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Abstract

In this thesis, a computational study of the relatively new numerical
methods of Haar wavelets for solving linear differential equations is used.
A comparison between the new method and some classical methods for
linear differential equations has been made. The aim is to show the
efficiency of the presented method and its advantage over other method.
The new method is simple and its numerical results are close or more

accurate than some classical methods.



1

Chapter One

Introduction
1.1. Overview
Wavelet analysis is an exciting new method for solving difficult
problems in mathematics, physics, and engineering [7]. Wavelets are
functions that satisfy certain mathematical requirement and can be used to
represent a function, such as the solution of ODE and PDE. Representation
of functions is an old subject.
Weierstrass theorem [3] guarantees the existence of polynomial that
approximates any continuous function on any closed interval of R to any
level. In 1714 Taylor theorem [1,3] represents the polynomial that
approximates a function using the set {(x — x,)"};=, as basis. In 1808,
Joseph Fourier [6] used the set {sin(nx), cos(nx)},-, as basis to represent
functions of period p = 2m, then generalized to functions of any period
p = 2L. Wavelet representation of functions uses the wavelet basis defined
in chapter three.
The wavelet decomposition analysis is used most often in wavelet signal
processing [7]. It is used in signal compression as well as in signal
identification. Wavelet transform of a function, as Fourier transform, is
powerful tool for analyzing the components of stationary phenomena.
However, the wavelet transform has the advantage of the ability of
analyzing nonstationary phenomena where Fourier transform fails [7,8,28].
Wavelet transform, as one of the mathematical real or complex valued

function, is one which has become widely used in various fields of
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application, mainly medicine, communication, computer software and
human related applications. In specific, wavelet can be found in scanning,
disease diagnosis to help doctors do their job precisely in this human
sensitive field. It can also help encode audio and video signals in the field
of telecommunications. As well, there are other useful applications which
can effectively help intelligence agencies recognize the tinniest details of
human bodies for security purposes and in cases of terrorist acts, airplane
collapse, ship wreckage, and other human verification uses. For example,
the Federal Bureau of Investigation (FBI) of the United States uses wavelet
application to identify and verify millions of people’s fingerprints. In the
future, it is expected that mathematical wavelet technology will cover
hundreds of applications and it will mainly focus human welfare and
healthcare subjects to achieve the best results possible [7,8,9,30].

In chapter one, we give a brief history of wavelets and a review of literature
on subject of wavelets. In chapter two, we review some classical numerical
methods for ordinary and partial differential equations, for comparison with
the Haar wavelet method used in this thesis. In chapters three wavelets and
their applications are considered. In chapter four, the Haar wavelet method
for solving differential equations is given. In chapter five, numerical
examples of the Haar wavelet method are given and the results are
compared with results from the classical methods introduced in chapter

two. Conclusion is given in section 5.4



3
1.2 A brief history of the development of wavelets in solving
differential equations
The word “wavelet” is due to Morlet and Grossmann. In the early 1980s,
influenced by ideas from both pure and applied mathematics, they used the
French word "ondelette", meaning "small wave". Soon it was transferred to
English by translating "onde" into "wave", giving the name "wavelet"[7].
Wavelets were developed independently in the fields of mathematics,
quantum physics, electrical engineering, and medical technology etc.
The main branch of mathematics leading to wavelets began with Joseph
Fourier in 1807 with his theories of frequency analysis. Fourier's efforts
with frequency analysis lead to the well-known Fourier analysis. Fourier's
work is based on the fact that periodic functions can be represented as a
linear combination of sines and cosines [6]. Another contribution of Fourier
is the Fourier transform. It transforms a function f from its time domain
into its frequency domain [28].
The next known link to wavelet is due to Alfred Haar in 1910. It appeared
in the appendix of a thesis he had written to obtain his doctoral degree.
Haar contribution to wavelets is very evident. The well-known Haar
wavelet is the simplest and the oldest of the wavelet family. In the year
1910, Alfred Haar introduced a function, which presents a rectangular

pulse pair. Then various generalizations were proposed [9], see figure 1.1
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Figure 1.1: Haar wavelet

After Haar contribution to wavelets there was once a gain a gap of time in
research about the functions until 1954 when Paul Levy used wavelets in
his research on Brownian motion [7]. He discovered that the scale-varying
basis function-created by Haar (i.e. Haar wavelets) were a better basis than
the Fourier basis functions. Unlike the Haar basis function, which can be
chopped up into different intervals — such as the interval from 0 to 1 or the
interval from 0 to% and % to 1, the Fourier basis functions have only one
interval. Therefore, the Haar wavelets can be much more precise in
modeling a function.

