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Abstract 

In this thesis, a computational study of the relatively new numerical 

methods of Haar wavelets for solving linear differential equations is used. 

A comparison between the new method and some classical methods for 

linear differential equations has been made. The aim is to show the 

efficiency of the presented method and its advantage over other method. 

The new method is simple and its numerical results are close or more 

accurate than some classical methods. 
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Chapter One 

Introduction 

1.1. Overview 

Wavelet  analysis  is  an  exciting  new  method  for  solving  difficult  

problems in mathematics, physics, and engineering [7]. Wavelets are    

functions that satisfy certain mathematical requirement and can be used to 

represent a function, such as the solution of ODE and PDE. Representation 

of functions is an old subject. 

Weierstrass theorem [3] guarantees the existence of polynomial that 

approximates any continuous function on any closed interval of ℝ to any 

level. In 1714 Taylor theorem [1,3] represents the polynomial that 

approximates a function using the set {(𝑥 − 𝑥0)
𝑛}𝑛=0
∞  as basis. In 1808, 

Joseph Fourier [6] used the set {𝑠𝑖𝑛(𝑛𝑥) , 𝑐𝑜𝑠(𝑛𝑥)}𝑛=1
∞  as basis to represent 

functions of period 𝑝 = 2𝜋, then generalized to functions of any period 

𝑝 = 2𝐿. Wavelet representation of functions uses the wavelet basis defined 

in chapter three. 

The wavelet decomposition analysis is used most often in wavelet signal 

processing [7]. It is used in signal compression as well as in signal    

identification. Wavelet transform of a function, as Fourier transform, is 

powerful tool for analyzing the components of stationary phenomena. 

However, the wavelet transform has the advantage of the ability of 

analyzing nonstationary phenomena where Fourier transform fails [7,8,28].  

Wavelet transform, as one of the mathematical real or complex valued 

function, is one which has become widely used in various fields of 
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application, mainly medicine, communication, computer software and 

human related applications. In specific, wavelet can be found in scanning, 

disease diagnosis to help doctors do their job precisely in this human 

sensitive field. It can also help encode audio and video signals in the field 

of telecommunications. As well, there are other useful applications which 

can effectively help intelligence agencies recognize the tinniest details of 

human bodies for security purposes and in cases of terrorist acts, airplane 

collapse, ship wreckage, and other human verification uses. For example, 

the Federal Bureau of Investigation (FBI) of the United States uses wavelet 

application to identify and verify millions of people’s fingerprints. In the 

future, it is expected that mathematical wavelet technology will cover 

hundreds of applications and it will mainly focus human welfare and 

healthcare subjects to achieve the best results possible [7,8,9,30]. 

In chapter one, we give a brief history of wavelets and a review of literature 

on subject of wavelets. In chapter two, we review some classical numerical 

methods for ordinary and partial differential equations, for comparison with 

the Haar wavelet method used in this thesis. In chapters three wavelets and 

their applications are considered. In chapter four, the Haar wavelet method 

for solving differential equations is given. In chapter five, numerical 

examples of the Haar wavelet method are given and the results are 

compared with results from the classical methods introduced in chapter 

two. Conclusion is given in section 5.4 
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1.2 A brief history of the development of wavelets in solving 

differential equations 

The word “wavelet” is due to Morlet and Grossmann. In the early 1980s, 

influenced by ideas from both pure and applied mathematics, they used the 

French word "ondelette", meaning "small wave". Soon it was transferred to 

English by translating "onde" into "wave", giving the name "wavelet"[7]. 

Wavelets were developed independently in the fields of mathematics, 

quantum physics, electrical engineering, and medical technology etc. 

The main branch of mathematics leading to wavelets began with Joseph 

Fourier in 1807 with his theories of frequency analysis. Fourier's efforts 

with frequency analysis lead to the well-known Fourier analysis. Fourier's 

work is based on the fact that periodic functions can be represented as a 

linear combination of sines and cosines [6]. Another contribution of Fourier 

is the Fourier transform. It transforms a function 𝑓 from its time domain 

into its frequency domain [28].  

The next known link to wavelet is due to Alfred Haar in 1910. It appeared 

in the appendix of a thesis he had written to obtain his doctoral degree.  

Haar contribution to wavelets is very evident. The well-known Haar 

wavelet is the simplest and the oldest of the wavelet family.  In the year 

1910, Alfred Haar introduced a function, which presents a rectangular 

pulse pair. Then various generalizations were proposed [9], see figure 1.1 
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Figure 1.1:  Haar wavelet 

After Haar contribution to wavelets there was once a gain a gap of time in 

research about the functions until 1954 when Paul Levy used wavelets in 

his research on Brownian motion [7]. He discovered that the scale-varying 

basis function-created by Haar (i.e. Haar wavelets) were a better basis than 

the Fourier basis functions. Unlike  the Haar basis function,  which can be 

chopped up into different intervals – such as the interval from 0 to 1 or the 

interval from  0 to 
1

2
  and  

1

2
  to 1, the Fourier basis functions have only one 

interval. Therefore, the Haar wavelets can be much more precise in 

modeling a function. 

In the year 1975, Jean Morlet was the first researcher to use the term 

"wavelet" to describe his functions [8]. More specifically, they were called 

"wavelets of constant slope". 

In 1980s, it Ingrid Daubechies generalized of Haar wavelet. In fact, Haar 

wavelet is the Daubechies wavelet of order one. Wavelet methods have 

been applied for solving differential equations from the beginning of the 

early 1990s [9], see figure 1.2 
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Figure 1.2: Mother wavelet for Dauchies. 

In the year 1997, Chen and Hsiao introduced a wavelet method for solving 

differential equations. The method is based on expanding the highest 

derivative in the differential equation in terms of Haar wavelets then 

integrating the expansion to get the solution. To simplify things, they 

introduce the Haar operational matrix for the integrals of the Haar function 

vector and put the application for the Haar analysis into the dynamic 

system [11, 13]. Phang Chang and Phang Piau [11] also gave a simple 

matrix method to solve ordinary differential equations. From 2005 to 2014, 

ÜloLepik [15, 16] presented an application of the Haar wavelets for 

solution of linear integral equations and numerical solution of differential 

equations using Haar wavelets, then he presented  Haar wavelet methods 

for solving  evolution equations and Haar wavelet methods for nonlinear 

integro-differential equations. Lepik presented application of nonuniform 

Haar wavelets for solving integral and differential equations. A year later 
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he presented Haar wavelet method for solving higher order differential 

equations and integral equations. In the years from 2009 to 2014, Hariharan 

et al[13,17] established  the solution of  several differential equations in 

applications. Among them convection-diffusion equation, finite length 

beams equation, linear and nonlinear Klein- Gorden equation, Sine Gorden 

equation and some nonlinear parabolic equations by the Haar wavelet 

method. In the year 2007 Castro[16] presented a wavelet collocation 

method for the static analysis of sandwich plates using a layer wise theory. 

In the year 2010  Fazal-I-Haq [21] introduced a Haar wavelet method for 

solving eight-order boundary value problems. From 2010-2013, Siraj-ul-

Islam et al[22,24] presented numerical solution of second-order boundary-

value problems by the Haar wavelets, Haar wavelet collocation method for 

numerical solution of boundary layer fluid flow problems. A year later they 

presented a numerical assessment of parabolic partial differential equations 

using Haar and Legendre wavelets. In the year 2011, Zhi Shi and Yong-

Yan Cao [11, 12] established the Haar wavelet method for solving higher 

order differential equations, a year later they presented poisson equations 

and biharmonic equations on a rectangle. In the year 2012, Naresh Berwal 

[19] presented the Haar wavelet method for solving wave-like equation. In 

the year 2013 Imran Aziz [23] presented a wavelets collocation methods 

for the a numerical solution of elliptic BVPs. It is obvious that the subject 

of wavelets methods for solving differential equations has attracted many 

researchers in the last 10 years. And that is due to its potential in solving 

many problems.  
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Chapter Two 

Overview of numerical methods for differential equations 

A differential equation relates an unknown function to its derivatives. In 

applications, functions usually represent physical quantities and the 

derivatives represent their rates of change. Differential equations play an 

important role in modeling of physical problems in science, engineering 

and economics. Differential equations describe a wide range of natural 

phenomena, such as sound, heat, electrostatics, electrodynamics, fluid flow, 

elasticity, and quantum mechanics. These seemingly distinct physical 

phenomena can be formalized similarly in terms of PDEs. 

While, analytical methods can be used to solve some differential equations, 

many, if not most differential equations, can't be solved analytically. 

Numerical methods for differential equations are considered when the 

differential equations, ordinary or partial, can't be solved directly by 

analytical methods.       

Among the classical numerical methods for solving ordinary differential 

equations are; Euler method, higher-order Taylor methods, Runge-Kutta 

methods, the multistep methods, linear shooting method and finite 

difference methods. Among the classical numerical methods for solving 

partial differential equations are; finite difference methods, finite element 

method, Adomain Decomposition Method (ADM), and multigrid methods.  

2.1 Numerical methods for solving ordinary differential equations 

In this section, we give an overview of some classical numerical methods 

for ordinary differential equations. we will focus on the following methods 
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for initial value problems: Euler methods, higher-order Taylor methods, 

and Runge-Kutta methods. We will also focus on the following methods 

for boundary value problems: The linear shooting methods, finite 

difference methods. 

2.1.1 Numerical methods for initial-value problems 

Consider the first-order initial value problem  

𝑑𝑢

𝑑𝑥
= 𝑓(𝑥, 𝑢),       𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏,         𝑢(𝑎) = 𝛼                                     (2.1) 

In the following subsections, we overview three classical numerical 

methods for this IVP. 

2.1.1.1 Euler's method  

Euler's method was established by the Swiss mathematician and physicist 

Leonhard Euler, who treated it in his book "institutionum calculi integral" 

which is published between 1768 and 1770.  He made important 

discoveries in fields as diverse as infinitesimal calculus and graph theory. 

He also introduced much of the modern mathematical terminology. 

Euler's method is considered the most elementary approximation technique 

for solving IVPs. The object of Euler's method is to approximate the 

solution to the well-posed initial-value problem (2.1) [26,29]. 

Once the approximate solution is obtained at given points, the approximate 

solution at other points in the interval can be found by interpolation. 

The method starts by dividing the interval [𝑎, 𝑏] into some 𝑁 subintervals 

with 
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𝑥𝑖 = 𝑎 + 𝑖ℎ,               𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 = 0,1,2, … ,𝑁                                         (2.2) 

where  ℎ =
𝑏−𝑎

𝑁
= 𝑥𝑖+1 − 𝑥𝑖                                                            (2.3) 

Using first-order forward-difference formula for 𝑢′, we get 

𝑢(𝑥𝑖+1) − 𝑢(𝑥𝑖)

ℎ
−
ℎ

2
𝑢′′(𝜉) = 𝑓(𝑥𝑖 , 𝑢(𝑥𝑖))                                            (2.4) 

Drop the error term and let 𝑢𝑖 = 𝑢(𝑥𝑖) 

𝑢0 = 𝛼 

𝑢𝑖+1 = 𝑢𝑖 + ℎ𝑓(𝑥𝑖 , 𝑢𝑖),  𝑖 = 0,1,… ,𝑁 − 1                                               (2.5) 

This is Euler's method for the IVP in (2.1) 

Example 2.1: We use Euler's method to approximate the solution to the 

IVP 

𝑢′ =
𝑠𝑖𝑛(2𝑥) − 2𝑥𝑢

𝑥2
,      1 ≤ 𝑥 ≤ 2,      𝑢(1) = 2 

With exact solution  

𝑢(𝑥) =
4 + 𝑐𝑜𝑠(2) − 𝑐𝑜𝑠 (2𝑥)

2𝑥2
 

with  𝑁 = 10 subintervals 

ℎ =
1

10
 

𝑓(𝑥, 𝑢) =
𝑠𝑖𝑛(2𝑥) − 2𝑥𝑢

𝑥2
 

𝑢0 = 𝑢(1) = 2, 

𝑢𝑖+1 = 𝑢𝑖 + ℎ𝑓(𝑥𝑖 , 𝑢𝑖), for each 𝑖 = 1,2,… ,9                                    
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 The results of Euler's method are given in table 2.1  

Table 2.1: Maximum absolute error of Euler's method for IVP is 

0.062594347. 

𝑢𝑖 𝑥𝑖 𝑖 
2.0000000 1.0 0 

1.6909297 1.1 1 

1.4503059 1.2 2 

1.2554954 1.3 3 

1.0928453 1.4 4 

0.9538157 1.5 5 

0.8329123 1.6 6 

0.7265181 1.7 7 

0.6322081 1.8 8 

0.5483003 1.9 9 

0.4736355 2.0 10 

The results are obtained using Maple software. 

2.1.1.2 Higher-order Taylor methods for solving initial-value problems  

The error in Euler's method is of order one. For more accurate 

approximations, we need methods of higher order errors. To do so, we use 

more terms in Taylor theorem to approximate the derivative in an IVP and 

the result is a higher order Taylor method. Euler's method is a first order 

Taylor method [26,29]. 

The nth-order Taylor method for the IVP 2.1 is given as  

𝑢0 = 𝛼 

𝑢𝑖+1 = 𝑢𝑖 + ℎ𝑇
(𝑛)(𝑥𝑖 , 𝑢𝑖),   𝑒𝑎𝑐ℎ 𝑖 = 0,1,… ,𝑁 − 1                                 (2.6) 

where  
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𝑇(𝑛)(𝑥𝑖 , 𝑢𝑖) = 𝑓(𝑥𝑖 , 𝑢𝑖) +
ℎ

2
𝑓′(𝑥𝑖 , 𝑢𝑖) + ⋯+

ℎ𝑛−1

𝑛!
𝑓(𝑛−1)(𝑥𝑖 , 𝑢𝑖)        (2.7) 

Example 2.2: Consider the IVP given in example 2.1 

Table 2.2 shows the approximation of solution to the IVP in example 2.1 

using first-order and fourth-order Taylor methods with 𝑁 = 10 

subintervals. 

The results of Taylor methods of order one and four are given in table 2.2  

Table 2.2: Maximum absolute error of Taylor of order one for IVP is 

0.062594347  

𝑢𝑖  𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑓𝑜𝑢𝑟 𝑢𝑖  𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑜𝑛𝑒 𝑥𝑖 𝑖 
2.0000000 2.0000000 1.0 0 

1.7241829 1.6909297 1.1 1 

1.5005274 1.4503059 1.2 2 

1.3139293 1.2554954 1.3 3 

1.1547091 1.0928453 1.4 4 

1.0165024 0.9538157 1.5 5 

0.8950361 0.8329123 1.6 6 

0.7873883 0.7265181 1.7 7 

0.6915241 0.6322081 1.8 8 

0.6059965 0.5483003 1.9 9 

0.5297472 0.4736355 2.0 10 

Maximum absolute error of Taylor of order four for IVP is 0.0001003 

2.1.1.3 Runge-Kutta methods for solving initial-value problems  

The computation of derivatives in higher-order Taylor methods becomes 

complicated as the order increases. Runge-kutta methods avoid the 

computation of such derivatives and only functional evaluations are used 

[26,29].       
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Runge-Kutta method of order two or the midpoint method. 

𝑢0 = 𝛼 

𝑘1 = ℎ𝑓(𝑥𝑖 , 𝑢𝑖),   

𝑘2 = ℎ𝑓 (𝑥𝑖 +
ℎ

2
, 𝑢𝑖 +

1

2
𝑘1), 

𝑢𝑖+1 = 𝑢𝑖 +  𝑘2                                                                                           (2.8) 

  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 = 0,1,2,… , 𝑁 − 1 

Runge-Kutta method of order four (RK4) 

𝑢0 = 𝛼 

𝑘1 = ℎ𝑓(𝑥𝑖 , 𝑢𝑖),                                                                                          (2.9) 

𝑘2 = ℎ𝑓 (𝑥𝑖 +
ℎ

2
, 𝑢𝑖 +

1

2
𝑘1),                                                                  (2.10) 

𝑘3 = ℎ𝑓 (𝑥𝑖 +
ℎ

2
, 𝑢𝑖 +

1

2
𝑘2),                                                                  (2.11) 

𝑘4 = ℎ𝑓(𝑥𝑖+1, 𝑢𝑖 + 𝑘3),                                                                            (2.12) 

𝑢𝑖+1 = 𝑢𝑖 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)                                                  (2.13) 

Example 2.3: Consider the IVP in example 2.1 

𝑢′ =
𝑠𝑖𝑛(2𝑥) − 2𝑥𝑢

𝑥2
,     1 ≤ 𝑥 ≤ 2,    𝑢(1) = 2 

The solution by the midpoint method "RK2" and Runge-Kutta method 

order four "RK4" using  𝑁 = 10 are given in table 2.3 
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Table 2.3: The results of  RK2 and RK4 

𝑅𝐾4 𝑅𝐾2 𝑥𝑖 𝑖 

2.0000000 2.0000000 1.0 0 

1.7241157 1.7251529 1.1 1 

1.5004362 1.5019911 1.2 2 

1.3138325 1.3156406 1.3 3 

1.1546145 1.1565391 1.4 4 

1.0164134 1.0183834 1.5 5 

0.8949538 0.8969326 1.6 6 

0.7873127 0.7892816 1.7 7 

0.6914550 0.6934041 1.8 8 

0.6099333 0.6078570 1.9 9 

0.5296893 0.5315839 2.0 10 

Maximum absolute error of RK2 for IVP is 0.19818485× 10−2 

Maximum absolute error of RK4 for IVP is 0.34785891× 10−5 

2.1.2 Numerical methods for boundary-value problems  

A Boundary Value Problem (BVP) is a differential equation together with a 

set of boundary conditions. A solution to a BVP is a solution to the 

differential equation which also satisfies the boundary conditions. We will 

focus on two methods to approximate the solution of a second order of 

linear BVP. The first method is the linear shooting method and the second 

method is the linear finite difference method. We will focus on linear 

equations since they will be used for comparison with wavelet methods in 

chapter five. 

A second–order linear BVP can be written in the form: 

𝑢′′ = 𝑝(𝑥)𝑢′ + 𝑞(𝑥)𝑢 + 𝑟(𝑥)  for 𝑎 ≤ 𝑥 ≤ 𝑏                                     (2.14) 

 𝑢(𝑎) = 𝛼 and 𝑢(𝑏) = 𝛽 
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2.1.2.1 The Linear shooting method  

The linear shooting method for linear BVPs is based on the replacement of 

the linear BVP by two IVPs. Then the solution of the BVP is a linear 

combinations of the solutions of the two IVPs[26,32].  

