituting in the discrete expressions for the right-hand-sides of (4.23)–

(4.25) (with the M’s = 0), then it is found that the discrete electric fields 

identically cancel, and (4.35) is exactly satisfied . A dual expression can be 

derived for Gauss’s law for the electric field. Thus, it is concluded that the 

discrete representation satisfies Gauss’s law to the extent that the total 

charge density in the discrete system is constant. Therefore, if the initial 

charge density is zero, then the total charge density in the discrete system 

will remain zero, and Gauss’s law is strictly satisfied. 
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4.6  The Five Point Star 

As we have mentioned before, The first step in applying FDM is to define a 

mesh, which is simply a uniform grid of spatial points at which the voltage 

function will be sampled [23]. Letting h  be the mesh size as shown in 

figure (4.6), the mesh points may be defined by 

 

Figure (4.6): Mesh points for the FDM grid. 

, and i jx ih y jh 
 

where i and j are integers. In practice, i and j will eventually be used as 

indices for a matrix of voltage samples, we shall therefore replace the 

spatial coordinates with simple indices by assuming the following 

convention: 

 , ( , )i j i jV V x y  

In a similar fashion, we may also define the charge density samples along 

the same mesh by using the ( , )i j  notation. The next step is to expand the 

Poisson equation by explicitly showing the partial derivatives in space: 
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The reason for doing this is to approximate the derivative operators through 

the use of finite-differences. The easiest way to do this is through the three-

point approximation for the second-derivative, which is given as 
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Finally, we solve for ,i jV  to find  
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This expression tells us is that every voltage sample   ( , )V i j  is dependent 

only on   ( , )i j  and the voltage at the four nearest neighbors. Because each 

voltage sample   ( , )V i j  is linearly dependent on its four nearest neighbors, 

the solution over all   ( , )i j  may be represented as a simple matrix-vector 

equation. This is readily achieved by defining the vector X to contain all of 

the voltage samples within the domain. For example, one simple method 

might scan row-wise along the voltage samples according to the 

convention:
 

[ (1,1) (1,2) (1,3) . . . (2,1) . . . (3,1). . . ]
T

V V V V VX  
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The next step is to express the linear relationship between voltage samples 

into a matrix A . This effectively converts the entire problem into a matrix-

vector equation with the form 

          
b ,AX  

where b contains all the information about any charge densities and 

boundary conditions. The numerical solution to the system is finally found 

by simply inverting the matrix A  to arrive at the solution 

          
1
b .


X A  

Example (4.4): A simple  4 4×  grid 

Consider the simple,  4 4×  grid of voltage samples depicted in figure (4.7). 

The top boundary is a Dirichlet boundary fixed at 1.0 V with bottom 

boundary grounded at  0.0 V. The left and right boundaries are Neumann 

boundaries fixed to a derivative of 0.0 V/m with respect to the outward 

normal. Using FDM, it is our job to solve for the voltage potentials at all of 

the indicated points. The first step is to establish some sort of numbering 

convention so that the unknown vector X may be defined [23]. One 

straightforward way to do this is by scanning across the rows, as indicated 

by the numbering in figure (4.7), It is also worth emphasizing that the 

samples along the corners of the domain do not make any difference to the 

final solution of the problem with respect to the interior points. This is 

because neither the boundary conditions nor the five-point star will depend 
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on what values are placed within the corners. We will therefore neglect 

these points entirely from the solution set, though in practice it can often be 

easier to just assign convenient values to them. The vector of unknowns 

will therefore be written as 

                1  2 3 12[   . . .   ]  .
T

V V V VX  

 

 

 

 

 

The next step is to fill the system matrix A . We begin by noting that 1V  

and 2V  are both  Dirichlet boundaries fixed at  0.0 V . The first two rows 

in A are therefore nothing but zeros with a one placed at the diagonal 

element. The same is also true for 11V  and 12V  since these are likewise 

Dirichlet boundaries. The Neumann boundaries are filled in a similar 

manner, but with a -1 placed on the column corresponding to the interior 

point. For 3V and 7V , this is the first element to the right of the diagonal. For 

6V  and  10V  , the -1 is placed at the first element to the left of the diagonal. 

For the remainder of the samples, the five-point star dictates a value of -4 

to be placed at the diagonal, with four 1's placed at their corresponding 

columns that represent the neighboring points. This will include the two 

 

Figure (4.7): Sampled grid of voltages 
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columns immediately adjacent to the diagonal, plus two other 1's placed at 

the appropriate locations. The final step is to fill the forcing vector b . 