In the year 1975, Jean Morlet was the first researcher to use the term
"wavelet" to describe his functions [8]. More specifically, they were called
"wavelets of constant slope".

In 1980s, it Ingrid Daubechies generalized of Haar wavelet. In fact, Haar
wavelet is the Daubechies wavelet of order one. Wavelet methods have
been applied for solving differential equations from the beginning of the

early 1990s [9], see figure 1.2
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Figure 1.2: Mother wavelet for Dauchies.

In the year 1997, Chen and Hsiao introduced a wavelet method for solving
differential equations. The method is based on expanding the highest
derivative in the differential equation in terms of Haar wavelets then
integrating the expansion to get the solution. To simplify things, they
introduce the Haar operational matrix for the integrals of the Haar function
vector and put the application for the Haar analysis into the dynamic
system [11, 13]. Phang Chang and Phang Piau [11] also gave a simple
matrix method to solve ordinary differential equations. From 2005 to 2014,
UloLepik [15, 16] presented an application of the Haar wavelets for
solution of linear integral equations and numerical solution of differential
equations using Haar wavelets, then he presented Haar wavelet methods
for solving evolution equations and Haar wavelet methods for nonlinear
integro-differential equations. Lepik presented application of nonuniform

Haar wavelets for solving integral and differential equations. A year later
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he presented Haar wavelet method for solving higher order differential
equations and integral equations. In the years from 2009 to 2014, Hariharan
et al[13,17] established the solution of several differential equations in
applications. Among them convection-diffusion equation, finite length
beams equation, linear and nonlinear Klein- Gorden equation, Sine Gorden
equation and some nonlinear parabolic equations by the Haar wavelet
method. In the year 2007 Castro[16] presented a wavelet collocation
method for the static analysis of sandwich plates using a layer wise theory.
In the year 2010 Fazal-1-Haq [21] introduced a Haar wavelet method for
solving eight-order boundary value problems. From 2010-2013, Siraj-ul-
Islam et al[22,24] presented numerical solution of second-order boundary-
value problems by the Haar wavelets, Haar wavelet collocation method for
numerical solution of boundary layer fluid flow problems. A year later they
presented a numerical assessment of parabolic partial differential equations
using Haar and Legendre wavelets. In the year 2011, Zhi Shi and Yong-
Yan Cao [11, 12] established the Haar wavelet method for solving higher
order differential equations, a year later they presented poisson equations
and biharmonic equations on a rectangle. In the year 2012, Naresh Berwal
[19] presented the Haar wavelet method for solving wave-like equation. In
the year 2013 Imran Aziz [23] presented a wavelets collocation methods
for the a numerical solution of elliptic BVPs. It is obvious that the subject
of wavelets methods for solving differential equations has attracted many
researchers in the last 10 years. And that is due to its potential in solving

many problems.
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Chapter Two

Overview of numerical methods for differential equations

A differential equation relates an unknown function to its derivatives. In
applications, functions usually represent physical quantities and the
derivatives represent their rates of change. Differential equations play an
important role in modeling of physical problems in science, engineering
and economics. Differential equations describe a wide range of natural
phenomena, such as sound, heat, electrostatics, electrodynamics, fluid flow,
elasticity, and quantum mechanics. These seemingly distinct physical
phenomena can be formalized similarly in terms of PDEs.

While, analytical methods can be used to solve some differential equations,
many, if not most differential equations, can't be solved analytically.
Numerical methods for differential equations are considered when the
differential equations, ordinary or partial, can't be solved directly by
analytical methods.

Among the classical numerical methods for solving ordinary differential
equations are; Euler method, higher-order Taylor methods, Runge-Kutta
methods, the multistep methods, linear shooting method and finite
difference methods. Among the classical numerical methods for solving
partial differential equations are; finite difference methods, finite element

method, Adomain Decomposition Method (ADM), and multigrid methods.

2.1 Numerical methods for solving ordinary differential equations
In this section, we give an overview of some classical numerical methods

for ordinary differential equations. we will focus on the following methods



8
for initial value problems: Euler methods, higher-order Taylor methods,
and Runge-Kutta methods. We will also focus on the following methods
for boundary value problems: The linear shooting methods, finite

difference methods.