𝑢1
′′ = 𝑝(𝑥)𝑢1

′ + 𝑞(𝑥)𝑢1 + 𝑟(𝑥),      𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏,                       (2.15)  

with  𝑢1(𝑎) = 𝛼  and 𝑢1
′(𝑎) = 0 

and  

𝑢2
′′ = 𝑝(𝑥)𝑢2

′ + 𝑞(𝑥)𝑢2,     for  𝑎 ≤ 𝑥 ≤ 𝑏,                                       (2.16) 

with  𝑢2(𝑎) = 0  and  𝑢2
′(𝑎) = 𝛽 

The solution to the BVP (2.14) is 

𝑢(𝑥𝑖) = 𝑢1(𝑥𝑖) +
𝛽 − 𝑢1(𝑏)

𝑢2(𝑏)
𝑢2(𝑥𝑖)                                                      (2.17) 

Where  𝑢1 and 𝑢2 are the solutions of (2.15) and (2.16) respectivly 

Example 2.4: Consider the BVP:   

𝑢′′ = −3𝑢′ + 2𝑢 + 2𝑥 + 3,    0 ≤ 𝑥 ≤ 1,           𝑢(0) = 2 and 𝑢(1) = 1 

Using the linear shooting method with 𝑁 = 10  

First, we  convert  this problem into two IVPs  

𝑢1
′′ = −3𝑢1

′ + 2𝑢1 + 2𝑥 + 3,    0 ≤ 𝑥 ≤ 1,     𝑢1(0) = 2 and 𝑢1(1) = 0; 

and 
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𝑢2
′′ = −3𝑢2

′ + 2𝑢2 + 2𝑥,   0 ≤ 𝑥 ≤ 1,     𝑢2(0) = 0 and 𝑢2(1) = 1; 

 The solution to the BVP is  

𝑢(𝑥𝑖) = 𝑢1(𝑥𝑖) +
1 − 𝑢1(1)

𝑢2(1)
𝑢2(𝑥𝑖) 

The discrete solution of the two IVPs together with the BVP is given in 

table 2.4 

Table 2.4: The results of linear shooting  

𝑢(𝑥𝑖) 𝑢2(𝑥𝑖) 𝑢1(𝑥𝑖) 𝑥𝑖 𝑖 
2.00000000 -7.19616313 2.00000000 0.0 0 

1.40843171 -4.77470838 1.40843171 0.1 1 

1.02226375 -3.04605634 1.02226375 0.2 2 

0.78331776 -1.80076394 0.78331776 0.3 3 

0.65103904 -0.89202648 0.65103904 0.4 4 

0.59722789 -0.21690543 0.59722789 0.5 5 

0.60234998 -0.29682014 0.60234998 0.6 6 

0.65295283 0.69986330 0.65295283 0.7 7 

0.73985699 1.02788028 0.73985699 0.8 8 

0.85688993 1.30598925 0.85688993 0.9 9 

1.00000000 1.55193574 1.00000000 1.0 10 

2.1.2.2 Finite difference methods for linear boundary-value problems  

In this section, we review the linear finite difference method for linear 

BVPs. We will use this method in chapter five for comparison with 

wavelets methods. 

Main idea of finite difference methods. 

Divide the domain into a member of subintervals, then approximate the 

derivatives using numerical differentiation formulas at each interior point. 

The result is a linear system of equations. This process is called 
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discretization of the continuous problem [26, 29]. The solution of the linear 

system is the discrete solution of the linear BVP. 

Example 2.5: Consider the BVP 

𝑢′′ = 4(𝑢 − 𝑥),   0 ≤ 𝑥 ≤ 1, 𝑢(0) = 0 𝑎𝑛𝑑 𝑢(1) = 2. 

use linear finite difference method to approximate the solution   

With 𝑁 = 9,  then ℎ =
𝑏−𝑎

𝑁+1
= 

1

10
, ( 𝑥0 𝑎𝑛𝑑 𝑥10 are boundary points) 

 The mesh points are    

𝑥0     𝑥1      𝑥2     𝑥3   𝑥4    𝑥5     𝑥6   𝑥7    𝑥8    𝑥9      𝑥10 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Use second-order centered-difference formula for  𝑢′′(𝑥𝑖), 𝑖 = 1,2,… ,9  

and drop the error term, we get 

𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1
ℎ2

= 4𝑢𝑖 − 4𝑥𝑖 

100(𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1) = 400𝑢𝑖 − 400𝑥𝑖 ,     𝑓𝑜𝑟 𝑖 = 1,2,… ,9 

𝑢0 = 0,  𝑢10 = 2 

Solve the system to get the discrete solution. The results are given in table 

2.5 

 

 

 

 



  17   

Table 2.5:  The result of linear finite difference method. 

𝑢𝑖 𝑥𝑖 𝑖 

0.00000000 0.0 0 

0.10882378 0.1 1 

0.22205946 0.2 2 

0.34191297 0.3 3 

0.47169324 0.4 4 

0.61636364 0.5 5 

0.78336924 0.6 6 

0.98387764 0.7 7 

1.23464024 0.8 8 

1.56078414 0.9 9 

2.00000000 1.0 10 

2.2 Finite difference methods for solving partial differential equations 

Just like finite difference methods for BVPs, finite difference methods for 

PDEs, replace the derivatives by numerical differentiation formals. 

However, for PDEs in two dimensions (two independent variables), the 

domain is a plane region. To discretize the problem, generate a grid and 

approximate the derivatives at each interior grid point to get a linear system 

[29]. 

Example 2.6:  Consider the wave like problem.  

𝑢𝑡𝑡 −
𝑥2

2
𝑢𝑥𝑥 = 0,      0 < 𝑥 < 1,    0 < 𝑡 < 0.01 

𝑢(0, 𝑡) = 0,        𝑢(1, 𝑡) = 1 + 𝑠𝑖𝑛ℎ(𝑡) 

𝑢(𝑥, 0) = 𝑥,        𝑢𝑡(𝑥, 0) = 𝑥
2 

Using finite difference method with 𝑁 + 1 = 32 subinterval of [0,1] 

And 𝑀 = 20 subinterval of [0,0.01] 
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The space step size is ℎ =
1

32
 

The time step size is  𝑘 =  
1

20
 

𝑥𝑖 = 𝑖ℎ, 𝑖 = 0,1,2,… ,𝑁.      𝑡𝑗 = 𝑗𝑘,    𝑗 = 0,1,2,… ,𝑀 − 1 

Let 𝑢𝑖𝑗 be the approximation of the solution  𝑢(𝑥𝑖 , 𝑡𝑗), 

𝑢𝑡𝑡(𝑥𝑖 , 𝑡𝑗) =
𝑥𝑖
2

2

𝑢𝑥𝑥(𝑥𝑖 , 𝑡𝑗) 

Using 2𝑛𝑑 −order centered-difference formula for 𝑢𝑡𝑡 𝑎𝑛𝑑 𝑢𝑥𝑥 at the grid 

point (𝑥𝑖 , 𝑡𝑗) and dropping the error terms, we get 

𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1
𝑘2

=
𝑥𝑖
2

2 𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗
ℎ2

 

𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1=
𝑘2

2ℎ2
𝑥𝑖
2[𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗],  let 𝜆 =

𝑘2

2ℎ2
 

𝑢𝑖,𝑗+1 = 𝜆𝑥𝑖
2𝑢𝑖+1,𝑗 + 2(1 − 𝜆𝑥𝑖

2)𝑢𝑖,𝑗 − 𝜆𝑥𝑖
2𝑢𝑖−1,𝑗 − 𝑢𝑖,𝑗−1 

So when 𝑗 + 1 is replaced  𝑗 + 2, we get 

𝑢𝑖,𝑗+2 = 𝜆𝑥𝑖
2𝑢𝑖+1,𝑗+1 + 2(1 − 𝜆𝑥𝑖

2)𝑢𝑖,𝑗+1 − 𝜆𝑥𝑖
2𝑢𝑖−1,𝑗+1 − 𝑢𝑖,𝑗   

For   𝑖 = 1,2,3,4, … ,32  and     𝑗 = 1,2,3,4,… ,20. 

The boundary conditions imply:  𝑢0𝑗 = 0  and  𝑢𝑁+1,𝑗 = 1 + 𝑠𝑖𝑛ℎ (𝑗𝑘) 

Initial conditions imply:   𝑢𝑖0 = 𝑖ℎ  and 𝑢𝑖𝑁+1 = (𝑖ℎ)
2 
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Table 2.6: The result of finite difference method for wave-like equation 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

𝑢𝑖 𝑥𝑖 𝑖 
0.0312597648 0.03125 1 

0.0938378934 0.09375 3 

0.1564941463 0.15625 5 

0.2192285265 0.21875 7 

0.2820410392 0.28125 9 

0.3449316610 0.34375 11 

0.4079004237 0.40625 13 

0.4709473089 0.46875 15 

0.5340723150 0.53125 17 

0.5972754320 0.59375 19 

0.6605567180 0.65625 21 

0.7239161120 0.71875 23 

0.7873536280 0.78125 25 

0.8508692660 0.84375 27 

0.9144630310 0.90625 29 

0.9781349360 0.96875 31 
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Chapter Three 

Wavelets analysis 

Wavelets can be used as basis for expanding a large class of functions. 

Wavelet means a small wave where the sinusoids used in Fourier series are 

big waves. In brief, a wavelet is an oscillation that decays quickly. Fourier 

series uses the trigonometric functions; sine and cosine that do not decay, 

i.e. they have infinite support. In the wavelet expansion of a function, the 

bases are wavelets that decay quickly, i.e. they have finite support [8].  

3.1 Wavelet transforms (WT) 

In the year 1982, Jean Morlet introduced the idea of the wavelet transform 

and provided a new mathematical tool for wavelet analysis. Definition 

3.1[8]: Mother wavelets  

A mother wavelet is a function 𝜓(𝑥)  that satisfies the following conditions  

1. 𝑐𝜓 = ∫
|Ψ(𝑤)|2

|𝑤|
𝑑𝑤 < ∞                                                                     (3.1)

∞

0
 

  where Ψ(𝑤) is the Fourier transform of  𝜓(𝑥) as a result [4,6]  

∫ 𝜓(𝑥)

∞

−∞

𝑑𝑥 = 0                                                                                               (3.2) 

2. a wavelet function is unit energy; that is  

∫|𝜓(𝑥)|2
∞

−∞

𝑑𝑥 = 1                                                                                          (3.3) 
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Where the energy of a function is defined to be the squared function 

integrated over its domain by satisfying both equation (3.1, 3.2), the 

wavelet function must have nonzero entries, but all departures from zero 

must cancel out. 

3.  𝜓 is smooth, may be even infinitely often differentiable [30].  

4. 𝜓  has a computationally convenient form; for example that 𝜓 is a 

piecewise polynomial; i.e. as plane. 

5.  𝜓 has compact support; i.e. all function values are zero outside a certain 

bounded interval. 

A wavelet 𝜓𝑎,𝑏(𝑥) is constructed from a mother wavelet by scaling and 

translation. 

𝜓𝑎,𝑏(𝑥) =
1

√|𝑎|
𝜓(

𝑥−𝑏

𝑎
) , 𝑎, 𝑏 ∈ ℝ   , 𝑎 ≠ 0                                                (3.4) 

The parameter 𝑎  is the scaling parameter or scale,  and it measures the 

degree of compression. The parameter 𝑏 is the translation parameter which 

determines the 𝑥 − location of the wavelet. 

If  |𝑎| < 1, then the wavelet is in the compressed version (smaller support 

in the 𝑥 − domain) of the mother wavelet and corresponds mainly to higher 

frequencies. On the other hand, when |𝑎| > 1, then  𝜓𝑎,𝑏(𝑥) has a larger  

𝑥 −  width than  𝜓(𝑥)  and corresponds to two lower frequencies, thus 

wavelets have space widths adapted to their frequency.  This is the main 

reason for the success of the Jean Morlet wavelets in signal processing and 

time frequency signal analysis. 
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There are three types of wavelet transform: The continuous wavelet 

transform (CWT), the discrete wavelet transform (DWT), and the wavelet 

series. The CWT transforms a continuous function to a continuous 

function, The DWT transforms a discrete function to discrete function, and 

the wavelet series transforms a continuous function to discrete function. 

3.1.1 The continuous wavelet transforms and it's inverse 

Definition 3.2[5]: The integral wavelet transform or continuous wavelet 

transform of a function 𝑓(𝑥) ∈ 𝐿2 with respect to some mother wavelet 𝜓 

is defined as 

𝑊𝜓𝑓(𝑎, 𝑏) =  ∫ 𝑓(𝑥)𝜓𝑎,𝑏𝑑𝑥                                                                 (3.5) 
∞

−∞
  

where  

𝜓𝑎,𝑏(𝑥) =  
1

√|𝑎|
𝜓 (

𝑥−𝑏

𝑎
) ,       𝑎 ≠ 0                                                            (3.6)                                           

Definition 3.3[6]: The factor 
1

√𝑎
= 𝑎−

1

2  is a normalizing factor. As a result 

‖𝜓𝑎,𝑏‖2 =
‖𝜓‖2                                                                                            (3.7) 

∫|𝜓𝑎,𝑏(𝑥)|
2

∞

−∞

𝑑𝑥 = ∫|𝜓(𝑥)|2𝑑𝑥                                                             (3.8) 

∞

−∞

 

Example 3.1: Consider the Mexican hat wavelet 

𝜓(𝑥) = (1 − 2𝑥2)𝑒−𝑥
2
                    

also  

𝜓𝑎,𝑏(𝑥) =
1

√|𝑎|
𝜓 (
𝑥 − 𝑏

𝑎
) =

1

√𝑎
(1 − 2 (

𝑥 − 𝑏

𝑎
)
2

)𝑒−(
𝑥−𝑏
𝑎
)2
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  Fixing 𝑎 = 1 and the translating factor 𝑏 to any integer, 

 𝜓1,𝑏 = 𝜓(𝑥 − 𝑏) = (1 − 2(𝑥 − 𝑏)
2)𝑒−(𝑥−𝑏)

2
 (see Figuer 3.3) 

          

        1 ) 𝜓
1,2=(1−2∗(𝑥−2)2)𝑒−(𝑥−2)

2
 
                   2 ) 𝜓

1,−2=(1−2∗(𝑥+2)2)𝑒−(𝑥+2)
2  

 

          3) 𝜓
3,0=

1

√3
(1−2∗(

𝑥

3
)
2
)𝑒
−(
𝑥
3
)2
 
                 4 ) 𝜓 1

3
,0=√3(1−2∗(3∗𝑥)2)𝑒−(3∗𝑥)

2
 
 

Figure 3.1: graph of the Mexican hat wavelet 

Figure 3.1 ( 1 , 2 ) is the graph of the Mexican hat wavelet  where a =1 and 

b = 2 , a = 1 and b = -2,  respectively,  also fixing b = 0 and  the scaling  

factor (or dilation) parameter  a  ∈ ℝ  and a ≠ 0   

𝜓𝑎 ,0 = 
1

√|𝑎|
𝜓(

𝑥

𝑎
) =  

1

√|𝑎|
𝜓(1- 2(

𝑥

𝑎
)
2
)𝑒
−(

𝑥

𝑎
)
2
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Notice that, the scaling factor a > 1 stretch's the wave see figure 3, while   

0 < a < 1 shrinks the wave see figure 4 

Definition 3.4 [4, 6]: Inverse wavelet transform  

  Let Ψ(𝑤) be the Fourier transform of the 𝜓(𝑥). 

Ψ(𝑤) = ∫ 𝜓(𝑥)𝑒−𝑖𝑤𝑥𝑑𝑥                                                                      (3.9)

∞

−∞

 

If 𝑊𝜓𝑓(𝑎, 𝑏) is a CWT of a function  𝑓(𝑥) with a mother wavelet 𝜓(𝑥), 

then the inverse  CWT is given by 

𝑓(𝑥) =
1

𝑐𝜓
∫ ∫

1

|𝑎|2
 𝑊𝜓𝑓(𝑎, 𝑏)𝜓𝑎,𝑏(𝑥)𝑑𝑎𝑑𝑏.                                   (3.10)

∞

−∞

∞

−∞

 

where  𝑐𝜓 is a constant that depends on the choice of  the wavelet and is 

given by  

𝑐𝜓 = ∫
|Ψ(𝑤)|2

|𝑤|
𝑑𝑤 < ∞                                                                     (3.11) 

∞

−∞

 

The inverse CWT exists if 𝑐𝜓 is positive and finite. 

Definition 3.5[3]: let 𝜓 be a smooth function that is defined on ℝ and has 

compact support. For  𝑗, 𝑘 ∈ ℤ define a function 𝜓𝑗,𝑘 by 

𝜓𝑗,𝑘(𝑥) = 2
𝑗
2𝜓(2𝑗𝑥 − 𝑘) ,      𝑥 ∈ ℝ                                                   (3.12) 

The function  𝜓𝑗,𝑘 is a scaling by 𝑗 units and a translation by 𝑘 units of the 

mother wavelet  𝜓. 
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Example 3.2: To show the effect of scaling and translating, consider the 

function   𝜓(𝑥) = 𝑥2.  

Use scaling and translations functions. 

𝜓𝑗,𝑘(𝑥) = 2
𝑗
2𝜓(2𝑗𝑥 − 𝑘) = 2

𝑗
2(2𝑗𝑥 − 𝑘)

2
  , 𝑥 ∈ ℝ     , 𝑗, 𝑘 ∈ ℤ 

  To understand the scaling role of  𝑗, fix 𝑘 = 0  than  

𝜓𝑗,0(𝑥) = 2
𝑗
2 𝜓(2𝑥) = 2

𝑗
2(2𝑗𝑥)2   , 𝑗 ∈ ℤ, 𝑥 ∈ ℝ 

    

            

Figure 3.2:            ( a )                                                                 (b) 

(a)   The scaling role of  j,  fix k = 0 , in '' mother wavelet "    

      (b) The translation role of  k , fix j = 0, in " mother wavelet "  

    In figure 3.2(a), if 𝑗 positive then the graph of  𝜓𝑗,0  is similar to the 

graph compressed, but if  𝑗 is negative than the graph of 𝜓𝑗,0 is similar to 

the graph  of 𝜓 but has localized as is figure 3.2(a) . 

also, to understand the translation role of 𝑘 . 
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Fix = 0 . 

𝜓0,𝑘 = 𝜓(𝑥 − 𝑘) = (𝑥 − 𝑘)
2  , 𝑘 ∈ ℤ   , 𝑥 ∈ ℝ . 

In figure 3.2(a), if  𝑘 is positive then the graph to 𝜓0,𝑘  is similar to the 

graph of 𝜓 but, shifted to the right, if  𝑘  is negative, then the graph of  

𝜓0,𝑘 is similar to the graph of  𝜓  but shift to the left as in figure 3.2(b) . 

Definition 3.6[3]: The wavelet system  {𝜓𝑗,𝑘}𝑗,𝑘∈ℤ from orthonormal basis 

for 𝐿2(ℝ) where 

  𝜓𝑗,𝑘 = 2
𝑗

2𝜓(2𝑗𝑥 − 𝑘),   𝑥 ∈ ℝ                                                               (3.13)  

   𝑤𝑗,𝑘 = 〈𝑓(𝑥),𝜓𝑗,𝑘(𝑥)〉𝑛 𝑛 = 2
𝑗

2 𝑤𝜓𝑓 (
1

2𝑗
, 2

𝑘

𝑗)                                    (3.14)  

Theorem 3.1[ 3] : The system  {𝜓𝑗,𝑘(𝑥)}𝑗,𝑘∈ℤis orthogonal on (−∞,∞) 

∫ 𝜓𝑗,𝑘(𝑥)𝜓�̂�,�̂�(𝑥)𝑑𝑥 = {
1    𝑖𝑓  𝑗 = 𝑗̂, 𝑘 = �̂�
0                      𝑜. 𝑤

∞

−∞

                                     (3.15) 

3.1.2 Discrete wavelet transforms (DWT) 

Definition 3.7[9]: Discrete wavelet transform  

   In the CWT, replace the scaling parameter 𝑎 by 2−𝑗  and the translation 

parameter  𝑏 by 𝑘 2−𝑗. Integral (3.2) becomes  

𝑤𝜓𝑓(2
−𝑗 , 𝑘 2−𝑗) = 2−

𝑗
2 ∫ 𝑓(𝑥)𝜓(2𝑗𝑥 − 𝑘)𝑑𝑥                                 (3.16) 

∞

−∞
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3.1.3 Wavelet series  

Under certain conditions, the series expansion of a function in terms of a 

given set of simple function {𝑓𝑛}𝑛=0
∞  is  

𝑓(𝑥) = ∑𝑎𝑛𝑓𝑛(𝑥)                                                                                (3.17)

∞

𝑛=0

 

The function and the set {𝑓𝑛}𝑛=0
∞ must satisfy certain conditions that enable 

us finding the coefficients𝑎𝑛. For example Taylor series expands a periodic 

function of period 𝑝 = 𝐿 that is analytic at point 𝑥0 using the orthogonal 

system {(𝑥 − 𝑥0)
𝑛}𝑛=0
∞  while Fourier series expands a square integrable 

function using the orthogonal trigonometric 

system {𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) , 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
)}
𝑛=0

∞
.  It is the orthogonality of such system on 

[−𝐿, 𝐿] that enable us to compute the coefficients in the expansion of  the 

function. 