Generally speaking, this will be a vector of all zeros except at the points 

where there is a nonzero boundary condition or a nonzero value for  . 

Thus, b has only two 1's placed in the last two rows, with zeros placed at all 

other elements. Writing out the full linear system  ,bAX therefore leads 

to.  

 

 

 

 

 

 

Finally, we solve for X  and get: 

1 1 1 1 2 2 2 2[ 0 0         1 1 ]
3 3 3 3 3 3 3 3

T
X  Volts . 

4.7  Accuracy, Convergence and Stability of FD Schemes 

When using numerical tools, one must keep in mind that they never  give 

the exact answer. The accuracy of the numerical result depends on the 

resolution. In general, one does not know the order of convergence of a 
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computational method for a given problem a priori [25]. Even though 

standard centered finite differences converge with an error of order h
2
 

(where h is the grid spacing or the cell size) for regular problems, Accuracy 

has to do with the closeness of the approximate solution to exact solutions 

(assuming they exist). Stability is the requirement that the scheme does not 

increase the magnitude of the solution with increase in time. There are 

three sources of errors that are nearly unavoidable in numerical solution of 

physical problems [25]: 

• modeling errors, 

• truncation (or discretization) errors, and 

• round off errors. 

Each of these error types will affect accuracy and therefore degrade the 

solution. The modeling errors are due to several assumptions made in 

arriving at the mathematical model. For example, a nonlinear system may 

be represented by a linear PDE. Truncation errors arise from the fact that in 

numerical analysis, we can deal only with a finite number of terms from 

processes which are usually described by infinite series. For example, in 

deriving finite difference schemes, some higher-order terms in the Taylor 

series expansion were neglected, thereby introducing truncation error. 

Round off errors reflect the fact that computations can be done only with a 

finite precision on a computer. This unavoidable source of errors is due to 

the limited size of registers in the arithmetic unit of the computer. Round 
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off errors can be minimized by the use of double-precision arithmetic. The 

only way to avoid round off errors completely is to code all operations 

using integer arithmetic. This is hardly possible in most practical situations. 

Although reducing the mesh size h will increase accuracy, but it is not 

possible to indefinitely reduce h. Decreasing the truncation error by using a 

finer mesh may result in increasing the round off error due to the increased 

number of arithmetic operations. A numerical algorithm is said to be stable 

if a small error at any stage produces a smaller cumulative error. It is 

unstable otherwise. To determine whether a finite difference scheme is 

stable, we define an error, 
n

 , which occurs at time step n , assuming that 

there is one independent variable. We define the amplification of this error 

[25] at time step 1n   as  

1n n
g 




                                                (4.36) 

Where g  is known as the amplification factor. In more complex situations, 

we have two or more independent variables, and Eq. (4.36) becomes 

  
1

[ ] [ ][ ]
n n

G 



                                          (4.37) 
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where [ ]G  is the amplification matrix. For the stability of the difference 

scheme, it is required that Eq. (4.36) satisfy 

                                                       
1n n

 

  

or  

 1g                                                      (4.38a) 

For the case in Eq. (4.37), 

                                  1G 
         

                                         (4.38b) 

4.7.1  Convergence Analysis 

The analytical solution  ( , )m nu x t of differential equation, the difference 

solution 
n
mu  of the difference equation [27] and numerical solution 

n

mu  are 

related by the relation.
 

         ( , ) ( , )
n nn n
m mm n m n m mx t x tu u u u u u    

     
               (4.39) 

The value   ( , )
n

m n mx tu u  is called the local truncation error which arises by 

replacing the differential equation by the difference equation. The 

truncation error converges to zero as h  and k  both tends to zero for a 

convergent difference scheme. The difference  

nn
mmu u  is known as 

numerical error which arises because in actual computations we can't solve 

the difference equation exactly due to round off error. If the error made at 

one stage of calculations don't cause increasingly with continued 

computations but will eventually damp out, then we say that solution is 
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stable. If the difference scheme is stable then second term in (4.39) 

practically equals zero. Thus the results of convergent and stable methods 

are very close to actual results. 