Definition 3.8[3]: Wavelet series  

The wavelet series expansion of a given function 𝑓 is given by:  

𝑓(𝑥) = ∑ ∑ 𝑐𝑗,𝑘𝜓𝑗,𝑘(𝑥) = ∑ ∑ 〈𝑓 , 𝜓𝑗,𝑘〉𝑘∈ℤ𝑗∈ℤ𝑘∈ℤ𝑗∈ℤ 𝑓𝑗,𝑘                     (3.18)  

where the coefficients 𝑐𝑗,𝑘 or  〈𝑓, 𝜓𝑗,𝑘〉  are uniquely defined by  

𝑐𝑗,𝑘 = 〈𝑓, 𝜓𝑗,𝑘〉 = ∫ 𝑓(𝑥)𝜓𝑗,𝑘(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑥
∞

−∞
                                                      (3.19)  

where  𝜓𝑗,𝑘 = 2
𝑗𝜓(2𝑗𝑥 − 𝑘).      

The wavelet system  {𝜓𝑗,𝑘}𝑗,𝑘∈ℤ is fully determined by the function 𝜓, that 

is, we only need to store, information about the single function  𝜓 to be 
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used in (3.19). For existence of wavelet series expansion, the mother 

wavelet must satisfy the admissibility conditions given in definition 3.1 

In practice, we don't expect 𝜓 to have all the above properties, so we need 

to be careful and only insist on the properties that are needed in the 

application we have in mind. 

In cases where we need to work with the time behavior of functions as well 

as their frequency-content, we must replace the wish for compact support 

of either 𝜓 or 𝜓 ̅with the requirement that the function at last tends to zero 

very fast.  Formulated for the function 𝜓, such a requirement could be that 

there exist constants 𝑐 , 𝛼 > 0 , 𝑠. 𝑡 

|𝜓(𝑥)| ≤ 𝑐𝑒−𝛼|𝑥|  , ∀𝑥 ∈ ℝ 

Assuming the convergence of the wavelet series, we may use it to 

approximate a given function by : 

𝑓(𝑥) ≈ ∑ ∑ 𝐶𝑗,𝑘𝜓𝑗,𝑘(𝑥)𝑘=−𝑁𝑗=−𝑛   

For sufficiently large value of 𝑛 ∈ 𝛮 [3] 

3.2 Advantages of Wavelet Theory [8] 

1. The most advantage of wavelets is that they show a simultaneous 

localization in time and frequency domain. 

2. The next advantage of wavelets is the speed fast wavelet transform.  

3. Wavelets have the great advantage of being able to separate the fine 

details in a signal. Very small wavelets can be used to isolate very 

fine details in a signal, while very large wavelets can identify coarse 

details. 
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4. A wavelet transform can be used to decompose a signal into 

component wavelets. 

5. In wavelet theory, it is often possible to obtain a good approximation 

of the given function f by using only a few coefficients which is the 

great achievement in comparison to Fourier transform. 

6. Wavelet theory is capable of revealing aspects of data like trends, 

breakdown points, and discontinuities in higher derivatives and self-

similarity. 

7. It can often compress or de-noise a signal without appreciable 

degradation. 

3.3 Comparison of wavelet transform with Fourier transform 

1. Fourier transform is a strong tool for analyzing a collection of 

stationary signals (a signal with no change in the properties). Sine 

and cosine (sinusoid signals), for example, are processed by the 

application of Fourier transform. However, the analysis of non-

stationary signals (where the change in the properties occurs) is less 

useful by Fourier application. On the contrary, wavelet transform is 

applicable to both stationary and non-stationary signals [7, 8]. 

2. Fourier transform proves to be useful in certain areas out of 

traditional signal processing. But it should be noted that the 

mathematical design of wavelets is broader than the Fourier 

transform, and to be more specific, the mathematics of wavelets 

include Fourier transform [7, 8].   
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3. Wavelet and Fourier transforms are mainly different in the domains 

of time and frequency. Wavelets are well localized in time and 

frequency, while Fourier application in such domains is standardized 

in localizing them. While both have good effects out of localized 

time and frequency, wavelet shows better representation by Walnut 

multi-resolution analysis [7, 8, 9].   

4. Fourier transform relies on a single scaled function 𝜓(x), but the 

wavelet transform has the ability to move the function and generate a 

two-parameter series of functions 𝜓𝑎,𝑏(𝑥) defined [8, 9].  
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  Chapter Four 

Haar wavelet   

Wavelet transform or wavelet analysis is recently developed mathematical 

applications for many problems. There are many wavelets. One of the most 

simple and popular is the Haar wavelets.  

Because of simplicity of Haar wavelet, it becomes an efficient technique 

for solving many problems that arises in many branches of science, 

engineering and economic. So, in the next chapter, we will use wavelets for 

solving differential equations. Haar function was first introduced by the 

Hungarian mathematician Alfred Haar in appendix of his doctoral thesis in 

1910, and later, it was developed by others. Haar function is an odd 

rectangular pulse pair, is the simplest and oldest orthonormal wavelet with 

compact support. There are different definitions of Haar function and 

various generalizations have been used [9, 25]. 

4.1 Haar Wavelet function 

4.1.1 The Haar scaling function 

There  are  two  functions  that  play  a  primary  role  in  wavelet  analysis, 

the scaling function 𝜙  and  the wavelet  𝜓.  These  two  functions  generate  

a  family  of  functions  that  can  be  used  to  break  up  or  reconstruct 

signals. To emphasize the family involving  𝜙 and 𝜓, 𝜙 is called the "father 

wavelet " and  𝜓 is the "mother wavelet". 
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Example 4.1: The building blocks are translations and dilations ( both in 

height and width ) in basic graph [2]. 

 

Figure 4.1:  Voltage from a faulty meter 

 

Figure 4.2: Approximation voltage signal by Haar  function 

The building blocks generated by the Haar scaling function are particularly 

simple and illustrate the general idea underlying a multire- solution 

analysis, which we will discuss next. The disadvantage of the Haar 
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wavelets is that, they are discontinuous and therefore do not approximate 

continuous signals very well. 

4.1.2 Basic properties of the Haar scaling function  

Definition 4.1[2]: The Haar scaling function, also called the father wavelet, 

is defined as  

𝜙(𝑥) = { 
1             𝑖𝑓  0 ≤ 𝑥 < 1
0                   𝑒𝑙𝑠𝑒 𝑤ℎ𝑒𝑟𝑒

                                                      (4.1) 

 

Figure 4.3: Graph of the Haar scaling function. 

Remark [2, 5]: The function 𝜙(𝑥 − 𝑘) has the same graph as 𝜙  but 

translated to the right by 𝑘 units (assuming 𝑘 is positive). 

Notation: we will use  𝑉0  for the space of all functions of the form  

∑ 𝑎𝑘𝜙(𝑥 − 𝑘)                          𝑎𝑘 ∈ ℝ 𝑘∈ℤ                                             (4.2) 

where 𝑘 ranges over any finite set of positive or negative integers. 

Remark [2]: since 𝜙(𝑥 − 𝑘)  is discontinuous at 𝑥 = 𝑘 and  𝑥 = 𝑘 + 1,  an 

alternative description of  𝑉0  is that it consists of all piecewise constant 

functions with possible discontinuities at integers. Each element of  𝑉0  has 
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finite or compact support which means the element is zero outside a 

bounded set. The graph of a typical element of  𝑉0  is given in Figure 4.4  

 

Figure 4.4: Graph of typical element of 𝑉0. 

Note that a function in 𝑉0 may not have discontinuities at all integers  for 

example, if 𝑎1 = 𝑎2 then the preceding sum is continuous at 𝑥 = 2 . 

Example 4.2: The function  

𝑓(𝑥) = 3𝜙(𝑥) − 𝜙(𝑥 − 1) + 2𝜙(𝑥 − 2) + 2𝜙(𝑥 − 3) − 2𝜙(𝑥 − 4)  ∈ V0 

has discontinuities at 𝑥 = 0,1,2,4 and 5 but not at 𝑥 = 3 see figure (4.5). 

 

Figure 4.5: Plot of   f in example 4.2 

We need thinner blocks to analyze signals of high frequency. For example, 

the width of the building block 𝜙(2𝑥) is half the width of 𝜙(𝑥), see figure 

4.6 
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Figure 4.6:  

The function 𝜙(2𝑥 − 𝑘) = 𝜙 (2(𝑥 −
𝑘

2
))  is the same as the graph of the 

function of  𝜙(2𝑥)  but shifted to right by  
𝑘

2
 units [2,5].  

Notation: let  𝑉1 be the space of functions of the form  

∑ 𝑎𝑘𝜙(2𝑥 − 𝑘)𝑘∈ℤ                𝑎𝑘 ∈ ℝ                               (4.3) 

Geometrically,  𝑉1  is the space of piecewise constant functions of finite 

support with possible discontinuities at half-integers  {0, ±1 2⁄ , ±1,±3 2⁄ ,

… }.  

Example 4.3: The function  

𝑓(𝑥) = 3𝜙(2𝑥) − 𝜙(2𝑥 − 1) − 𝜙(2𝑥 − 2) + 2𝜙(2𝑥 − 3)   ∈ 𝑉1 

 has discontinuities at 𝑥 = 0 ,
1

2
 ,1,2,

5

2
  and 3 as shown in figure ( 4.7).  

 

Figure 4.7:  
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Definition 4.2[2]: The space of  𝑉0 is  the space of all piecewise constant 

function with discontinuities contained in the set of integers. The space 

  𝑉1   is the space of all piecewise consists functions with discontinuities 

contained in the set of half integers  {
2𝑛+1

2
∶  𝑛 ∈ ℤ}. 

Definition 4.3[2]: suppose 𝑗 is any nonnegative integer. The space of step 

functions at level 𝑗, denoted by 𝑉𝑗 is defined to be the space spanned by the 

set {… , 𝜙(2𝑗𝑥 + 1),𝜙(2𝑗𝑥),𝜙(2𝑗𝑥 − 1), 𝜙(2𝑗𝑥 − 2),… . }  over The real 

numbers.  𝑉𝑗  is the space of piecewise constant functions of finite support 

whose discontinuities are contained in the set . 

{… ,−1
2𝑗⁄  ,0 , 1

2𝑗⁄
 , 2

2𝑗⁄  , 3
2𝑗⁄  , … . } . 

The same applies for 𝑉1 ⊂ 𝑉2and so forth : 

𝑉0   ⊂ 𝑉1  ⊂ ⋯𝑉𝑗−1   ⊂  𝑉𝑗    ⊂ 𝑉𝑗+1… 

Remark: This containment is strict. For example,  the function  𝜙(2𝑥) 

belongs to 𝑉1  but does not belong to 𝑉0  [since 𝜙(2𝑥) is discontinuous at 

𝑥 =
1

2
]. 

Theorem 4.1[2]:  

A function 𝑓(𝑥) belongs to 𝑉0 if and only if  𝑓(2𝑗𝑥) belong to 𝑉𝑗. 

A function 𝑓(𝑥) belongs to 𝑉𝑗 if and only if  𝑓(2−𝑗𝑥) belongs to 𝑉0. 

Theorem 4.2[10]: A set of nonzero functions  {𝜙(𝑥 − 𝑘), 𝑘 ∈ ℤ} in 

𝐿2space are orthonormal to each  𝑉𝑗 component. 
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‖𝜙(𝑥 − 𝑘)‖𝐿2
2 = ∫ 𝜙(𝑥 − 𝑘)2

∞

−∞
𝑑𝑥 = ∫ 1 𝑑𝑥 = 1

𝑘+1

𝑘
             (4.4) 

〈𝜙(𝑥 − 𝑗 ), 𝜙(𝑥 − 𝑘)〉𝐿2 = ∫ 𝜙(𝑥 − 𝑗)𝜙(𝑥 − 𝑘)𝑑𝑥 = 0,        𝑗 ≠ 𝑘    
∞

−∞
(4.5) 

 

Figure 4.8: 𝜙(𝑥 − 𝑗) and 𝜙(𝑥 − 𝑘) have disjoint support. 

Theorem 4.3[11]: The set of functions {2
𝑗

2 𝜙(2𝑗𝑥 − 𝑘), 𝑘 ∈ ℤ } is an 

orthonormal basis of  𝑉𝑗 . 

Definition 4.4[15]: The function   

𝜓(𝑥) =  {

1             0 ≤ 𝑥 <  
1

2

−1             
1

2
 ≤ 𝑥 < 1 

    0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                                                            (4.6) 

 Is called the "mother wavelet ". 

The Haar wavelet has compact support, and clearly ∫ 𝜓(𝑥)𝑑𝑥 = 0
∞

−∞
 and   

𝜓 ∈  𝐿2(ℝ), but this wavelet is not continuous. 
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Figure 4.9: The Haar wavelet  𝜓(𝑥). 

Figure 4.9 indicates that the Haar wavelet has good time localization but 

poor frequency localization. Most of applications of wavelet exploit their 

ability to approximate functions as efficiently as possible, which means as 

few coefficients as possible. 

Definition 4.5 [9]: Vanishing Moment  

The wavelet is said to have 𝑀 (𝑀 ∈ ℕ)  vanishing moment if it satisfies 

The following condition. 

∫ 𝑥𝑚𝜓(𝑥)𝑑𝑥 = 0 ,    𝑚 = 0,1, . . . 𝑀 − 1.                                              

∞

−∞

(4.7) 

Remark [28, 30]: The smoothness of the wavelet increases as the number 

of vanishing moment increases. 

Remark [28]: The Haar wavelet 𝜓  has compact support on  𝐼 if it vanishes 

outside 𝐼.  If 𝜓 has 𝑀  vanishing moment, then its support is at least of 

length 2𝑀 − 1, so the Haar wavelet has minimum support equal to  one. 
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Figure 4.10:  plot of the mother wavelet. 

Definition 4.6[14]: a function in 𝑉1 is orthogonal to 𝑉0 if and only if it is of 

the form   ∑ 𝑎𝑘𝑘∈ℤ 𝜓(𝑥 − 𝑘),      𝑎𝑘 ∈ ℝ,                                           (4.8) 

let 𝑊0 be the space of all functions of the form 

∑𝑎𝑘𝜓(𝑥 − 𝑘),                         𝑎𝑘 ∈ ℝ,

𝑘∈ℤ

 

where, again, we assume that only a finite number of  𝑎𝑘 are nonzero. Then 

𝑊0 is the orthogonal complement of  𝑉0 in 𝑉1; in other words, 

𝑉1 = 𝑉0⨁𝑊0 

Theorem 4.4[2]: let 𝑊𝑗  be the space of functions of the form  

∑𝑎𝑘𝜓(2
𝑗𝑥 − 𝑘)                         𝑎𝑘 ∈ ℝ

𝑘∈ℤ

                                           (4.9) 

where we assume that only a finite number of the coefficients  𝑎𝑘  are 

nonzero.  𝑊𝑗 is the orthogonal complement of  𝑉𝑗  in  𝑉𝑗+1 and  

𝑉𝑗+1 = 𝑉𝑗⨁𝑊𝑗                                                                                             (4.10)  

Definition 4.7[2]: The Haar wavelet can be written as  

𝜓(𝑥) = 𝜙(2𝑥) − 𝜙(2𝑥 − 1)                                                                 (4.11) 
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4.2 Properties of Haar wavelet. 

1. Haar wavelet is very well localized in the 𝑥 domain, but not continuous. 

2. ∫ 𝜓(𝑥)
∞

0
𝑑𝑥 = 0    and  ∫ |𝜓(𝑥)|2 𝑑𝑥 = 1

∞

0
                                  (4.12) 

3. Any continuous real function can be approximated by linear combination 

of   𝜙(𝑥), 𝜙(2𝑥), 𝜙(4𝑥),… , 𝜙(2𝑗𝑥) and their shifted functions. 

This extends the function space where any function can be approximated 

by continuous functions. 

4. Any continuous real function can be approximated by linear combination 

of the constant function 𝜓(𝑥), 𝜓(2𝑥), 𝜓(4𝑥), . . , 𝜓(2𝑗𝑥) and their shifted 

functions. 

5. A Wavelet function can be written as a combination of wavelet functions 

with different scales: 𝜓(𝑥) = 𝜙(2𝑥) − 𝜙(2𝑥 − 1)                           (4.13) 

Similarly, for the scaling function: 𝜙(𝑥) = 𝜙(2𝑥) +  𝜙(2𝑥 − 1)  (4.14)    

6. Haar function are orthogonal. 

i.e.  ∫ 2 𝑗.𝑚 𝜓(2𝑗𝑥 − 𝑘)𝜓(2𝑚𝑥 − 𝑛)𝑑𝑥 = 𝛿 𝑗.𝑚  𝛿 𝑘.𝑛
∞

−∞
                  (4.15) 

7. The integration of Haar wavelets can be expandable into Haar series. 

4.3 Wavelet collocation method 

Collocation method [9] used in numerical solution of differential equations. 

The main idea involves numerical operators acting on point values 

(collocation points) in the physical space, or dividing the domain as a 
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number of points and calculates the solution about it. Generally, wavelet 

collocation methods are created by choosing a wavelet and some kinds of 

grid structure which will be computationally adapted. 

In effect, one obtains finites differences on non-uniform grid. The 

treatment of nonlinearities in wavelet collocation method is straight 

forward task.  

4.4 Haar wavelet transformation 

The Haar wavelet is system [15, 17]. 

ℎ𝑖(𝑥) =  2
𝑗
2𝜓(2𝑗𝑥 − 𝑘) = {

1        𝑓𝑜𝑟  𝑥 ∈ [𝜀1 , 𝜀2)
−1    𝑓𝑜𝑟 𝑥 ∈ [𝜀2 , 𝜀3)

   0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                       (4.16) 

where  𝜀1 =
𝑘

𝑚
 ,             𝜀2 =

𝑘+0.5

𝑚
,          𝜀3 =

𝑘+1

𝑚
.     

where  𝑚 = 2𝑗 , 𝑗 = 0,1,2 , … 𝐽, 𝑘 = 0,1,2, ….  , 𝑚 − 1  

𝑗  indicates the level of wavelet or the dilation parameter or scaling 

(changing levels ). 

𝑘 denotes translation parameter. 

𝐽 denotes the maximum level of resolution. 

The index 𝑖  in ℎ𝑖(𝑥) is determined by 𝑖 = 𝑚 + 𝑘 + 1.  In the case of 

minimal values 𝑚 = 1, 𝑘 = 0, we have 𝑖 = 2.  The maximum value of  𝑖 is 

 𝑖 = 2𝑀 = 2𝐽+1. 

For 𝑖 = 1, the function ℎ1(𝑥) is the scaling function or the father wavelet 

for the family of the Haar wavelets which is defined as   
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ℎ1(𝑥) = {
1          𝑥 ∈ [0,1)
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                      (4.17) 

For 𝑖 = 2, the function ℎ2(𝑥) is the mother wavelet for the family of the 

Haar wavelet which is defined as  

ℎ2(𝑥) = {

 1     0 ≤ 𝑥 < 1 2⁄

−1    1 2⁄ ≤ 𝑥 < 1

 0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                (4.18) 

For 𝑖 = 3, the function ℎ3(𝑥) is  defined as 

ℎ3(𝑥) =  

{
 
 

 
  1     𝑥 ∈ [0 ,

1

4
 )

−1 𝑥 ∈ [
1

4
,
2

4
)

 0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                    (4.19) 

For 𝑖 = 4, the function ℎ4(𝑥) is  defined as 

ℎ4(𝑥) =  

{
 
 

 
  1     𝑥 ∈ [

2

4
 ,
3

4
 )

−1   𝑥 ∈ [
3

4
,
4

4
)

 0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                        (4.20) 

Theorem 4.5[16]: Haar wavelets are orthogonal to each other and therefore 

constitute an orthogonal basis shown as. 