4.7.2  Convergence, Consistency and Stability 

Definition (4.7.1) 

A one-step finite difference scheme approximating a partial differential 

equation is  convergent scheme if for any solution to the partial differential 

equation,  ( , )u x t  , and solutions to the finite difference scheme, 
n
iv , such 

that 
0
iv  converges to 0 ( )u x  as i x  converges to x , then 

n
iv converges 

to  ( , )u x t  as ( , )i x n t   converges to  ( , )x t  as x , t  converge to 0 . 

Definition (4.7.2) 

Given a partial differential equation Pu f  and a finite difference 

scheme, ,x tP u f   , we say that the finite difference scheme is consistent 

with the partial differential equation if for any smooth function  ( , )x t  

 , 0x tP P     as , 0.x t    
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Example (4.5) 

Consider the one-way wave equation given by the operator 

P t x        

            t xP     

with   greater than 0 . We will evaluate the consistency of the forward-

time forward-space scheme with difference operator ,x tP  given by 
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n n n n
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x tP
t x

   
 




 

 
 

 
 

We begin by taking the Taylor expansion of the function   in t and 

x about  ( , )i nx t . We have that  
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x t t x tt xxP t x O t O x                  

Thus 

       
2 2

,
1 1 ( ) ( )
2 2

x t tt xxP P t x O t O x              

 0  as  ( , ) 0.x t     

Thus, this scheme is consistent. 
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4.7.3   Stability Analysis for 1D-wave Equation [26] 

If we consider the following one dimensional wave equation  

2 2
2

2 2

u uc
t x

 
 

                                                (4.40) 

Its solution is the displacement function  ( , )u x t  defined for values of 

x from 0  to l and for t from 0  to   , satisfying the initial and boundary 

conditions. Such equations arise from convective type of problems in 

vibrations, wave mechanics, gas dynamics, elasticity, electromagnetic and 

seismology. 

We now consider the boundary value problem defined by 

2 2
2

2 2
,u uc

t x

 
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     0 1x                                           (4.41) 

Subject to the conditions 

( ,0) ( ),u x f x  ( ,0) ( ),u x g x
t

 


0 1x                               (4.42) 

 (0, ) ( )u t t ,  (1, ) ( )u t t , 0 t T                                    (4.43) 

As  previously, we use the difference approximations for the derivatives 

2
2

1, , 1,2 2

1 ( 2 ) ( )i j i j i j
u u u u O h

x h
 

    


                        (4.44) 

2
2

, 1 , , 12 2

1 ( 2 ) ( )i j i j i j
u u u u O k
t k

 
    
                         

(4.45) 

Where ,  0,1,2,.. .x ih i   and  ,  0,1,2,.. .t jk j    
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The derivative 
u
t




 is approximated as 

, 1 , 1 2
( )

2

i j i ju uu O k
t k

   


 

Using (4.42) and (4.43) in (4.41), we obtain 

2

, 1 , , 1 1, , 1,2 2

1 ( 2 ) ( 2 )i j i j i j i j i j i j
cu u u u u u

k h
         

  
 

2 2

, 1 , 1 1, 1, , ( ) 2(1 )i j i j i j i j i ju u u u u         
                      (4.46) 

Where ck
h

   . the formula (4.46) shows that the function values at 
th

j  

and ( 1)
th

j   levels are required in order to determine those at the ( 1)
th

j   

level. Such difference schemes are called three level difference schemes. 

By expanding the terms in (4.46) as Taylor's series and simplifying. It can 

be shown that the truncation error is of order 
2 2

( )O k h  and the formula 

(4.46) holds good if 1   , which is the condition for stability. There also 

exist implicit finite difference schemes for the equation (4.40). two such 

schemes are 

            

, 1 , , 1

2

2i j i j i ju u u

k

  
 

   
2

1, 1 , 1 1, 1 1, 1 , 1 1, 12
2 2

2
i j i j i j i j i j i j

c u u u u u u
h

              
  
        (4.47) 
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and  

, 1 , , 1
1, 1 , 1 1, 12 2

2 1 ( 2 )
4

i j i j i j
i j i j i j

u u u
u u u

k h

 
    

 
    

1, , 1, , 1 , 1 1, 12( 2 ) ( 2 )i j i j i j i j i j i ju u u u u u                          (4.48) 

The formulae (4..47) and (4.48) hold good for all values of  k
h

. The use of 

formula (4.46) is demonstrated in the following example. 