∫ ℎ𝑖(𝑥)ℎ𝑙(𝑥)𝑑𝑥 = {
2−𝑗   𝑖 = 𝑙 = 2𝑗 + 𝑘 + 1
0                         𝑖 ≠ 𝑙

1

0
                                        (4.21)  

Table 4.1: Index computations for Haar basis function  

𝑗 
 

𝑘 
 

0 

 

0 

1     1 

 

0     1 

2      2       2     2 

 

0       1      2     3  

3      3      3      3      3 

 

0      1      2       3     4 

...... 

 

….. 

𝑖 = 2𝑗 + 𝑘 + 1 2 3     4 5        6      7      8 9     10    11     12    13 ….. 
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Figure 4.11: The first eight Haar functions 

The orthogonal set of Haar wavelets from  ℎ1(𝑥) to  ℎ8(𝑥) is shown in 

figure 4.11, which contains a family of single square wavelets. The first 

basis ℎ1(𝑥) is called scaling function, which is equal to one for whole unit 

time interval. The second basis ℎ2(𝑥)  is the fundamental square wave is 

called mother wavelet. The others, ℎ3(𝑥)  to ℎ8(𝑥)  are generated from 

ℎ2(𝑥) via two operations: dilation and translation. 

4.5 Function approximation  

Any function 𝑢(𝑥) ∈ 𝐿2[1,0) can be decomposed as [ 17]  

𝑢(𝑥) =∑𝑎𝑛ℎ𝑛(𝑥),   𝑖 ∈ {0}

∞

𝑖=0

∪ ℕ,                                                        (4.22) 

where the coefficients 𝑎𝑛 are determined as,  
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𝑎0 = ∫𝑢(𝑥)ℎ0(𝑥)𝑑𝑥

1

0

,     𝑎𝑛 = 2
𝑗∫𝑢(𝑥)ℎ𝑖(𝑥)𝑑𝑥

1

0

                           (4.23) 

where  𝑛 = 2𝑗 + 𝑘,         𝑗 ≥ 0,        0 ≤ 𝑘 ≤ 2𝑗 ,   𝑥 ∈ [0,1) 

such  that the following  error norm  𝜖 : 

𝜖 = ∫ [𝑢(𝑥) − ∑ 𝑎𝑖ℎ𝑖(𝑥)

𝑚−1

𝑖=0

]

2

𝑑𝑥,            𝑚 = 2𝑗 ,     𝑗 ∈ {0} ∪ ℕ (4.24)

1

0

 

is minimized   

Usually, the series expansion of 𝑢(𝑥) contains infinite number of terms. if 

𝑢(𝑥) is piecewise constant by itself, or many be approximated as piecewise 

constant during each subinterval. 

4.6 Convergence analysis of Haar wavelets 

Assume that  𝑓(𝑥)  is a differentiable function with   

|𝑓(𝑥)|  ≤ 𝐾 ,        ∀𝑥 ∈ (𝑎 , 𝑏)        𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡         |𝑓′(𝑥)| ≤ 𝐾 . 

where 𝐾 is a positive constant. Haar wavelet approximation for the function  

𝑓(𝑥)  is given  by  

𝑓𝑀(𝑥) =  ∑𝑎𝑖ℎ𝑖(𝑥)                                                                            (4.25)

2𝑀

𝑖=1

 

Babolian and Shahsavaran [21] have shown that the square of the error 

norm for wavelet approximation is given by  

‖𝑓(𝑥) − 𝑓𝑀(𝑥)‖
2 = 

𝐾3

12𝑀2
                                                                 (4.26) 
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Therefore,       ‖𝑓(𝑥) − 𝑓𝑀(𝑥)‖ = 𝑂 (
1

𝑀
). 

The maximum absolute error = 𝐿∞ = max.|𝑢𝑙
𝑒(𝑥) − 𝑢𝑙

𝑎(𝑥)|      (4.27) 

The maximum relative error = 𝐿𝑚𝑟𝑒 =
𝐿∞

|𝑢𝑙
𝑒(𝑥)|

                              (4.28)  

where  𝑢𝑙
𝑒  and  𝑢𝑙

𝑎  are the exact and Haar solution respectively at the 𝑙 th 

collocation points 𝑥𝑙, 𝑙 = 1,2,… ,2𝑚. We choose the computational domain 

[ 0 , 1 ] for each numerical example. 

4.7 Integration of Haar wavelets 

We want to integrate differential equations following the method of  Chen 

and Hsiao method ( CHM ) and we'll talk about this principal method more 

clearly in the next chapter.  We have to evaluate the integrals[16]. 

𝛲𝑖 ,𝛼(𝑥) = ∫ ∫   …  ∫  ℎ𝑖(𝜏)𝑑𝜏
𝛼𝑥

𝐴

𝑥

𝐴

𝑥

𝐴⏟              
(𝛼−𝑡𝑖𝑚𝑒)

𝛼=1,2,…,𝑛 ,    𝑖=1,2,…  2𝑀

=
1

( 𝛼−1)
 ∫ (𝑥 − 𝜏)𝛼−1ℎ𝑖(𝜏)𝑑𝜏
𝑥

𝐴
(4.29)  

The case  𝛼 = 0 corresponds to the function  ℎ𝑖(𝜏). 

Taking  account of  ℎ𝑖(𝑥), these integrals can be calculated analytically. By 

doing so,  we obtain  

𝑃𝛼,𝑖(𝑥) =

{
 
 

 
 

 0                                                       𝑓𝑜𝑟 𝑥 < 𝜀1
1

𝛼!
[𝑥 − 𝜀1]

𝛼                                          𝑓𝑜𝑟 𝑥 ∈ [𝜀1, 𝜀2]

1

𝛼!
{[𝑥 − 𝜀1]

𝛼 − 2[𝑥 − 𝜀2]
𝛼}              𝑓𝑜𝑟 𝑥 ∈ [𝜀2, 𝜀3]

1

𝛼!
{[𝑥 − 𝜀1]

𝛼 − 2[𝑥 − 𝜀2]
𝛼 + [𝑥 − 𝜀3]}  𝑓𝑜𝑟 𝑥 > 𝜀3 

  (4.30)  

These formulas hold for  𝑖 > 1. In the case 𝑖 = 1, we have 𝜀1 = 𝐴 , 𝜀2 =

𝜀3 = 𝐵,  and  
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𝑃1.𝛼(𝑥) =
1

𝛼!
(𝑎 − 𝐴)𝛼 . 

In the Haar wavelet method [16],   the following integrals are used   

𝑃𝑖,1(𝑥) = ∫ℎ𝑖(𝜏)𝑑𝜏                                                                                  (4.31)

𝑥

0

 

𝑃𝑖,1(𝑥) = {
𝑥 − 𝜀1    𝑥 ∈ [𝜀1, 𝜀2)
𝜀3 − 𝑥    𝑥 ∈ [𝜀2, 𝜀3)
      0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                           (4.32) 

𝑃𝑖,𝑣+1(𝑥) = ∫𝑃𝑖,𝑣(𝜏)𝑑𝜏     ,          𝑣 = 1,2,3,… .

𝑥

0

                                  (4.33) 

  Some calculated 𝑃𝑖,𝑣+1(𝑥) , 𝑣 = 1,2 , … are given below 

𝑃𝑖,2(𝑥) =

{
  
 

  
 
0                        𝑥 ∈ [0, 𝜀1)
(𝑥−𝜀1)

2

2
              𝑥 ∈ [𝜀1, 𝜀2)

1

4𝑚2 −
(𝜀3−𝑥)

2

2
   𝑥 ∈ [𝜀2, 𝜀3)

1

4𝑚2                    𝑥 ∈ [𝜀3, 1)
   

                                      (4.34)  

𝑃𝑖,3(𝑥) =

{
 
 
 

 
 
 
0                                          𝑥 ∈ [0, 𝜀1)

(𝑥 − 𝜀1)
3

6
                            𝑥 ∈ [𝜀1, 𝜀2)

(𝑥 − 𝜀2)

4𝑚2
−
(𝜀3 − 𝑥)

3

6
        𝑥 ∈ [𝜀2, 𝜀3)

  
𝑥 − 𝜀2
4𝑚2

                                𝑥 ∈ [𝜀3, 1]

                            (4.35) 

𝑃𝑖,4(𝑥) =

{
 
 
 

 
 
 
0                                                          𝑥 ∈ [0, 𝜀1)

(𝑥 − 𝜀1)
4

24
                                            𝑥 ∈ [𝜀1, 𝜀2)

(𝑥 − 𝜀2)

8𝑚2
−
(𝜀3 − 𝑥)

4

24
+

1

192𝑚4
   𝑥 ∈ [𝜀2, 𝜀3)

  
𝑥 − 𝜀2
8𝑚2

+
1

192𝑚4
                            𝑥 ∈ [𝜀3, 1]

             (4.36) 
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 Similarly for  𝑃𝑖,𝑣(𝑥), 𝑣 = 5,6,…, are obtained in similar way. 

4.8 The product operational matrix of the Haar wavelet 

The integrals in (4.32- 4.36) are evaluated can be used for all differential 

equations [14]. 

It is convenient to pass to the matrix formulation. For this purpose the 

interval 𝑥 ∈ [0 , 1] is divided into 2𝑚 parts each of length ∆𝑥 =
1

2𝑚
  , where 

 𝑚 =  2𝑗 .  We define the collocation points where we will approximate any 

function as   

𝑥𝑙 =
2𝑙 − 1

4𝑚
,          𝑓𝑜𝑟  𝑙 = 1  ,2 , … ,2𝑚                                                    (4.37) 

At these collocation points, we discretize the Haar function  ℎ𝑖(𝑥)  to 

obtain  𝐻2𝑚×2𝑚  coefficient matrix called Haar matrix. 

The Haar coefficient matrix 𝐻 is defined as  

𝐻(𝑚)(𝑖 , 𝑙) = ℎ𝑖(𝑥𝑙)                                                                                        (4.38)                                                                   

To compute 𝐻,  we define a vector of Haar functions 

ℎ(𝑚)(𝑥) =  [ℎ0(𝑥), ℎ1(𝑥), … ℎ𝑚−1(𝑥)]
𝑇                                                 (4.39) 

where 𝑚 is the dimension of the vector. These vectors are used to compute 

each column of Haar matrix as   

𝐻(𝑚) = [ℎ(𝑚) (
1

4𝑚
) , ℎ(𝑚) (

3

4𝑚
) ,… . , ℎ(𝑚) (

(4𝑚 − 1)

4𝑚
)]

𝑇

                                   (4.40) 

The integral matrices 𝑃𝑣 have the elements  𝑃𝑣(𝑖 , 𝑙 ) = 𝑃𝑖,𝑣(𝑙). 
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Chen and Hsiao defined the integral matrix in a different way. They 

calculated 𝑃(𝑚) from the equation 

∫ℎ(𝑚)(𝜏)𝑑𝜏 = 𝑃(𝑚)ℎ(𝑚)(𝑥) ,   𝑥 ∈ [0,1)

𝑥

0

                                          (4.41) 

The result is the square matrix  𝑃(𝑚) = 𝑃(𝑚×𝑚)  which is called the 

operational matrix of integration [13].  

 Chen and Hsiao method showed that the following recursive formula 

holds:  

𝑃(𝑚) =
1

2𝑚
[

2𝑚 𝑃
(
𝑚
2
×
𝑚
2
)
−𝐻

(
𝑚
2
×
𝑚
2
)

𝐻
(
𝑚
2
×
𝑚
2
)

−1 𝑂
(
 𝑚
2
×
𝑚
2
)

]                                               (4.42) 

where  𝑂 𝑚
2
×
𝑚

2
  is null matrix. 

𝐻(𝑚) = [ℎ(𝑚)(𝑥0), ℎ(𝑚)(𝑥1),… . , ℎ(𝑚)(𝑥𝑚−1)]
𝑇
                                (4.43) 

where   
𝑙

𝑚
≤ 𝑥𝑙 ≤

𝑙+1

𝑚
  and   𝐻(𝑚×𝑚)

−1 = 
1

𝑚
𝐻(𝑚×𝑚)
𝑇 𝑑𝑖𝑎𝑔(𝑟) 

     It should be noted that calculations for 𝑃(𝑚) and 𝐻(𝑚) must be carried 

out only once. Since  𝐻  and 𝐻−1  contain many zeros, this phenomenon 

makes the Haar transform faster than Fourier transform, this is one of the 

reasons for rapid convergence of Haar wavelet series [19].  

Then 𝑢(𝑥) will terminate at finite terms [17].  

𝑢(𝑥) ≅ ∑ 𝑎𝑛 ℎ𝑛 (𝑥) = 𝒂(𝑚)
𝑇 𝒉(𝑚)(𝑥)

𝑚−1

𝑖=0

                                              (4.44) 
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where the coefficient vector 𝒂(𝑚)
𝑇  and the Haar function vector 𝒉(𝑚)(𝑥) are 

defined as  

𝒂(𝑚)
𝑇 = [𝑎0 , 𝑎1 , … 𝑎𝑚−1]    and  𝒉(𝑚)(𝑥) =  [ℎ0(𝑥), ℎ1(𝑥),… ℎ𝑚−1(𝑥)]

𝑇 

Example 4.4: Haar matrices  

 We start with Haar matrix of order one:   𝐻(1) = [1] 

 1. Haar matrix of order two  

The first two Haar function vectors with 𝑥 =
1

4
 , 𝑙 = 1,3  can be expressed 

the following: 

ℎ(2) (
1

4
) = [ℎ0 (

1

4
) , ℎ1 (

1

4
)]
𝑇

= [1 ,1 ]𝑇 

ℎ(2) (
3

4
) = [ℎ0 (

3

4
) , ℎ1 (

3

4
)]
𝑇

= [1 ,−1 ]𝑇 

which can be written in matrix from as 

𝐻(2) = [ℎ(2) (
1

4
) , ℎ(2) (

3

4
)]
𝑇

= 








11

11
 

2. Haar matrix of order four  

The first four Haar function vectors with 𝑥 =
𝟏

𝟖
 , 𝑙 = 1,3,5,7  can be 

expressed as follows: 

ℎ(4)(
1

8
) = [ℎ0 (

1

8
) , ℎ1 (

1

8
) , ℎ2 (

1

8
) , ℎ3 (

1

8
)]𝑇 = [1 ,1 ,1 ,0]𝑇 

ℎ(4) (
3

8
) = [ℎ0 (

3

8
) , ℎ1 (

3

8
) , ℎ2 (

3

8
) , ℎ3 (

3

8
)]
𝑇

= [1 ,1 , −1 ,0]𝑇 

ℎ(4) (
5

8
) = [ℎ0 (

5

8
) , ℎ1 (

5

8
) , ℎ2 (

5

8
) , ℎ3 (

5

8
)]𝑇 = [1 ,−1 ,0 ,1]𝑇 
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ℎ(4) (
7

8
) = [ℎ0 (

7

8
) , ℎ1 (

7

8
) , ℎ2 (

7

8
) , ℎ3 (

7

8
)]𝑇 = [1 ,−1 ,0 , −1]𝑇 

which can be written in matrix from as 

























1100

0011

1111

1111

𝐻(4) = [ℎ(4) (
1

8
) , ℎ(4) (

3

8
) , ℎ(4) (

5

8
) , ℎ(4) (

7

8
)]
𝑇
= 

3. The same method can be written as Haar matrix of order eight.   

 

𝐻(8) =















































11000000

00110000

00001100

00000011

11110000

00001111

11111111

11111111

 

Example 4.5: The operational matrix of integration shown as 

We start with the operational matrix of order one: 𝑃(1) = [
1

2
] 

1. The operational matrix of order two is obtained by the recursive formula 

and the operational matrix of rank one defined as 

𝑃(2) =
1

4 






 

01

12
   

2. The operational matrix of order four is obtained by the recursive formula 

and the operational matrix of rank two defined as 
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𝑃(4) =
1

16

























0011

0011

2204

2248

 

3. The operational matrix of order eight is obtained by the recursive 

formula and the operational matrix of rank four defined as 

𝑃(8) =
1

64















































00002011

00002011

00000211

00000211

00440044

00440044

444488016

4444881632
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Chapter Five 

Wavelet method for differential equations 

Haar wavelets functions appear very attractive in many applications as in 

solving differential equations, image processing, data compression and 

computer graphics. In this thesis, we use Haar wavelet method for solving 

differential equations. In this chapter, we consider second-order linear 

ordinary differential equations and linear partial differential equations. 

5.1 The method of solution for differential equations 

The Haar wavelet is the simplest orthonormal wavelet with compact 

support. It should be mentioned that the Haar wavelet has a fundamental 

imperfection, it is not continuous. At points of discontinuity the derivatives 

do not exist, therefore it is not possible to apply the Haar wavelet directly 

for solving differential equations. 

There are two ways to avoid the discontinuity problem. First, The 

piecewise constant Haar functions can be regularized with interpolation 

splines. This technique has been applied by Cattani. This greatly 

complicates the solutions process, losing the main advantage of Haar 

wavelets, namely its simplicity [23]. The second possibility, the method we 

adopt, is the use of Chen and Hsiao method. They recommend expanding 

the highest derivative appearing in the differential equation in terms of its 

Haar series instead of expanding the solution. Then the expansion is 

integrated a number of times equals the order of the highest derivative to 

obtain the expansion of the solution and all of its derivatives through 
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integration. In the power series method, we start with the power series 

expansion of the solution, and then we obtain the expansion of the 

derivatives through differentiation. Here we start with the wavelet 

expansion of the highest derivative and we obtain the wavelet expansion of 

lower order derivatives and the solution itself through integration.     

In this thesis we will adopt the method of Chen and Hsiao method (CHM). 

Chen and Hsiao demonstrated the possibilities of their method by solving 

linear system of Ordinary Differential Equations (ODEs) and Partial 

Differential Equations (PDEs) [23, 24]. 

The main idea of Chen and Hsiao method (CHM) technique is to convert a 

differential equation into a system of algebraic equations; which involves a 

finite number of variables, the solution procedure is either reduced or 

simplified accordingly[17,18 ]. 

The boundary conditions are incorporated by using integration constants. 

This approach has been realized for the Haar wavelet by Chen and Hsiao 

method [18, 20]. 

The procedure is given in the following five steps. 

Step (1): In the differential equation. Expand the highest derivative in its 

Haar series. 

Step (2): Integrate the expansion in step (1) repeatedly and using the given 

conditions until getting the expansion of the solution 𝑢(𝑥) this way, we 

have the expansion of the solution and all of its derivatives that appear in 

the equation.  
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Step (3): Substitute the expansion of the solution and its derivatives 

obtained in step (2) into the equation and evaluate at the collocation points 

𝑥𝑙 =
2𝑙−1

4𝑚
 𝑜𝑟 𝑥𝑙 =

𝑙−0.5

2𝑚
  , 𝑙 = 1,2,… ,2𝑚   for a given resolution   𝑀 ; the 

result is the system of algebraic equations.   

Step (4): Solve the system of algebraic equations obtained in step (3), For 

the wavelet coefficients 𝑎𝑖. 

Step (5): Replace the coefficients 𝑎𝑖 in the expansion of the solution to get 

the solution with resolution 𝑀.  

5.2 Haar wavelet transformation for linear ordinary differential 

equations  

In this section, we solve second order linear ordinary differential equation 

using Haar wavelet method. 

The general form for a second order linear ODE is 

𝑢′′ + 𝜇1(𝑥)𝑢
′(𝑥) + 𝜇2(𝑥)𝑢(𝑥) = 𝑓(𝑥)                                                 (5.1) 

where  𝑥 ∈ [𝑎, 𝑏] 

We intend to do 𝐽 levels of resolutions, hence we let 2𝑀 = 2𝐽+1.  The 

interval [𝑎, 𝑏] will be divided into 2𝑀 subintervals hence ∆𝑥 =
𝑏−𝑎

2𝑀
 and the 

matrices are of dimensions  2𝑀 × 2𝑀 . 

5.2.1 Initial value problems  

To explain the approximation of solutions to a second-order linear  IVP  

using Haar wavelet series. Consider the general second-order linear IVP  

𝑢′′(𝑥) + 𝜇1(𝑥)𝑢
′(𝑥) + 𝜇2(𝑥)𝑢(𝑥) = 𝑓(𝑥)                                          (5.2) 
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with initial conditions   𝑢(0) =  𝛼  and  𝑢′(0) =  𝜎. 

where the coefficients  𝜇1(𝑥)  and  𝜇2(𝑥)  are assumed to be expandable in 

Haar series. 

To begin the approximation, we follow Ülo Lepik [15, 21, 22, 24].  

Step (1): We assume that 

 𝑢′′(𝑥) = ∑ 𝑎𝑖ℎ𝑖(𝑥) ,
2𝑀
𝑖=1   for a given resolution level   𝑀              (5.3)   

Step (2): Now integrate (5.3) and (5.4) from 0 to 𝑥, to get 

𝑢′(𝑥) = ∑ 𝑎𝑖𝑃𝑖,1(𝑥) + 𝑢
′(0)2𝑀

𝑖=1  = ∑ 𝑎𝑖𝑃𝑖,1(𝑥) + 𝜎
2𝑀
𝑖=1                   (5.4)  

𝑢(𝑥) = ∑ 𝑎𝑖
2𝑀
𝑖=1 𝑃𝑖,2(𝑥) + 𝑥𝜎 + 𝑢(0)  

         =   ∑ 𝑎𝑖
2𝑀
𝑖=1 𝑃𝑖,2(𝑥) + 𝑥𝜎 + 𝛼                                                        (5.5)  

Step (3): Substitute (5.3)-(5.5) into (5.2), simplify and evaluate at the 

collocation points  𝑥𝑙 =
2𝑙−1

4𝑚
, 𝑙 = 1,2,… ,2𝑚. 

∑𝑎𝑖[ℎ𝑖(𝑥𝑙) + 𝜇1(𝑥𝑙)𝑃𝑖,1

2𝑀

𝑖=1

(𝑥𝑙) + 𝜇2(𝑥𝑙)𝑃𝑖,2(𝑥𝑙) 

= 𝑓(𝑥𝑙) − 𝜇1(𝑥𝑙)𝜎 − 𝜇2(𝑥𝑙)[𝑥𝑙 𝜎 − 𝛼]                       (5.6) 

Step (4): Solve the system in step (3) for the wavelet coefficients 𝑎𝑖.  

Step (5): Obtain the numerical solution for 𝑢(𝑥) by using the coefficients 

𝑎𝑖 in the wavelet series expansion of the solution. 

The procedure is generalized to higher-order IVPs in similar way 

Example 5.1: Consider the second-order homogeneous IVP:  
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𝑢′′(𝑥) +
1

4
𝑢(𝑥) = 0 ,    0 < 𝑥 < 1      

𝑢(0) = 1, 𝑢′(0) = 0. 

with the exact solution  

𝑢(𝑥) = cos (
𝑥

2
) 

Using three levels of Haar wavelet (𝐽 = 3) 

Step (1): Expand the highest derivative  𝑢′′(𝑥), 

𝑢′′(𝑥) =∑𝑎𝑖

2𝑀

𝑖=1

ℎ𝑖(𝑥) 

Step (2): Integrate both sides from  0 to 𝑥. 

∫𝑢′′(𝜏)

𝑥

0

𝑑𝜏 = ∫∑𝑎𝑖ℎ𝑖(𝜏)𝑑𝜏

2𝑀

𝑖=1

𝑥

0

 

𝑢′(𝑥) − 𝑢′(0) =∑𝑎𝑖∫ℎ𝑖(𝜏)𝑑𝜏

𝑥

0

 

2𝑀

𝑖=1

 

𝑢′(𝑥) =∑𝑎𝑖𝑃𝑖,1(𝑥)

2𝑀

𝑖=1

 

Again, integrate both sides from 0  to 𝑥. 

∫𝑢′(𝜏)𝑑𝜏 = ∫∑𝑎𝑖𝑃𝑖,1(𝜏)𝑑𝜏

2𝑀

𝑖=1

𝑥

0

𝑥

0

 

𝑢(𝑥) − 𝑢(0) =∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

 

𝑢(𝑥) =∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

+ 1 
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Step (3): Substitute 𝑢(𝑥) and its derivatives in the equation and evaluate at 

the collocation points 𝑥𝑙 . 

𝑢′′(𝑥) +
1

4
𝑢(𝑥) = 0  

∑𝑎𝑖

2𝑀

𝑖=1

ℎ𝑖(𝑥) +
1

4
∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

=
−1

4
 

∑𝑎𝑖

2𝑀

𝑖=1

[ℎ𝑖(𝑥𝑙) +
1

4
𝑃𝑖,2(𝑥𝑙)] =

−1

4
 , 𝑙 = 1 ,2 , … ,16.  

Step (4): Solving the system of linear equation by direct method. We obtain 

the wavelet coefficients 𝑎𝑖 .  

Step (5): Substitute the coefficients in 𝑢(𝑥) to get the solution.  

Table 5.1 shows the exact and the approximate solutions at different nodes. 

Table 5.1: The numerical solution of example 5.1 

Error Haar solution Exact Node(x/32) 

6.000 × 10−8 0.99987799 0.99987793 1 

3.400 × 10−7 0.99890190 0.99890157 3 

4.100 × 10−7 0.99695021 0.99694979 5 

1.250 × 10−6 0.99402576 0.99402452 7 

1.400 × 10−6 0.99012999 0.99012859 9 

2.780 × 10−6 0.98526860 0.98526582 11 

3.010 × 10−6 0.97944397 0.97944095 13 

4.940 × 10−6 0.97266461 0.97265968 15 

5.240 × 10−6 0.96493385 0.96492862 17 

7.690 × 10−6 0.95626301 0.95625532 19 

8.050 × 10−6 0.94665631 0.94664826 21 

1.101 × 10−5 0.93612783 0.93611681 23 

1.143 × 10−5 0.92468269 0.92467126 25 

1.489 × 10−5 0.91233768 0.91232278 27 

1.536 × 10−5 0.89909880 0.89908344 29 

1.929 × 10−5 0.88498545 0.88496616 31 



  58   

Maximum absolute error of Haar wavelet for  IVP is 1.929 × 10−5 

 

Figure 5.1: The exact and numerical solutions of example 5.1 

  

 

Figure 5.2: Error in the wavelet solution of example 5.1 
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Example 5.2: Consider the second-order inhomogeneous IVP: 

𝑢′′(𝑥) + 𝑢(𝑥) = 𝑠𝑖𝑛(𝑥) + 𝑥 𝑐𝑜𝑠(𝑥),  0 < 𝑥 < 1 

 𝑢(0) = 1 ,   𝑢′(0) = 1. 

with the exact solution  

𝑢(𝑥) = 𝑐𝑜𝑠(𝑥) +
5

4
𝑠𝑖𝑛(𝑥) +

1

4
(𝑥2 𝑠𝑖𝑛(𝑥) − 𝑥 𝑐𝑜𝑠(𝑥)) 

Using three levels of Haar wavelet (𝐽 = 3) 

Step (1): Expand the highest derivative 𝑢′′(𝑥), 

 𝑢′′(𝑥) = ∑ 𝑎𝑖
2𝑀
𝑖=1 ℎ𝑖(𝑥) 

Step (2): Integrate both sides from 0 to 𝑥. 

∫ 𝑢′′(𝜏)
𝑥

0
𝑑𝜏 = ∫ ∑ 𝑎𝑖ℎ𝑖(𝜏)𝑑𝜏

2𝑀
𝑖=1

𝑥

0
  

⇒ 𝑢′(𝑥) − 𝑢′(0) =∑𝑎𝑖∫ℎ𝑖(𝜏)𝑑𝜏

𝑥

0

 

2𝑀

𝑖=1

 

𝑢′(𝑥) =∑𝑎𝑖𝑃𝑖,1(𝑥) + 1

2𝑀

𝑖=1

 

Again, integrate both sides from 0  to 𝑥. 

∫𝑢′(𝜏)𝑑𝜏 = ∫∑𝑎𝑖𝑃𝑖,1(𝜏)𝑑𝜏 + ∫𝑑𝜏

𝑥

0

2𝑀

𝑖=1

𝑥

0

𝑥

0

 

𝑢(𝑥) − 𝑢(0) =∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

+ 𝑥 
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𝑢(𝑥) =∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

+ 𝑥 + 1 

Step (3): Substitute 𝑢(𝑥) and its derivatives in the equation and evaluate at 

the collocation points 𝑥𝑙 . 

𝑢′′(𝑥) + 𝑢(𝑥) = 𝑠𝑖𝑛(𝑥) + 𝑥 𝑐𝑜𝑠(𝑥) 

∑𝑎𝑖

2𝑀

𝑖=1

[ℎ𝑖(𝑥𝑙) + 𝑃𝑖,2(𝑥𝑙)] = 𝑠𝑖𝑛(𝑥𝑙) + 𝑥𝑙 𝑐𝑜𝑠(𝑥𝑙) − 𝑥𝑙 − 1, 𝑙 = 1 ,2 , … ,16. 

Step (4): Solving the system of linear equations in step (3), we obtain the 

wavelet coefficients 𝑎𝑖 .  

Step (5): Substitute the coefficient in 𝑢(𝑥) to get the solution.  

Table 5.2 shows the exact and the approximate solutions at different nodes. 

Table 5.2: Haar wavelet and 𝑹𝑲𝟒 method, for example 5.2 

Runge-Kutta 4 Haar solution Exact Node(x/32) 

1.03076684 1.03079305 1.03076684 1 

1.08949572 1.08963744 1.08949571 3 

1.14469969 1.14489222 1.14469969 5 

1.19664325 1.19695329 1.19664324 7 

1.24559411 1.24595329 1.24559411 9 

1.29181853 1.29229015 1.29181853 11 

1.33557659 1.33609320 1.33557659 13 

1.37711768 1.37773557 1.37711767 15 

1.41667606 1.41733311 1.41667605 17 

1.45446675 1.45520769 1.45446674 19 

1.49068150 1.49145409 1.49068148 21 

1.52548514 1.52631904 1.52548513 23 

1.55901223 1.55986889 1.55901222 25 

1.59136391 1.59225504 1.59136390 27 

1.62260532 1.62350935 1.62260531 29 

1.65276321 1.65367175 1.65276320 31 



  61   

 

Figure 5.3: The exact and numerical solutions (Haar solution and RK4). 

Table 5.3: Error using Haar wavelet method and 𝑹𝑲𝟒 for example 5.2 

 

 

 

 

 

 

 

 

 

Error of RK4 Error of Haar Node(x/32) 

1 × 10−8 2.2610 × 10−5 1 

1 × 10−8 1.4173 × 10−4 3 

1 × 10−8 1.9253 × 10−4 5 

1 × 10−8 3.1004 × 10−4 7 

1 × 10−7 3.5896 × 10−4 9 

1 × 10−8 4.7163 × 10−4 11 

1 × 10−8 5.1662 × 10−4 13 

1 × 10−8 6.1790 × 10−4 15 

1 × 10−8 6.5705 × 10−4 17 

1 × 10−8 7.4095 × 10−4 19 

2 × 10−8 7.7260 × 10−4 21 

1 × 10−7 8.3390 × 10−4 23 

1 × 10−8 8.5663 × 10−4 25 

1 × 10−8 8.9113 × 10−4 27 

1 × 10−8 9.0404 × 10−4 29 

1 × 10−8 9.0855 × 10−4 31 
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Figure 5.4: Error using Haar wavelet method and 𝑅𝐾4 for example 5.2 

Maximum absolute errors at different resolutions we given the following 

table.  

Table 5.4: Convergence of Haar wavelet for initial value problem.  

𝐿𝑚𝑟𝑒 Ratio of  
𝐿∞ 

𝐿∞ 2𝑀 Level of 

resolution 

5.6024 × 10−4  9.0855 ×  10−4 16 𝐽 = 3 

1.3881 × 10−4 0.2525044810 2.2735 ×  10−4 32 𝐽 = 4 

3.4433 × 10−5 0.2503188916 5.6910 ×  10−5 64 𝐽 = 5 

8.5655 × 10−6 0.2498682130 1.4220 ×  10−5 128 𝐽 = 6 

2.1491 × 10−6 0.2503516174 3.5600 ×  10−6 256 𝐽 = 7 

5.3433× 10−7 0.2500280899 8.9010 ×  10−7 512 𝐽 = 8 

1.3201× 10−7 0.2472868217 2.2011 ×  10−7 1024 𝐽 = 9 

3.5901× 10−8 0.2726454954 6.0012 ×  10−8 2048 𝐽 = 10 
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Figure 5.5: Comparison between maximum relative error and maximum absolute error 

in example 5.2 

Example 5.3: Consider the 4th –order of IVP:  

𝑢(4)(𝑥) + 𝑥𝑢(𝑥) = 16 𝑠𝑖𝑛(2𝑥) + 𝑥𝑠𝑖𝑛(2𝑥),     0 < 𝑥 < 1. 

 𝑢(0) = 0, 𝑢′(0) = 2,  𝑢′′(0) = 0, 𝑢′′′(0) = −8 . 

with the exact solution  

𝑢(𝑥) = 𝑠𝑖𝑛(2𝑥). 

Using three levels of Haar wavelet ( 𝐽 = 3) 

Step (1): Expand the highest derivative 𝑢(4)(𝑥), 

𝑢(4)(𝑥) =∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1
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Step (2): Integrate both sides from 0 to 𝑥 

∫𝑢(4)(𝜏)𝑑𝜏

𝑥

0

= ∫∑𝑎𝑖ℎ𝑖(𝜏)𝑑𝜏

2𝑀

𝑖=1

𝑥

0

 

𝑢′′′(𝑥) − 𝑢′′′(0) =∑𝑎𝑖𝑃𝑖,1(𝑥) ⟹ 𝑢′′′(𝑥) =∑𝑎𝑖𝑃𝑖,1(𝑥)

2𝑀

𝑖=1

+ 𝑢′′′(0)

2𝑀

𝑖=1

 

𝑢′′′(𝑥) =∑𝑎𝑖𝑃𝑖,1(𝑥) − 8

2𝑀

𝑖=1

 

Again, integrate both sides from 0 to 𝑥 

∫𝑢′′′(𝜏)𝑑𝜏

𝑥

0

= ∫∑𝑎𝑖𝑃𝑖,1(𝜏)𝑑𝜏 − ∫8

𝑥

0

𝑑𝜏

2𝑀

𝑖=1

𝑥

0

 

⟹ 𝑢′′(𝑥) − 𝑢′′(0) =∑𝑎𝑖𝑃𝑖,2(𝑥) − 8𝑥 

2𝑀

𝑖=1

 

𝑢′′(𝑥) =∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

− 8𝑥 

Again, integrate both sides from 0 to 𝑥 

∫𝑢′′(𝜏)𝑑𝜏

𝑥

0

= ∫∑𝑎𝑖𝑃𝑖,2(𝜏)𝑑𝜏 − ∫8𝜏

𝑥

0

𝑑𝜏

2𝑀

𝑖=1

𝑥

0

 

⟹ 𝑢′(𝑥) − 𝑢′(0) =∑𝑎𝑖𝑃𝑖,3(𝑥) − 4𝑥
2 

2𝑀

𝑖=1

 

𝑢′(𝑥) =∑𝑎𝑖𝑃𝑖,3(𝑥)

2𝑀

𝑖=1

− 4𝑥2 + 2 

Again, integrate both sides from 0 to 𝑥. 
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∫𝑢′(𝜏)𝑑𝜏

𝑥

0

= ∫∑𝑎𝑖𝑃𝑖,3(𝜏)𝑑𝜏 − ∫4𝜏
2

𝑥

0

𝑑𝜏

2𝑀

𝑖=1

𝑥

0

+∫2

𝑥

0

𝑑𝜏 

𝑢(𝑥) − 𝑢(0) =∑𝑎𝑖𝑃𝑖,4(𝑥) −
4

3
𝑥3 + 2𝑥 

2𝑀

𝑖=1

 

𝑢(𝑥) =∑𝑎𝑖𝑃𝑖,4(𝑥) −
4

3
𝑥3 + 2𝑥 

2𝑀

𝑖=1

 

Step (3): Substitute 𝑢(𝑥) and its derivatives in the equation and evaluate at 

the collocation points 𝑥𝑙 . 

𝑢(4)(𝑥) + 𝑥𝑢(𝑥) = 16 𝑠𝑖𝑛(2𝑥) + 𝑥𝑠𝑖𝑛(2𝑥) 

∑𝑎𝑖

2𝑀

𝑖=1

ℎ𝑖(𝑥)𝑥 (∑𝑎𝑖𝑃𝑖,4(𝑥) −
4

3
𝑥3 + 2𝑥 

2𝑀

𝑖=1

) = 16𝑠𝑖𝑛(2𝑥) + 𝑥𝑠𝑖𝑛(2𝑥) 

∑𝑎𝑖

2𝑀

𝑖=1

[ℎ𝑖(𝑥𝑙) + 𝑥𝑙𝑃𝑖,4(𝑥𝑙)] = 16𝑠𝑖𝑛(2 𝑥𝑙) + 𝑥𝑙𝑠𝑖𝑛(2𝑥𝑙) +
4

3
𝑥𝑙
4 − 2𝑥𝑙

2, 

𝑙 = 1 ,2 , … ,16. 

Step (4): Solving the system of linear equation, we obtain the wavelet 

coefficients 𝑎𝑖 .  

Step (5): Substitute the coefficients in 𝑢(𝑥) to get the solution.  

Table 5.5 shows the exact and the approximate solutions at different nodes.  
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Table 5.5: The numerical solution of example 5.3 

RK4 for system Haar solution Exact Node(x/32) 

0.06245931 0.06245939 0.06245932 1 

0.18640328 0.18640761 0.18640330 3 

0.30743864 0.30746207 0.30743851 5 

0.42367741 0.42374063 0.42367626 7 

0.53330804 0.53343726 0.53330267 9 

0.63462502 0.63484409 0.63460708 11 

0.72605734 0.72638354 0.72600866 13 

0.80619522 0.80662775 0.80608111 15 

0.87381471 0.87432576 0.87357494 17 

0.92789968 0.92841901 0.92743692 19 

0.96766088 0.96806159 0.96682656 21 

0.99255173 0.99263072 0.99112919 23 

1.00228037 1.00173857 0.99996559 25 

0.99681803 0.99523685 0.99319785 27 

0.97640324 0.97321914 0.97093160 29 

0.94154190 0.93601905 0.93351428 31 

 

 

Figure 5.6: The exact and numerical solutions of example 5.3 
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Table 5.6: Error using Haar wavelet and RK4 for system for example 5.3 

 

 

 

 

 

 

 

 

 

Figure 5.7: Error using Haar wavelet and RK4 for system for example 5.3 

Maximum absolute error of Haar wavelet for  IVP is 0.00250477 

Maximum absolute error of  RK4 for  IVP is 0.00802762 

Error of RK4 for system Error of Haar Node(x/32) 

0.00000001 0.00000007 1 

0.00000002 0.00000431 3 

0.00000013 0.00002356 5 

0.00000115 0.00006437 7 

0.00000537 0.00013459 9 

0.00001794 0.00023701 11 

0.00004868 0.00037488 13 

0.00011411 0.00054664 15 

0.00023977 0.00075082 17 

0.00046276 0.00098210 19 

0.00083432 0.00123504 21 

0.00142254 0.00150153 23 

0.00231478 0.00177298 25 

0.00362018 0.00203900 27 

0.00547162 0.00228755 29 

0.00802762 0.00250477 31 
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5.2.2 The general solution for boundary value problems  

The objective of this section is to construct a simple collocation method 

with the Haar basis functions for the numerical solution of linear second-

order BVPs arising in the mathematical modeling of different engineering 

applications. To test applicability of the Haar wavelets, we focus on the 

following type of BVPs defined in the interval [0, 1]: 

The general form of a 2nd – order linear BVP is 

𝑢′′(𝑥) + 𝜇1(𝑥)𝑢
′(𝑥) + 𝜇2(𝑥)𝑢(𝑥) = 𝑓(𝑥)          0 < 𝑥 < 1               (5.7) 

subject to one of the following four sets of different boundary conditions. 