4.7.4   Stability Analysis 

In order to discuss stability, the difference equation (4.46) can be written as   

  

1 2 2 1
1 12(1 ) ( )

n n n n n
m m m m mu u u u u 
 

                            (4.49) 

Substituting                      
4n i mh

mu A e


                                              (4.50) 

In equation (4.49) and simplifying [27], we get; 

  
2 2 2

(2 4 sin ) 1 0                                      (4.51) 

Where j 2h  . the roots of equation (4.51) are given by 

 
2 2 2 2 2

1,2 (1 2 sin ) (1 2 sin ) 1                                 (4.52) 

Now the following possibilities arise: 

 if    

2 2
1 2 sin 1    , then    1 1   and hence the scheme is unstable. 

 if    

2 2
1 2 sin 1    , then 1,2  are in a complex pair with magnitude 

  1  . 

  If   

2 2
1 2 sin 1   , then   1,2 1  . 
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Thus, the scheme (4.49) is stable for  

  
2 2

1 1 2 sin 1      

Which gives us the condition  1   

Example (4.6) 

Consider the wave equation  

2 2

2 2
16u u

t x

 
 

,  for  0 5x    and  0 1.25t   

taking 1x  , and subject to the boundary and initial conditions 

   (0, ) (5, ) 0u t u t  , ( ,0) 0u x
t

 


, and 
2

( ,0) (5 )u x x x   

Solution: 

Here 
2

16c  , therefore, the difference equation for the given equation is  

 

2 2

, 1 , 1, 1, , 12(1 16 ) 16 ( )i j i j i j i j i ju u u u u                           (4.53) 

Where k
h

  . Taking 1h   and choosing k  so that the coefficient of ,i ju  

vanishes, we have  

   
2

2

2

1 116 1
16 4 4

k hk
h

        

Therefore (4.53) reduces to 

 , 1 1, 1, , 1i j i j i j i ju u u u                                             (4.54) 
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Which gives us a convergent solution as 1k
h
 . Now since 

  (0, ) (5, ) 0u t u t  , therefore  0, 0ju   and 5, 0ju  , for all j . 

Also   
2

( ,0) (5 )u x x x   

  
2

,0 (5 ) 4,12,18,16iu i i   , for  1,2,3,4, at 0 i t   

Finally, since  ( ,0) 0,u x
t

 


  therefore we have 

   
, 1 ,

,1 ,00  for 0 i .e 
i j i j

i i

u u
j u u

k

 
    

Which means the entries of the second row are the same of those of the first 

row. Putting 1j  in (4.54) , we get 

  ,2 1,1 1,1 ,0i i i iu u u u     

Now taking 1,2,3,4i   successively, we obtain 

  1,2 0 12 4 8u       

2,2 4 18 12 10u      

3,2 12 16 18 10u      

4,2 18 0 16 2u      

Putting  2,3,4j   successively in (4.54) the entries of the remaining forth, 

fifth and sixth row and the obtained values of the ,i ju  are given in the 

following table [27], 
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Table 4.4 : Stability and Convergence  

i/j 0 1 2 3 4 5 

0 0 4 12 18 16 0 

1 0 4 12 18 16 0 

2 0 8 10 10 2 0 

3 0 6 6 -6 -6 0 

4 0 -2 -10 -10 -8 0 

4.7.5 The Local Truncation Error and Consistence of The Finite 

Difference Schemes 

The local truncation error is defined as the difference of the differential 

equation and the finite difference scheme. The finite difference scheme is 

called consistent if the limit of the local truncation error is zero [36] as 

h and/ or t approach zero. 

The local truncation errors for the forward, backward, and central finite 

difference are 

  
( ) ( )

( ) ( ) ( )
2

h

f x h f x hT D f x f
h



 
     

  
( ) ( )

( ) ( ) ( )
2

h

f x f x h hT D f x f
h



 
      

2
(4)

0

( ) ( )
( ) ( ) ( ).