Case 1: 𝑢′(0) = 𝛼1,  𝑢
′(1) = 𝛽1; 

Case 2: 𝑢(0) = 𝛼2,      𝑢(1) = 𝛽2; 

Case 3: 𝑢′(0) = 𝛼3,   𝑢(1) = 𝛽3; 

Case 4: 𝑢(0) = 𝛼4,   𝑢
′(1) = 𝛽4; 

where 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛽1, 𝛽2, 𝛽3, 𝛽4 are real constants. 

Following Ülo Lepik [15, 21, 24,27] 

We introduce the following notation: 

𝐶𝑖,1 = ∫ 𝑃𝑖,1(𝜏)𝑑𝜏
1

0

 

Case 1: 𝑢′′(𝑥) = 𝜙(𝑥, 𝑢(𝑥), 𝑢′(𝑥))   𝑤𝑖𝑡ℎ  𝑢′(0) = 𝛼1,  𝑢
′(1) = 𝛽1; 

Step (1): We assume that  
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 𝑢′′(𝑥) =∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

                                                                                      (5.8) 

Step (2): Now integrate (5.8) from 0 to 𝑥.  

𝑢′(𝑥) =∑𝑎𝑖𝑃𝑖,1(𝑥) + 𝑢
′(0)

2𝑀

𝑖=1

 =∑𝑎𝑖𝑃𝑖,1(𝑥) + 𝛼1                              (5.9)

2𝑀

𝑖=1

 

 Now integrate (5.8) from 𝑥 to 1.  

∫  𝑢′′(𝜏)𝑑𝜏 = ∫ ∑𝑎𝑖ℎ𝑖(𝜏)

2𝑀

𝑖=1

𝑑𝜏
1

𝑥

1

𝑥

 

∫  𝑢′′(𝜏)𝑑𝜏 =
1

𝑥

∑[∫ 𝑎𝑖ℎ𝑖(𝜏)
1

0

𝑑𝜏 − ∫ 𝑎𝑖ℎ𝑖(𝜏)𝑑𝜏]
𝑥

0

2𝑀

𝑖=1

 

𝛽1 − 𝑢
′(𝑥) = 𝑎1 −∑𝑎𝑖𝑃𝑖,1(𝑥)

2𝑀

𝑖=1

                                                          (5.10) 

From (5.9) 𝑎𝑛𝑑 (5.10), we have 𝑎1 = 𝛽1 − 𝛼1 

Hence the corresponding approximations are  

𝑢′′(𝑥) = (𝛽1 − 𝛼1)ℎ1(𝑥) + ∑ 𝑎𝑖ℎ𝑖(𝑥)                                         (5.11)
2𝑀
𝑖=2   

Integrate (5.11) from 0 to 𝑥.  

𝑢′(𝑥) = 𝛼1 + (𝛽1 − 𝛼1)𝑃1,1(𝑥) + ∑ 𝑎𝑖𝑃𝑖,1(𝑥)                            (5.12)
2𝑀
𝑖=2      

Again, integrate (5.12) from 0 to 𝑥. 

𝑢(𝑥) = 𝑢(0) + 𝛼1𝑥 + (𝛽1 − 𝛼1)𝑃1,2(𝑥) +∑𝑎𝑖𝑃𝑖,2(𝑥)               (5.13)

2𝑀

𝑖=2
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Step (3): Substituting the value of 𝑢(𝑥), 𝑢′(𝑥)  𝑎𝑛𝑑 𝑢′′(𝑥)  in the given 

differential equation, we obtain system of equations, simplify and evaluate 

at the collocation points 𝑥𝑙 =
2𝑙−1

4𝑚
, 𝑙 = 1,2,… ,2𝑚 

(𝛽1 − 𝛼1)ℎ1(𝑥𝑙) + ∑ 𝑎𝑖ℎ𝑖(𝑥𝑙) = 𝜙(𝑥𝑙 ,
2𝑀
𝑖=2 𝛼1 + (𝛽1 − 𝛼1)𝑃1,1(𝑥𝑙) +

∑ 𝑎𝑖𝑃𝑖,1(𝑥𝑙),
2𝑀
𝑖=2  𝑢(0) + 𝛼1𝑥𝑙 + (𝛽1 − 𝛼1)𝑃1,2(𝑥𝑙) + ∑ 𝑎𝑖𝑃𝑖,2(𝑥𝑙)  )

2𝑀
𝑖=2  , 𝑙 =

1,2,… ,2𝑚 

Step (4): Solve the above system of equations for the unknowns 𝑢(0) and 

𝑎𝑖 ,  for 𝑖 ≠ 1,  

Step (5): Obtain the numerical solution for 𝑢(𝑥) in (5.13)  

Case 2: 𝑢′′(𝑥) = 𝜙(𝑥, 𝑢(𝑥), 𝑢′(𝑥))   𝑤𝑖𝑡ℎ  𝑢(0) = 𝛼2, 𝑢(1) = 𝛽2; 

Step (1): We assume that  

 𝑢′′(𝑥) =∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

                                                                                 (5.14) 

Step (2): Now integrate (5.14) from 0 to 𝑥 

𝑢′(𝑥) = 𝑢′(0) +∑𝑎𝑖𝑃𝑖,1(𝑥)

2𝑀

𝑖=1

                                                                  (5.15) 

Again, integrate (5.15) from 0 to 𝑥 

𝑢(𝑥) = 𝑢(0) + 𝑥𝑢′(0) +∑𝑎𝑖𝑃𝑖,2(𝑥)                                                    (5.16) 

2𝑀

𝑖=1

 

Now substituting 𝑥 = 1, in equation (5.16) to get  
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𝑢(1) = 𝑢(0) + 𝑢′(0) +∑𝑎𝑖𝑃𝑖,2(1)                                                      

2𝑀

𝑖=1

 

𝛽2 = 𝛼2 + 𝑢
′(0) +∑𝑎𝑖𝑃𝑖,2(1)                                                      

2𝑀

𝑖=1

 

𝑢′(0) = 𝛽2 − 𝛼2 −∑𝑎𝑖𝑃𝑖,2(1)                                                      

2𝑀

𝑖=1

 

𝑢(𝑥) = 𝛼2 + 𝑥(𝛽2 − 𝛼2 −∑𝑎𝑖𝑃𝑖,2(1)) +∑𝑎𝑖𝑃𝑖,2(𝑥)    

2𝑀

𝑖=1

      

2𝑀

𝑖=1

 

𝑢(𝑥) = 𝛼2 + 𝑥𝛽2 − 𝑥𝛼2 − 𝑥∑𝑎𝑖𝑃𝑖,2(1) +∑𝑎𝑖𝑃𝑖,2(𝑥)                  (5.17)

2𝑀

𝑖=1

2𝑀

𝑖=1

 

𝑢′(𝑥) = 𝛽2 − 𝛼2 −∑𝑎𝑖𝑃𝑖,2(1) +∑𝑎𝑖𝑃𝑖,2(𝑥)                                    (5.18)

2𝑀

𝑖=1

2𝑀

𝑖=1

 

Step (3): Substitute these value of 𝑢(𝑥), 𝑢′(𝑥)  𝑎𝑛𝑑 𝑢′′(𝑥)  in the given 

differential equation we obtain system of equations, simplify and evaluate 

at the collocation points 𝑥𝑙 =
2𝑙−1

4𝑚
, 𝑙 = 1,2,… ,2𝑚 

∑ 𝑎𝑖ℎ𝑖(𝑥𝑙)
2𝑀
𝑖=1 = 𝜙(𝑥𝑙 ,𝛼2 + 𝑥𝑙𝛽2 − 𝑥𝑙 ∑ 𝑎𝑖𝑃𝑖,2(1) +

2𝑀
𝑖=1

∑ 𝑎𝑖𝑃𝑖,2(𝑥𝑙),
2𝑀
𝑖=1 𝛽2 − 𝛼2 − ∑ 𝑎𝑖𝑃𝑖,2(1) + ∑ 𝑎𝑖𝑃𝑖,2(𝑥𝑙)  )

2𝑀
𝑖=1

2𝑀
𝑖=1 , 𝑙 =

1,2,… ,16                            (5.19) 

Step (4): Solve the above system of equations for unknowns 𝑎𝑖,  

Step (5): Obtain the numerical solution for 𝑢(𝑥) in (5.17).  
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Case 3: 𝑢′′(𝑥) = 𝜙(𝑥, 𝑢(𝑥), 𝑢′(𝑥))   𝑤𝑖𝑡ℎ  𝑢′(0) = 𝛼3, 𝑢(1) = 𝛽3; 

Step (1): We assume that  

 𝑢′′(𝑥) =∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

                                                                             (5.20) 

Step (2): Now integrate (5.20) from 0 to 𝑥. 

𝑢′(𝑥) = 𝑢′(0) +∑𝑎𝑖𝑃𝑖,1(𝑥)

2𝑀

𝑖=1

                                       

𝑢′(𝑥) = 𝛼3 +∑𝑎𝑖𝑃𝑖,1(𝑥)

2𝑀

𝑖=1

                                                                     (5.21) 

Now integrate (5.21) from 𝑥 to 1. 

 𝑢(1) − 𝑢(𝑥) = 𝛼3 ∫ 𝜏𝑑𝜏
1

𝑥
− ∑ [𝑎𝑖 ∫ 𝑃𝑖,1(𝜏)𝑑𝜏 + 𝑎𝑖 ∫ 𝑃𝑖,1(𝜏)𝑑𝜏]

𝑥

0

1

0
2𝑀
𝑖=1  

 𝑢(1) − 𝑢(𝑥) = 𝛼3(1 − 𝑥) − ∑ 𝑎𝑖𝐶𝑖,1 + ∑ 𝑎𝑖𝑃𝑖,2(𝑥)
2𝑀
𝑖=1

2𝑀
𝑖=1  

𝑢(𝑥) = 𝛽3 − 𝛼3(1 − 𝑥) −∑𝑎𝑖𝐶𝑖,1 +∑𝑎𝑖𝑃𝑖,2(𝑥)                         (5.22)

2𝑀

𝑖=1

2𝑀

𝑖=1

 

Step (3): Substituting the values of 𝑢(𝑥), 𝑢′(𝑥)  𝑎𝑛𝑑 𝑢′′(𝑥) in the given 

differential equation, we obtain the system of equations, simplify and 

evaluate at the collocation points 𝑥𝑙 =
2𝑙−1

4𝑚
, 𝑙 = 1,2,… ,2𝑚 

∑𝑎𝑖ℎ𝑖(𝑥𝑙)

2𝑀

𝑖=1

= 𝜙(𝑥𝑙 , 𝛽3 − 𝛼3(1 − 𝑥𝑙)

−∑𝑎𝑖𝐶𝑖,1 +∑𝑎𝑖𝑃𝑖,2(𝑥𝑙) , 𝛼3 +∑𝑎𝑖𝑃𝑖,1(𝑥𝑙)

2𝑀

𝑖=1

 

2𝑀

𝑖=1

2𝑀

𝑖=1

) 

Step (4): Solve the above system of equations for the unknowns 𝑎𝑖 ,  
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Step (5): Obtain the numerical solution for 𝑢(𝑥) in (5.22)  

Case 4: 𝑢′′(𝑥) = 𝜙(𝑥, 𝑢(𝑥), 𝑢′(𝑥))   𝑤𝑖𝑡ℎ  𝑢(0) = 𝛼4, 𝑢
′(1) = 𝛽4; 

Step (1): We assume that  

 𝑢′′(𝑥) =∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

                                                                           (5.23) 

Step (2): Now integrate (5.23)  with respect to 𝜏 from 𝑥 to 1 

𝑢′(1) − 𝑢′(𝑥) =∑𝑎𝑖∫ ℎ𝑖(𝜏)𝑑𝜏
1

0

2𝑀

𝑖=1

−∑𝑎𝑖∫ ℎ𝑖(𝜏)
𝑥

0

2𝑀

𝑖=1

𝑑𝜏                                     

𝑢′(𝑥) = 𝑢′(1) − 𝑎1 +∑𝑎𝑖𝑃𝑖,1(𝑥)

2𝑀

𝑖=1

 

𝑢′(𝑥) = 𝛽4 − 𝑎1 +∑𝑎𝑖𝑃𝑖,1(𝑥)                                                             (5.24)

2𝑀

𝑖=1

 

 Integrate equation (5.24) with respect to 𝜏 from 0 to 𝑥. 

𝑢(𝑥) = 𝑢(0) + (𝛽4 − 𝑎1)𝑥 +∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

 

𝑢(𝑥) = 𝛼4 + (𝛽4 − 𝑎1)𝑥 +∑𝑎𝑖𝑃𝑖,2(𝑥)                                            (5.25)

2𝑀

𝑖=1

 

Step (3): Substituting these value of 𝑢(𝑥), 𝑢′(𝑥)  𝑎𝑛𝑑 𝑢′′(𝑥) in the given 

differential equation, we obtain system of equations, simplify and evaluate 

at the collocation points 𝑥𝑙 =
2𝑙−1

4𝑚
, 𝑙 = 1,2,… ,2𝑚 
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∑𝑎𝑖ℎ𝑖(𝑥𝑙)

2𝑀

𝑖=1

= 𝜙(𝑥𝑙 , 𝛼4 + (𝛽4 − 𝑎1)𝑥𝑙 +∑𝑎𝑖𝑃𝑖,2(𝑥𝑙) ,

2𝑀

𝑖=1

 𝛽4 − 𝑎1

+∑𝑎𝑖𝑃𝑖,1(𝑥𝑙) )   

2𝑀

𝑖=1

 

Step (4): Solve the above system of equations for the unknowns 𝑎𝑖  , using 

collocation  method. 

Step (5): Obtain the numerical solution for 𝑢(𝑥) in (5.25)  

Example 5.4: Consider the second-order  homogeneous the BVPs : 

𝑢′′(𝑥) − 5𝑢′(𝑥) = 0 ,     0 < 𝑥 < 1.       

𝑢(0) = 1, 𝑢(1) = 0  

 with the exact solution  

𝑢(𝑥) =
𝑒5 − 𝑒5𝑥

𝑒5 − 1
 

Using three levels of Haar wavelet ( 𝐽 = 3) 

Step(1): Expand 𝑢′′(𝑥) in wavelet series. 

𝑢′′(𝑥) =∑𝑎𝑖

2𝑀

𝑖=1

ℎ𝑖(𝑥) 

Step (2): Integrate both sides from  0 to 𝑥. 

∫𝑢′′(𝜏)

𝑥

0

𝑑𝜏 = ∫∑𝑎𝑖ℎ𝑖(𝜏)𝑑𝜏

2𝑀

𝑖=1

𝑥

0

 

𝑢′(𝑥) − 𝑢′(0) =∑𝑎𝑖∫ℎ𝑖(𝜏)𝑑𝜏

𝑥

0

 

2𝑀

𝑖=1
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𝑢′(𝑥) = 𝑢′(0) +∑𝑎𝑖𝑃𝑖,1(𝑥)

2𝑀

𝑖=1

 

Again, integrate both sides from 0  to 𝑥  

𝑢(𝑥) = 𝑢(0) + 𝑥𝑢′(0) +∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

 

Now substitute  𝑢(1)  to determine 𝑢′(0) 

𝑢(1) = 𝑢(0) + 𝑢′(0) +∑𝑎𝑖𝑃𝑖,2(1)

2𝑀

𝑖=1

 

𝑢′(0) = −1 −∑𝑎𝑖𝑃𝑖,2(1)

2𝑀

𝑖=1

 

𝑢(𝑥) = 𝑢(0) − 𝑥 − 𝑥∑𝑎𝑖𝑃𝑖,2(1)

2𝑀

𝑖=1

+∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

 

𝑢(𝑥) =  1 − 𝑥 − 𝑥∑𝑎𝑖𝑃𝑖,2(1)

2𝑀

𝑖=1

+∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

 

Step (3): Substitute 𝑢(𝑥) and its derivatives in the equation, and evaluate at 

the collocation points 𝑥𝑙 . 

𝑢′′(𝑥) − 5𝑢′(𝑥) = 0 

∑𝑎𝑖

2𝑀

𝑖=1

[ℎ𝑖(𝑥𝑙) + 5𝑃𝑖,2(1) − 5𝑃𝑖,1(𝑥𝑙)] = −5,    𝑙 = 1,2,… ,16 

Step (4): Evaluate at the collocation points 𝑥𝑙, solve the system of the  

linear equations for wavelet coefficients 𝑎𝑖.  

Step (5): Substitute the coefficient in 𝑢(𝑥) to get the solution.  
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Table 5.7 shows the exact and the approximate solutions at different nodes. 

Table 5.7: The numerical solution of example 5.4 

Error Haar Solution Exact Node(x/32) 

0.00000231 0.99885507 0.99885276 1 

0.00000780 0.99595121 0.99594341 3 

0.00001468 0.99198147 0.99196679 5 

0.00002322 0.98655462 0.98653140 7 

0.00003371 0.97913582 0.97910211 9 

0.00004644 0.96899391 0.96894747 11 

0.00006163 0.95512935 0.95506772 13 

0.00007938 0.93617573 0.93609635 15 

0.00009952 0.91026508 0.91016556 17 

0.00012141 0.87484378 0.87422238 19 

0.00014362 0.82642091 0.82627729 21 

0.00016346 0.76022417 0.76006071 23 

0.00017617 0.66972955 0.66955337 25 

0.00017388 0.54601839 0.54584451 27 

0.00014383 0.37689837 0.37675454 29 

0.00006598 0.14570195 0.14563596 31 

 

Figure 5.8: The exact and numerical solutions of example 5.4 
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Figure 5.9: Error in example 5.4 

Maximum absolute errors at different resolutions we given the following 

table.  

Table 5.8: Convergence of Haar wavelet for boundary value problem. 

Ratio of  

𝐿∞ 

𝐿∞ 2𝑀 Level of 

resolution 

 1.7617× 10−4 16 𝐽 = 3 

0.2459687100 4.3332 ×  10−5 32 𝐽 = 4 

0.2427109084 1.0517 ×  10−5 64 𝐽 = 5 

0.2545008535 6.4961 ×  10−6 128 𝐽 = 6 

0.2501550082 1.6532 ×  10−6 256 𝐽 = 7 

0.2500901309 4.1357 ×  10−7 512 𝐽 = 8 

0.2495810433 1.0343 ×  10−7 1024 𝐽 = 9 

0.2491245803 2.5814 ×  10−8 2048 𝐽 = 10 
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Figure 5.10: Comparison between maximum relative error and maximum absolute error 

in example 5.4 

Example 5.5: Consider the second–order inhomogeneous the BVP: 

𝑢′′(𝑥) + 𝑢(𝑥) = sin(𝑥) + 𝑥 cos(𝑥),       0 < 𝑥 < 1.      

𝑢(0) = 1 , 𝑢(1) = 1.667433 

with the exact solution  

𝑢(𝑥) = 𝑐𝑜𝑠(𝑥) +
5

4
𝑠𝑖𝑛(𝑥) +

1

4
(𝑥2 𝑠𝑖𝑛(𝑥) − 𝑥 𝑐𝑜𝑠(𝑥)) 

Using three levels of Haar wavelet ( 𝐽 = 3) 

Step (1): Expand 𝑢′′(𝑥) in wavelet series 

𝑢′′(𝑥) =∑𝑎𝑖

2𝑀

𝑖=1

ℎ𝑖(𝑥) 
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Step (2): Integrate both sides from  0 to 𝑥 

∫𝑢′′(𝜏)

𝑥

0

𝑑𝜏 = ∫∑𝑎𝑖ℎ𝑖(𝜏)𝑑𝜏

2𝑀

𝑖=1

𝑥

0

 

𝑢′(𝑥) − 𝑢′(0) =∑𝑎𝑖𝑃𝑖,1(𝑥)

2𝑀

𝑖=1

 

𝑢′(𝑥) = 𝑢′(0) +∑𝑎𝑖𝑃𝑖,1(𝑥)

2𝑀

𝑖=1

 

Again, integrate both sides from 0  to 𝑥 again 

𝑢(𝑥) − 𝑢(0) =∑𝑎𝑖𝑃𝑖,2(𝑥) +

2𝑀

𝑖=1

𝑥 𝑢′(0) 

𝑢(𝑥) = 𝑢(0) + 𝑥𝑢′(0) +∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

 

where  𝑢′(0) is unknown,  𝑢′(0) can be found  by considering   

𝑢(1) = 1.667433  

𝑢(1) =∑𝑎𝑖𝑃𝑖,2 + 𝑢
′(0) + 1

2𝑀

𝑖=1

 

𝑢′(0) = 0.667433 −∑𝑎𝑖𝑃𝑖,2(1)

2𝑀

𝑖=1

 

𝑢(𝑥) =∑𝑎𝑖𝑃𝑖,2(𝑥) − 𝑥 

2𝑀

𝑖=1

∑𝑎𝑖𝑃𝑖,2(1) + 0.667433

2𝑀

𝑖=1

𝑥 + 1   

Step (3): Substitute 𝑢(𝑥) and its derivatives in the equation 

𝑢′′(𝑥) + 𝑢(𝑥) = 𝑠𝑖𝑛(𝑥) + 𝑥 𝑐𝑜𝑠(𝑥)   
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∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

+∑𝑎𝑖𝑃𝑖,2(1) + 1 + 𝑥 

2𝑀

𝑖=1

  [−∑𝑎𝑖𝑃𝑖,1(1) + 0.667433

2𝑀

𝑖=1

] 

= 𝑠𝑖𝑛(𝑥) + 𝑥 𝑐𝑜𝑠(𝑥) 

∑𝑎𝑖

2𝑀

𝑖=1

[ℎ𝑖(𝑥𝑙) + 𝑃𝑖,2(𝑥𝑙) − 𝑥𝑙𝑃𝑖,2(1)]

= sin(𝑥𝑙) + 𝑥𝑙 cos(𝑥𝑙) − 0.667433𝑥𝑙 − 1,

𝑙 = 1 ,2 , … ,16 

Step (4): Evaluate at the collocation points 𝑥𝑙, solve the system of linear 

equation for wavelet coefficients 𝑎𝑖 .  

Step (5): Substitute the coefficient in 𝑢(𝑥) to get the solution.  

Table 5.8 shows the exact and the approximate of Haar wavelet, finite 

difference and linear shooting solutions at different nodes. 

Table 5.9: The numerical solution for example 5.5 

Linear 
Shooting 

Finite 
Difference 

Haar 
solution 

Exact Node(x/32) 

1.01228100 1.01223017 1.03731194 1.03076684 1 
1.03941897 1.03942495 1.10240672 1.08949571 3 
1.06994136 1.06995086 1.15966881 1.14469969 5 
1.10343418 1.10344680 1.20816745 1.19664324 7 

1.13955791 1.13957272 1.25667542 1.24559411 9 

1.17799453 1.17801204 1.29703658 1.29181853 11 
1.21845484 1.21847403 1.33667609 1.33557659 13 
1.26006759 1.26069621 1.37260730 1.37711767 15 
1.30442598 1.30444677 1.41526066 1.41667605 17 
1.34950727 1.34952690 1.45050873 1.45446674 19 
1.39575340 1.39577316 1.48339958 1.49068148 21 
1.44309160 1.44305974 1.53448845 1.52548513 23 
1.49128505 1.49130075 1.54951312 1.55901222 25 
1.54044062 1.54045242 1.58348080 1.59136390 27 
1.59050700 1.59051518 1.61703899 1.62260531 29 
1.64153278 1.64153577 1.65066385 1.65276320 31 
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Figure 5.11: The exact and numerical solutions( Haar solution, linear shooting and 

finite difference )    

Table 5.10: Error in example 5.5 

Error of Linear 

Shooting  

Error of Finite 

Difference  

Error of Haar Node(x/32) 

0.01853874 0.01853667 0.00654510 1 

0.05007674 0.05007075 0.01291101 3 

0.07475833 0.07474883 0.01496912 5 

0.09320907 0.09319644 0.01152421 7 

0.1563620 0.15602139 0.01108131 9 

0.21382400 0.21380649 0.00521805 11 

0.11712175 0.11710256 0.00109950 13 

0.11644175 0.11642146 0.00451037 15 

0.11225007 0.11222928 0.00141539 17 

0.10496046 0.10503984 0.00395801 19 

0.09492809 0.09490832 0.00728190 21 

0.08244353 0.08242539 0.00900332 23 

0.06772716 0.06771147 0.00949910 25 

0.05092388 0.05091148 0.00788310 27 

0.03209831 0.03207013 0.00556632 29 

0.01123041 0.01122743 0.00209935 31 

 



  82   

 

Figure 5.12: Error in example 5.5 

Table 5.11: Maximum absolute error of the equation  

Maximum absolute error 

 Linear Shooting Finite Difference Haar Solution 

0.21382400 0.21380649 0.01496912 

5.3 Haar wavelet method for linear partial differential equations 

In this section, we investigate the method of Haar Wavelet for solving 

partial differential equation. Our investigation is a computational one, so 

we use two model problems; the well-known Klein-Gordon equation and a 

wave-like equation. Both are second-order linear homogeneous in one 

dimension. We will use the notation  �̇� = 𝑢𝑡, �̇�
′ = 𝑢𝑡𝑥, and so on. 

This method consists of reducing the problem into a system of algebraic 

equations by first expanding the terms of maximum derivative in the 

equation as Haar wavelet series with a finite number of terms. Second, we 
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use the operational matrix of Haar wavelet which we established earlier, 

then the system of algebraic equations for the wavelet coefficient 

Example 5.6: Consider the linear Klein-Gordon equation [17]  

𝑢𝑡𝑡 − 𝑢𝑥𝑥 = 𝑢,         0 < 𝑥 < 1                                            (5.26) 

subject to the initial conditions  

𝑢(𝑥, 0) = 1 + 𝑠𝑖𝑛(𝑥),    𝑢𝑡(𝑥, 0) = 0.                                     (5.27) 

and the boundary conditions 

 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0,         𝑡 > 0.                                                      (5.28) 

with exact solution   

𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛(𝑥) + 𝑐𝑜𝑠ℎ (𝑡) 

Step (1): Using resolution level 𝐽 = 4 

     Let 𝑡𝑠 =
(𝑠−1)

𝑁
, 𝑠 = 1,2,… , 𝛮,  and let 𝑥𝑙 =

2𝑙−1

4𝑚
 , 𝑙 = 1,2,… ,2𝑚.  Now,   

expand �̈�′′(𝑥, 𝑡) in terms of Haar wavelets  

�̈�′′(𝑥, 𝑡) =  ∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

 ,                  𝑡 ∈ (𝑡𝑠, 𝑡𝑠+1],                   (5.29) 

where the column vector 𝑎𝑖 is constant in the subinterval 𝑡 ∈ (𝑡𝑠, 𝑡𝑠+1].  

Step (2): Integrate equation.(5.30) twice  with respect to 𝑡 from 𝑡𝑠 to 𝑡  and 

twice  from 0 to 𝑥,  

�̇�′′(𝑥, 𝑡) = (𝑡 − 𝑡𝑠)∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

+ �̇�′′(𝑥, 𝑡𝑠),                                       (5.30) 
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𝑢′′(𝑥, 𝑡) =
(𝑡 − 𝑡𝑠)

2

2
∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

+ (𝑡 − 𝑡𝑠)�̇�
′′(𝑥, 𝑡𝑠) + 𝑢

′′(𝑥, 𝑡𝑠) (5.31) 

�̈�′(𝑥, 𝑡) =∑𝑎𝑖𝑃𝑖,1(𝑥)

2𝑀

𝑖=1

+ �̈�′(0, 𝑡)                                                          (5.32) 

�̈�(𝑥, 𝑡) =∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

+ �̈�(0, 𝑡) + 𝑥�̈�′(0, 𝑡)                                       (5.33) 

�̇�(𝑥, 𝑡) = (𝑡 − 𝑡𝑠)∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

+ �̇�(𝑥, 𝑡𝑠) + �̇�(0, 𝑡) − �̇�(0, 𝑡𝑠) 

+𝑥[�̇�′(0, 𝑡) − �̇�′(0, 𝑡𝑠)]                                                                              (5.34)    

𝑢(𝑥, 𝑡) =
(𝑡 − 𝑡𝑠)

2

2
∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

+ 𝑢(𝑥, 𝑡𝑠) + (𝑡 − 𝑡𝑠)�̇�(𝑥, 𝑡𝑠) + 𝑢(0, 𝑡)   

−𝑢(0, 𝑡𝑠) − (𝑡 − 𝑡𝑠)�̇�(0, 𝑡𝑠) + 𝑥[𝑢
′(𝑥, 𝑡𝑠) − 𝑢

′(0, 𝑡𝑠)  − 

(𝑡 − 𝑡𝑠)�̇�
′(0, 𝑡𝑠 )                                                                                          (5.35)                                           

Using the boundary conditions, equations.(5.33)-(5.35) become 

�̈�(𝑥, 𝑡) = ∑ 𝑎𝑖𝑃𝑖,2(𝑥)
2𝑀
𝑖=1 − 𝑥∑ 𝑎𝑖𝑃𝑖,2(1)

2𝑀
𝑖=1                                             (5.36)                                 

�̇�(𝑥, 𝑡) = (𝑡 − 𝑡𝑠)∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

+ �̇�(𝑥, 𝑡𝑠) 

−𝑥(𝑡 − 𝑡𝑠)∑𝑎𝑖𝑃𝑖,2(1)

2𝑀

𝑖=1

                                                  (5.37) 

𝑢(𝑥, 𝑡) =
(𝑡−𝑡𝑠)

2

2
∑ 𝑎𝑖𝑃𝑖,2(𝑥)
2𝑀
𝑖=1 + 𝑢(𝑥, 𝑡𝑠) + (𝑡 − 𝑡𝑠)�̇�(𝑥, 𝑡𝑠) −

𝑥

2
(𝑡 − 𝑡𝑠)

2   ∑ 𝑎𝑖𝑃𝑖,2(1)
2𝑀
𝑖=1                                                                             (5.38)  
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Evaluate equations (5.30)-(5.31) and equations (5.35) at 𝑥 = 𝑥𝑙  and  𝑡 =

𝑡𝑠+1, using  ∆𝑡 = 𝑡𝑠+1 − 𝑡𝑠                                 

�̇�′′(𝑥𝑙 , 𝑡𝑠+1) = ∆𝑡 ∑𝑎𝑖

2𝑀

𝑖=1

ℎ𝑖(𝑥𝑙) + �̇�
′′(𝑥𝑙 , 𝑡𝑠),                                     (5.39) 

𝑢′′(𝑥𝑙 , 𝑡𝑠+1) =
∆𝑡2

2
∑𝑎𝑖ℎ𝑖(𝑥𝑙)

2𝑀

𝑖=1

+ ∆𝑡 �̇�′′(𝑥𝑙 , 𝑡𝑠) + 𝑢
′′(𝑥𝑙 , 𝑡𝑠)     (5.40) 

�̈�(𝑥𝑙 , 𝑡𝑠+1) = ∑ 𝑎𝑖𝑃𝑖,2(𝑥𝑙)
2𝑀
𝑖=1 − 𝑥𝑙 ∑ 𝑎𝑖𝑃𝑖,2(1)

2𝑀
𝑖=1                            (5.41)  

�̇�(𝑥𝑙 , 𝑡𝑠+1) = ∆𝑡∑𝑎𝑖𝑃𝑖,2(𝑥𝑙)

2𝑀

𝑖=1

+ �̇�(𝑥𝑙 , 𝑡𝑠) + ∆𝑡 𝑥𝑙∑𝑎𝑖𝑃𝑖,2(1)

2𝑀

𝑖=1

 (5.42) 

𝑢(𝑥𝑙 , 𝑡𝑠+1) =
∆𝑡2

2
∑𝑎𝑖𝑃𝑖,2(𝑥𝑙)

2𝑀

𝑖=1

+ 𝑢(𝑥𝑙 , 𝑡𝑠) + ∆𝑡 �̇�(𝑥𝑙 , 𝑡𝑠) − 

1

2
∆𝑡2𝑥𝑙   ∑𝑎𝑖𝑃𝑖,2(1)                                                                         (5.43)

2𝑀

𝑖=1

  

where  𝑥𝑙 =
2𝑙−1

4𝑚
,            𝑙 = 1 ,2 , … ,2𝑚. 

Step(3): The scheme  is 

�̈�(𝑥𝑙 , 𝑡𝑠+1) − 𝑢
′′(𝑥𝑙 , 𝑡𝑠+1) = 𝑢(𝑥𝑙 , 𝑡𝑠+1)                                         (5.44) 

  (i.e.)   �̈�(𝑥𝑙 , 𝑡𝑠+1) = 𝑢(𝑥𝑙 , 𝑡𝑠+1) +  𝑢
′′(𝑥𝑙 , 𝑡𝑠+1)                         (5.45)     

𝑎𝑖 [∑𝑎𝑖𝑃𝑖,2(𝑥𝑙)

2𝑀

𝑖=1

− 𝑥𝑙∑𝑎𝑖𝑃𝑖,2(1) − ∆𝑡
2∑𝑎𝑖𝑃𝑖,2(𝑥𝑙) +

1

2
∆𝑡2𝑥𝑙∑𝑎𝑖𝑃𝑖,2(1)

2𝑀

𝑖=1

2𝑀

𝑖=1

2𝑀

𝑖=1

]

= 𝑢(𝑥𝑙 , 𝑡𝑠) + ∆𝑡[�̇�(𝑥𝑙 , 𝑡𝑠) + �̇�
′′(𝑥𝑙 , 𝑡𝑠)]

+ 𝑢′′(𝑥𝑙 , 𝑡𝑠)                                                                                                       (5.46)   
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Step (4): The Haar coefficients vector 𝑎𝑖 are calculated from the system of 

linear equation. (5.46).  

Step (5): The solution of the problem is determined according to equation 

(5.43) as follows [17]. 

𝑢(𝑥𝑙 , 0) = 1 + 𝑠𝑖𝑛(𝑥𝑙) 

𝑢′ (𝑥𝑙 , 0) =  𝑐𝑜𝑠(𝑥𝑙) ,  𝑢′′(𝑥𝑙 , 0) = −𝑠𝑖𝑛(𝑥𝑙) ,  �̇�′′(𝑥𝑙 , 0)  = 0   and    

�̇� (𝑥𝑙 , 0) = 0 

Adomain decomposition method (ADM) 

Adomain decomposition methods are dividing and conquer methods for the 

parallel and computational solution of partial differential equations of 

elliptic or parabolic type. They include iterative algorithms for solving the 

discretized equations, techniques for non-matching grid discretizations and 

techniques for heterogeneous approximations. An introduction to this 

method can be found in [26]. 

The results in table 5.12 and table 5.13 are obtained from [17]. 

Table 5.12 shows the exact and the approximate at different nodes. 

Table 5.12: Numerical result of the linear Klein-Gordon equation 

Haar solution Exact Node 

2.133 × 10−5 2.453 × 10−5 0.015 

9.385 × 10−5 9.772 × 10−5 0.046 

2.549 × 10−4 2.525 × 10−4 0.078 

1.118 × 10−4 1.171 × 10−4 0.109 

4.556 × 10−4 4.541 × 10−4 0.453 

2.153 × 10−4 2.112 × 10−4 0.484 

3.342 × 10−5 3.322 × 10−5 0.515 
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Table 5.13: Maximum absolute error of the equation at different time 

Maximum absolute error 𝑡 
ADM Haar solution 

3.201 × 10−10 5.201 × 10−11 0.1 

3.121 × 10−7 4.427 × 10−8 0.3 

1.907× 10−3 2.325 × 10−5 0.5 

Example 5.7: Consider the one–dimensional wave-like equation [19] 

𝑢𝑡𝑡 −
𝑥2

2
𝑢𝑥𝑥 = 0    , 0 < 𝑥 < 1 , 𝑡 > 0                                         (5.47) 

subject to the initial conditions  

𝑢(𝑥, 0) = 𝑥 ,            �̇�(𝑥, 0) = 𝑥2                                           (5.48) 

and boundary conditions 

𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 1 + 𝑠𝑖𝑛ℎ( 𝑡)      𝑡 > 0                                     (5.49)  

the exact solution is  

𝑢(𝑥, 𝑡) = 𝑥 + 𝑥2 𝑠𝑖𝑛ℎ(𝑡) 

   Step (1): Using resolution level 𝐽 = 3 

     Let 𝑡𝑠 =
(𝑠−1)

𝑁
, 𝑠 = 1,2,… , 𝛮,  and let 𝑥𝑙 =

2𝑙−1

4𝑚
 , 𝑙 = 1,2,… ,2𝑚.  Now,   

expand �̈�′′(𝑥, 𝑡) in terms of Haar wavelets  

�̈�′′(𝑥, 𝑡) =  ∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

 ,                   𝑡 ∈ [𝑡𝑠, 𝑡𝑠+1],                        (5.50) 

 Step (2): Integrate equation.(5.50) twice with respect to 𝑡 from 𝑡𝑠 to 𝑡  and 

twice with  respect to 𝑥 from 0 to 𝑥, we obtain  
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�̇�′′(𝑥, 𝑡) = (𝑡 − 𝑡𝑠)∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

+ �̇�′′(𝑥, 𝑡𝑠),                                        (5.51) 

𝑢′′(𝑥, 𝑡) =
(𝑡 − 𝑡𝑠)

2

2
∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

+ (𝑡 − 𝑡𝑠)�̇�
′′(𝑥, 𝑡𝑠) + 𝑢

′′(𝑥, 𝑡𝑠)  (5.52) 

𝑢′(𝑥, 𝑡) =
(𝑡 − 𝑡𝑠)

2

2
∑𝑎𝑖𝑃𝑖(𝑥)

2𝑀

𝑖=1

+ (𝑡 − 𝑡𝑠)[�̇�
′(𝑥, 𝑡𝑠) − �̇�

′(0, 𝑡𝑠)]    

+𝑢′(𝑥, 𝑡𝑠) − 𝑢
′(0, 𝑡𝑠) + 𝑢

′(0, 𝑡)                                                           (5.53) 

𝑢(𝑥, 𝑡) =
(𝑡 − 𝑡𝑠)

2

2
∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

+ (𝑡 − 𝑡𝑠)[�̇�(𝑥, 𝑡𝑠) − �̇�(0, 𝑡𝑠)  

− 𝑥 �̇�′(0, 𝑡𝑠)] + 𝑢(𝑥, 𝑡) − 𝑢(0, 𝑡𝑠) − 𝑥[𝑢
′(0, 𝑡𝑠) − 𝑢

′(0, 𝑡)]

+ 𝑢(0, 𝑡)                                                                                     (5.54) 