2 6
h

f x h f x h hT D f x f
h


  

    

In all three cases, we have 0lim 0.hh T  Therefore they are all consistent. 
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4.7.6  The Truncation Error of The Finite Difference Method for The 

1D One-Way Wave Equation 

The differential equation of the one way wave equation is 

 ( , ),u uc f x t
t x

  
 

 ,a x b   0.t   

A simple finite difference scheme  [36] is 

1

1 ,
k k k k

ki i i i
i

u u u u
c f

t x



 
 

 
 0,1,. . . ,i     if 0.c   

    

 

( , ) ( , ) ( , ) ( , )
( , ),h

u x t h u x t u x h t u x t
T c f x t

t h

   
  


  0c   

    

2

( , ) ( , ) ( , ) ( , )
2 2

t t t x x x
t hu x t u x cu x t c u t      

  ( , ),O t h   
0,

lim 0.h
t h o

T
  

  

Therefore the finite difference scheme is consistent and is first order in 

time and first order in space. 
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4.7.7  The Stability of Finite Difference Scheme 

As we see from the numerical test, whether a finite difference scheme can 

work depend on the choice of t even if the finite difference scheme is 

consistent. The stability condition is a requirement that the error in the 

computed solution would be amplified in the subsequent computations 

[36]. An intuitive definition is that 

1 1 1 1 1 1
1 2 3 2 1  . . .  
k k k k k k

m m mu u u u u u
     

        

     1 2 3 2 1. . .
k k k k k k

m m mu u u u u u        

The global error (overall error) of a finite difference scheme is the absolute 

error of the computed solution. That is 

  
( )k k tf inal f inalE u u


   

For one way wave equation, the global error is 

   1,2,. . . ,( , ), i i i

kfinal
f inal mE u u x t i    

Usually we use one measurement called the infinity normal of the error 

   1 2 1max , ,. . . , ,m mE E E E E
  

A finite difference method is convergent to the true solution if the global 

error approaches to zero as   and h  approach to zero. 

Theorem 4.7.1: A consistent and stable finite difference method is 

convergent. 
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Conclusion  

In this thesis we have considered Maxwell's equations due to their wide 

range of applications. These equations synthesized all electromgnetic 

phenomena into four equations. 

Maxwell's first equation is Gauss's law of electric field, the second equation 

is Gauss's law of magnetic field, the third equation is Faraday's law and the 

fourth equation is an extension of Ampere's law. All these equations have 

been derived in various forms using the basic properties of the 

electromagnetic theory. Though it is well known that Maxwell's equations 

are hard to solve analytically, however, we were able to use some well 

known analytical methods namely, separation of variables, eigen-function 

expansion method, integral methods, conformal mapping and Green's 

functions to solve these equations for some special cases. 

For the numerical treatment of the Maxwell's equation, we have used the 

Finite Difference (FD) and the Finite Difference Time Domain (FDTDM) 

methods. The FDTDM is based on the Yee Algorithm. This  Algorithm 

proposed a discrete solution to Maxwell's equations based on central 

difference approximations of the spatial and temporal derivatives of the 

curl equations. Moreover, the convergence, stability and error analysis for 

these numerical methods have been thoroughly investigated. 

We have concluded that the FDTDM implementing the Yee Algorithm has 

proved to be a very reliable and efficient numerical method for solving the 

Maxwell's equations. 
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 الملخص

ماكسويل والتي هي عبارة عن مجموعة من أربع معادلات ملخص ل قدمت هذه الرسالة
مع المادة وتحولاتهما  وتأثراتهما ت الحقلين الكهربائي والمغناطيسي تصف سلوك وتغيرا معادلات

وهذه المعادلات  . جيمس ماكسويلهذه القوانين من وضع الفيزيائي . إلى أشكال أخرى من الطاقة
تصف العلاقات المتبادلة بين كل من المجالات الكهربائية والمجالات المغناطيسية والشحنات 

ي البداية العمل على اشتقاق لهذه المعادلات  بالرجوع الى حيث تم فو . الكهربائية والتيار الكهربائي
تعارف عليهما لمعادلات تم الحصول على الشكلين المو . الفيزيائية المرتبطة بها الكمياتو  المتغيرات

تم عرض بعضا من الحلول كما و . النقطي والشكل التكامليهما الشكل التفاضلي ماكسويل و 
طريقة فصل : على سبيل المثال لا الحصرالتي تضمنت لات و المعاد التحليلية المختلفة لهذه

في  العددية قشت الرسالة بعضا من الطرقناكما و . غيرها و , فوريرحويلات لابلاس و ت, المتغيرات
ض حلول لبعض الأمثلة ر هذه الطريقة هي الفروقات المنتهية  حيث تم عمعادلات ماكسويل و حل 

 .الة الثبات لهذه الطريقة حبعض الأخطاء و عليها و كذلك دراسة ل
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