 �̇�(𝑥, 𝑡) = (𝑡 − 𝑡𝑠)∑ 𝑎𝑖𝑃𝑖,2(𝑥)
2𝑀
𝑖=1 + [�̇�(𝑥, 𝑡𝑠) − �̇�(0, 𝑡𝑠) + 𝑥 �̇�

′(0, 𝑡𝑠)]    

+𝑥 �̇�′(0, 𝑡) + �̇�(0, 𝑡)                                                                                       (5.55)                                                                                    

�̈�(𝑥, 𝑡) = ∑ 𝑎𝑖𝑃𝑖,2(𝑥)
2𝑀
𝑖=1 − 𝑥 �̈�′(0, 𝑡) + �̈�(0, 𝑡)                                        (5.56)                                 

   Using the initial and boundary conditions, we have the following 

equations as  

𝑢(𝑥, 0) = 𝑥 , �̇�(𝑥, 0) = 𝑥2     0 < 𝑥 < 1 

𝑢(0, 𝑡) = 𝑔0(𝑡) = 0                    

𝑢(0, 𝑡𝑠) = 𝑔0(𝑡𝑠) = 0 

𝑢(1, 𝑡𝑠) = 𝑔1(𝑡𝑠) = 1 + 𝑠𝑖𝑛ℎ(𝑡𝑠)   

 �̇�(0, 𝑡𝑠) = 𝑔0
′ (𝑡𝑠) = 0   

�̇�(1, 𝑡𝑠) = 𝑔1
′(𝑡𝑠) = 𝑐𝑜𝑠ℎ (𝑡𝑠)   

�̈�(0, 𝑡𝑠) = 𝑔0
′′(𝑡𝑠) = 0        
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�̈�(1, 𝑡𝑠) = 𝑔1
′′(𝑡𝑠) = 𝑠𝑖𝑛ℎ(𝑡𝑠) 

Put 𝑥 = 1 in formulas (5.53) and (5.55) and by using condition, we have  

𝑢′(0, 𝑡) − 𝑢′(0, 𝑡𝑠) = −
(𝑡 − 𝑡𝑠)

2

2
∑𝑎𝑖𝑃𝑖,2(1)

2𝑀

𝑖=1

+ (𝑡 − 𝑡𝑠)[𝑐𝑜𝑠ℎ (𝑡𝑠) 

−�̇�′(0, 𝑡𝑠)] + (1 + 𝑠𝑖𝑛ℎ(𝑡) − 1 − 𝑠𝑖𝑛ℎ(𝑡𝑠)                       (5.57) 

�̈�′(0, 𝑡) = −∑𝑎𝑖𝑃𝑖,2(1)

2𝑀

𝑖=1

− 𝑠𝑖𝑛ℎ(𝑡)                                               (5.58) 

 Substitute equations (5.57) and (5.58) into equations (5.52) through (5.60) 

and evaluate  𝑥 = 𝑥𝑙   𝑎𝑛𝑑  𝑡 = 𝑡𝑠+1  

𝑢′′(𝑥𝑙 , 𝑡𝑠+1) =
(𝑡𝑠+1 − 𝑡𝑠)

2

2
∑𝑎𝑖ℎ𝑖(𝑥𝑙)

2𝑀

𝑖=1

+ (𝑡𝑠+1 − 𝑡𝑠)�̇�
′′(𝑥𝑙 , 𝑡𝑠) 

+𝑢′′(𝑥𝑙 , 𝑡𝑠)                                                                                                          (5.59 

𝑢′(𝑥𝑙 , 𝑡𝑠+1) =
∆𝑡2

2
∑𝑎𝑖𝑃𝑖(𝑥𝑙)

2𝑀

𝑖=1

+ ∆𝑡 �̇�′(𝑥𝑙 , 𝑡𝑠) − 𝑢
′(𝑥𝑙 , 𝑡𝑠) −

∆𝑡2

2
    

∑𝑎𝑖𝑃𝑖(𝑥𝑙)

2𝑀

𝑖=1

− ∆𝑡[ 𝑐𝑜𝑠ℎ (𝑡𝑠)] + 𝑠𝑖𝑛ℎ(𝑡𝑠+1) − 𝑠𝑖𝑛ℎ(𝑡𝑠)           (5.60) 

𝑢(𝑥𝑙,𝑡𝑠+1)=
∆𝑡2

2
∑ 𝑎𝑖𝑃𝑖,2(𝑥𝑙)
2𝑀
𝑖=1 + ∆𝑡[�̇�(𝑥𝑙 , 𝑡𝑠) − �̇�(0, 𝑡𝑠)] + 𝑢(𝑥𝑙 , 𝑡𝑠)  

−𝑢(0, 𝑡𝑠) − 𝑥𝑙  
∆𝑡2

2
∑𝑎𝑖𝑃𝑖,2(1)

2𝑀

𝑖=1

− 𝑥𝑙∆𝑡𝑐𝑜𝑠ℎ (𝑡𝑠) − 𝑥𝑙[ 1 + 𝑠𝑖𝑛ℎ(𝑡𝑠)  

− 1 − 𝑠𝑖𝑛ℎ(𝑡𝑠+1)]                                                                                           (5.61) 
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�̇�(𝑥𝑙 , 𝑡𝑠+1) = ∆𝑡∑𝑎𝑖𝑃𝑖,2(𝑥𝑙)

2𝑀

𝑖=1

+ [�̇�(𝑥𝑙 , 𝑡𝑠) − �̇�(0, 𝑡𝑠)]

− ∆𝑡 𝑥𝑙∑𝑎𝑖𝑃𝑖,2(1)

2𝑀

𝑖=1

+ 𝑥𝑙 𝑐𝑜𝑠ℎ(𝑡𝑠) + 𝑥𝑙 𝑐𝑜𝑠ℎ(𝑡𝑠+1 )      (5.62) 

�̈�(𝑥𝑙 , 𝑡𝑠+1) =∑𝑎𝑖[𝑃𝑖,2(𝑥𝑙) − 𝑥𝑙𝑃𝑖,2(1)]

2𝑀

𝑖=1

+ 𝑥𝑙 𝑠𝑖𝑛ℎ(𝑡𝑠+1)                   (5.63) 

𝑃𝑖,2(1) = {

0.5        𝑖𝑓 𝑖 = 1
1

4𝑚2
     𝑖𝑓 𝑖 > 1

 

Step (3):  After substituting value from equation (5.63) in the wave–like 

equation, we have 

∑ 𝑎𝑖[𝑃𝑖,2(𝑥𝑙) − 𝑥𝑙𝑃𝑖,2(1)] =
𝑥𝑙
2

2
𝑢′′(𝑥𝑙 , 𝑡𝑠) + 𝑥𝑙

2𝑀
𝑖=1 𝑠𝑖𝑛ℎ(𝑡𝑠+1)      (5.64)                                                           

 Equation (5.64) is the algebraic from of the wave-like equation (5.47) 

Step (4): Solve these algebraic equations for the Haar wavelet coefficients 

𝑎𝑖. Then from equation (5.61) we obtain the solution of  𝑢, which is very 

near to the exact solution. This solution process is started with  

𝑢(𝑥𝑙 , 0) = 𝑥𝑙 ,             𝑢𝑡(𝑥𝑙 , 0) = 𝑥𝑙
2,      𝑢′(𝑥𝑙 , 0) = 0,   𝑢′′(𝑥𝑙 , 0) = 0 

Step (5): Substitute the coefficient in 𝑢(𝑥, 𝑡) to get the solution. 
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Table 5.14: The numerical solution for wave like equation at  𝒕 = 𝟎. 𝟎𝟏 

Finite Difference Haar solution Exact Node(x/32) 

0.0312597648 0.0312599298 0.0312597657 1 

0.0938378934 0.0938380223 0.0938378920 3 

0.1564941463 0.1564942398 0.1564941446 5 

0.2192285265 0.2192285824 0.2192285236 7 

0.2820410392 0.2820410499 0.2820410288 9 

0.3449316610 0.3449316424 0.3449316603 11 

0.4079004237 0.4079003599 0.4079004181 13 

0.4709473089 0.4709472025 0.4709473022 15 

0.5340723150 0.5340721700 0.5340723126 17 

0.5972754320 0.5972752625 0.5972754493 19 

0.6605567180 0.6605564800 0.6605567124 21 

0.7239161120 0.7239158225 0.7239161017 23 

0.7873536280 0.7873539011 0.7873536173 25 

0.8508692660 0.8508688826 0.8508692592 27 

0.9144630310 0.9144626001 0.9144630275 29 

0.9781349360 0.9781344426 0.9781349220 31 
 

 

Figure 5.13: The exact and numerical solutions for wave-like equation at 𝑡 = 0.01 
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Table 5.15: The numerical solution for wave like equation at  𝒕 = 𝟎. 𝟏  

Finite Difference Haar Solution Exact Node(x/32) 

0.0313483056 0.0313372164 0.0313478191 1 

0.0946315015 0.0945975851 0.0946303718 3 

0.1586972575 0.1586392033 0.1586954773 5 

0.2235455489 0.2234620805 0.2235431355 7 

0.2891764013 0.2890662093 0.2891733464 9 

0.3555897902 0.3554515354 0.3555861101 11 

0.4227857460 0.4226181026 0.4227814265 13 

0.4907642376 0.4905662266 0.4907592957 15 

0.5595252760 0.5592956532 0.5595197175 17 

0.6290688740 0.6288045412 0.6290626921 19 

0.6993949970 0.6990943723 0.6993882195 21 

0.7705037060 0.7701758784 0.7704962996 23 

0.8423949610 0.8420404232 0.8423869324 25 

0.9150687420 0.9146254566 0.9150601179 27 

0.9885250770 0.9879813151 0.9885158562 29 

1.0627620760 1.0624725665 1.0627541472 31 
 

 

Figure 5.14: The exact and numerical solutions for wave-like equation at 𝑡 = 0.1 
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Table 5.16: The numerical solution for wave like equation at  𝒕 = 𝟎. 𝟐 

Finite Difference Haar Solution Exact Node(x/32) 

0.0314505129 0.0315090527 0.0314466171 1 

0.0955286338 0.0957000100 0.0955195547 3 

0.1611796646 0.1614547701 0.1611654297 5 

0.2284035991 0.2286851414 0.2283842423 7 

0.2972004527 0.2975533380 0.2971759923 9 

0.3675702126 0.3679767595 0.3675406799 11 

0.4395128894 0.4399711571 0.4394783051 13 

0.5130284782 0.5135150107 0.5129888677 15 

0.5881169880 0.5886319063 0.5880723679 17 

0.6647783620 0.6653084730 0.6647288055 19 

0.7430126860 0.7436810026 0.7429581807 21 

0.8228199150 0.8233571460 0.8227204935 23 

0.9042000630 0.9047271867 0.9041357437 25 

0.9871531000 0.9870173730 0.9870839314 27 

1.0716765050 1.0721586763 1.0716050567 29 

1.1577405680 1.1582201252 1.1576991195 31 
 

 

Figure 5.14 : The exact and numerical solutions for wave-like equation at 𝑡 = 0.2 
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Table 5.17: Maximum error of the equation at different time 

Maximum absolute error 𝑡 
Finite Difference Haar solution 

1.7400 × 10−8 4.7934 × 10−7 0.01 

8.0287 × 10−6 3.4651 × 10−4 0.1 

7.1448 × 10−5 7.2282 × 10−4 0.2 

 

Example 5.8: Consider the one-dimensional diffusion equation.  

𝑢𝑡 = 𝑢𝑥𝑥  ,           0 < 𝑥 < 1 ,                   𝑡 > 0                       ( 5.65) 

subject to the initial conditions  

 𝑢(𝑥, 0) = 𝑠𝑖𝑛(𝜋𝑥)                                                                    (5.66)  

and the boundary conditions 

 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0,         𝑡 > 0                                           (5.67) 

with exact solution 

 𝑢(𝑥, 𝑡) = 𝑒−𝜋
2𝑡𝑠𝑖𝑛 (𝜋𝑥) 

Step (1): Assume 

Let 𝑥𝑙 =
2𝑙−1

4𝑚
 , 𝑙 = 1,2,… ,2𝑚.  Now,   expand �̈�′′(𝑥, 𝑡)  in terms of Haar 

wavelets, using time stepping from 0 to  . 

�̇�′′(𝑥, 𝑡) =  ∑ 𝑎𝑖ℎ𝑖(𝑥)
2𝑀
𝑖=1  ,                  𝑡 ∈ (0, 𝑡]                    (5.68)   

Step (2): Integrate equation (5.62). with respect to 𝑡 from 0 to 𝑡  and twice 

 from 0 to 𝑥 
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𝑢′′(𝑥, 𝑡) = 𝑡∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

− 𝜋2 𝑠𝑖𝑛(𝜋𝑥)                                                 (5.69) 

𝑢′(𝑥, 𝑡) = 𝑡∑𝑎𝑖𝑃𝑖,1(𝑥)

2𝑀

𝑖=1

− 𝜋𝑐𝑜𝑠(𝜋𝑥) +  𝜋                                           (5.70) 

𝑢(𝑥, 𝑡) = 𝑡∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

− 𝑠𝑖𝑛(𝜋𝑥) +  𝜋𝑥                                          (5.71) 

Now, 

�̇�′(𝑥, 𝑡) =  ∑𝑎𝑖𝑃𝑖,1(𝑥) + �̇�
′(0, 𝑡)

2𝑀

𝑖=1

                                                  (5.72) 

�̇�(𝑥, 𝑡) =∑𝑎𝑖𝑃𝑖,2(𝑥) + 𝑥�̇�
′(0, 𝑡)

2𝑀

𝑖=1

+ �̇�(0, 𝑡)                                   (5.73) 

Using the boundary conditions, set 𝑥 = 1 to find �̇�′(0, 𝑡) in equation (5.73) 

�̇�′(0, 𝑡) = −∑𝑎𝑖𝑃𝑖,2(1)                                                           ( 5.74)

2𝑀

𝑖=1

 

�̇�(𝑥, 𝑡) =∑𝑎𝑖𝑃𝑖,2(𝑥)

2𝑀

𝑖=1

− 𝑥∑𝑎𝑖𝑃𝑖,2(1)

2𝑀

𝑖=1

                               (5.75) 

Evaluate equations (5.68)-(5.73)  at 𝑥 = 𝑥𝑙 and  using  time stepping. 

 where  𝑥𝑙 =
2𝑙−1

4𝑚
,            𝑙 = 1 ,2 , … ,2𝑚. 

Step(3): The scheme  is 

�̇�(𝑥𝑙 , 𝑡) = 𝑢
′′(𝑥𝑙 , 𝑡)                                                           (5.76) 

∑𝑎𝑖[𝑡ℎ𝑖(𝑥𝑙) − 𝑃𝑖,2(𝑥𝑙) + 𝑥𝑙𝑃𝑖,2(1)] = 𝜋
2𝑠𝑖𝑛 (𝜋𝑥𝑙)

2𝑀

𝑖=1

       (5.77) 
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 Step (4): Solve these algebraic equations for the Haar wavelet coefficients 

𝑎𝑖. Then from equation (5.77) we obtain the solution of  𝑢 

Step (5): Substitute the coefficient in 𝑢(𝑥, 𝑡) to get the solution. 

Using resolution level (𝐽 = 3)of Haar wavelet. 

Table 5.18 shows the exact and the approximate at different nodes. 

Table 5.18: The numerical solution for diffusion equation at time  𝒕 = 𝟎. 𝟏  

Rel. Error Haar Exact X[node] Node 

1.309296468007e-04 0.00731859 0.00731763 0.06250000 1 

1.287644526372e-04 0.01463433 0.01463244 0.12500000 2 

1.251883252893e-04 0.02194436 0.02194161 0.18750000 3 

1.202501261167e-04 0.02924584 0.02924232 0.25000000 4 

1.140183951630e-04 0.03653592 0.03653176 0.31250000 5 

1.065814856472e-04 0.04381178 0.04380711 0.37500000 6 

9.804773763998e-05 0.05107058 0.05106557 0.43750000 7 

8.854569095200e-05 0.05830951 0.05830435 0.50000000 8 

7.822433840886e-05 0.06552578 0.06552065 0.56250000 9 

6.725341943953e-05 0.07271658 0.07271169 0.62500000 10 

5.582375551514e-05 0.07987916 0.07987470 0.68750000 11 

4.414762759099e-05 0.08701076 0.08700692 0.75000000 12 

3.245919693256e-05 0.09410864 0.09410559 0.81250000 13 

2.101497058229e-05 0.10117011 0.10116798 0.87500000 14 

1.009431217516e-05 0.10819247 0.10819137 0.93750000 15 

  

Maximum Relative Error: 1.309296468007e-04 

 
Using resolution level (𝐽 = 4) of Haar wavelet 
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Table 5.19: The numerical solution for diffusion equation at time  𝒕 = 𝟎. 𝟏  

Node X[node] Exact Haar Rel. Error 

1 0.03125000 0.00365899 0.00365947 1.312811991005e-04 

3 0.09375000 0.01097557 0.01097699 1.298351547165e-04 

5 0.15625000 0.01828791 0.01829023 1.269625778754e-04 

7 0.21875000 0.02559320 0.02559634 1.227025307863e-04 

9 0.28125000 0.03288862 0.03289247 1.171137024611e-04 

11 0.34375000 0.04017137 0.04017580 1.102745239021e-04 

13 0.40625000 0.04743863 0.04744348 1.022833220901e-04 

15 0.46875000 0.05468760 0.05469270 9.325851330626e-05 

17 0.53125000 0.06191549 0.06192065 8.333883609117e-05 

19 0.59375000 0.06911950 0.06912453 7.268362452537e-05 

21 0.65625000 0.07629687 0.07630156 6.147312282756e-05 

23 0.71875000 0.08344483 0.08344900 4.990884147190e-05 

25 0.78125000 0.09056062 0.09056408 3.821395634789e-05 

27 0.84375000 0.09764149 0.09764409 2.663375179110e-05 

29 0.90625000 0.10468472 0.10468634 1.543610844166e-05 

31 0.96875000 0.11168760 0.11168815 4.912037629605e-06 

 

Maximum Relative Error: 1.312811991005e-04 

 

5.4 Conclusion  

The Haar wavelet method is computationally efficient and the algorithm 

can easily be implemented on computer. 

1. Numerical comparisons demonstrate that classical numerical method is 

reliable and accurate. Refer to examples (5.2, 5.3, 5.5, 5.6, 5.7 ) 

2. The distinctive feature is that it can be applied, to initial and boundary 

value problems without transformation of BVPs into IVPs as needed for 

the Runge-Kutta methods. In Haar wavelet method the initial and 

boundary conditions intervention directly without complicated   .  

3. Simple applicability and fast convergence of the Haar wavelets provides 

a solid foundation, for using these functions in the context of numerical 
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approximation ordinary differential equations and partial differential 

equations.  

4. The main advantage of this method is its simplicity and small 

computation costs, it is due to the sparsity of the transform matrices and 

to the small number of significant wavelet coefficients, Hence, the 

present method is a very reliable, simple, fast, minimal computation 

costs and flexible. 

5. Our computationally result shows that, the convergence the method is 

quadratic the infinite norm but the need investigation. 
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 الملخص

النوع طريقة عددية جديدة نسبياً في حل المعادلات التفاضلية من في هذه الأطروحة, استخدمت 
الطرق   وتم عمل مقارنه عدديه بين الطريقة الجديدة وبعض .رويجات هاالخطي وهي طريقة م

وكان الهدف اثبات فعالية الطريقة . لحل المعادلات التفاضلية الخطية المعروفة العددية التقليدية
المستخدمة وتميزها على الطرق التقليدية الاخرى. وتبين ان الطريقة الجديدة ابسط وتعطي نتائج 

 من الطرق التقليدية وذلك حسب المعادلة التفاضلية. قريبه او افضل

 

 

 

 