2.1.1 Numerical methods for initial-value problems

Consider the first-order initial value problem

du
o fx,u), fora<x<b  ula)=a«a (2.1)

In the following subsections, we overview three classical numerical

methods for this I\VVP.

2.1.1.1 Euler's method

Euler's method was established by the Swiss mathematician and physicist
Leonhard Euler, who treated it in his book "institutionum calculi integral
which is published between 1768 and 1770. He made important
discoveries in fields as diverse as infinitesimal calculus and graph theory.
He also introduced much of the modern mathematical terminology.

Euler's method is considered the most elementary approximation technique
for solving IVVPs. The object of Euler's method is to approximate the
solution to the well-posed initial-value problem (2.1) [26,29].

Once the approximate solution is obtained at given points, the approximate
solution at other points in the interval can be found by interpolation.

The method starts by dividing the interval [a, b] into some N subintervals

with
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X; =a+ih, foreachi=01,2,..,N (2.2)

where h = b%a = Xj41 — X; (2.3)

Using first-order forward-difference formula for u’, we get

u(xi+1)h_ u(x) gu"(f) = f(x u(x)) 24)

Drop the error term and let u; = u(x;)
Ug = A

Uiy1 =u; + hf(x;,u;), 1=01,...,N—1 (2.5)
This is Euler's method for the IVP in (2.1)

Example 2.1: We use Euler's method to approximate the solution to the

VP

. sin(2x) — 2xu
u' = 22 , 1<x<2, u(l)=2

With exact solution

4 4+ cos(2) — cos(2x)
2x?

u(x) =

with N = 10 subintervals

- 1
10
sin(2x) — 2xu
fxuw) = >
X
u, = u(l) =2,

Ui, = U; + hf(x;,u;), foreachi =1,2,...,9
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The results of Euler's method are given in table 2.1

Table 2.1: Maximum absolute error of Euler's method for IVP is

0.062594347.

[ X; Uu;

0 1.0 2.0000000
1 1.1 1.6909297
2 1.2 1.4503059
3 1.3 1.2554954
4 1.4 1.0928453
3) 1.5 0.9538157
6 1.6 0.8329123
7 1.7 0.7265181
8 1.8 0.6322081
9 1.9 0.5483003
10 2.0 0.4736355

The results are obtained using Maple software.
2.1.1.2 Higher-order Taylor methods for solving initial-value problems

The error in Euler's method is of order one. For more accurate
approximations, we need methods of higher order errors. To do so, we use
more terms in Taylor theorem to approximate the derivative in an I\VP and
the result is a higher order Taylor method. Euler's method is a first order

Taylor method [26,29].

The n™-order Taylor method for the IVP 2.1 is given as

Uy = A

Uipr = U; + RT™ (x;,u;), eachi=0,1,..,N—1 (2.6)

where
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n-—1

h
T (g, w;) = f o u) + SO u) + ot fO V) (27)

n!

Example 2.2: Consider the IVP given in example 2.1

Table 2.2 shows the approximation of solution to the IVP in example 2.1
using first-order and fourth-order Taylor methods with N =10

subintervals.
The results of Taylor methods of order one and four are given in table 2.2

Table 2.2: Maximum absolute error of Taylor of order one for IVP is

0.062594347
[ X; u; of order one u; of order four
0 1.0 2.0000000 2.0000000
1 1.1 1.6909297 1.7241829
2 1.2 1.4503059 1.5005274
3 1.3 1.2554954 1.3139293
4 1.4 1.0928453 1.1547091
5 1.5 0.9538157 1.0165024
6 1.6 0.8329123 0.8950361
7 1.7 0.7265181 0.7873883
8 1.8 0.6322081 0.6915241
9 1.9 0.5483003 0.6059965
10 2.0 0.4736355 0.5297472

Maximum absolute error of Taylor of order four for I\VP is 0.0001003
2.1.1.3 Runge-Kutta methods for solving initial-value problems

The computation of derivatives in higher-order Taylor methods becomes
complicated as the order increases. Runge-kutta methods avoid the
computation of such derivatives and only functional evaluations are used

[26,29].
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Runge-Kutta method of order two or the midpoint method.
uo =a
ky = hf(x;up),

h 1
k2 = hf(xl +§,ui +§k1>,

Uipr =W+ ky (2.8)
foreachi=012,.., N—1

Runge-Kutta method of order four (RK4)

uO =

k1 = hf(xi,ul'), (29)

h 1
k, = hf (xi 50 +§k1), (2.10)

h 1
ks = hf (xi 3 +§k2), 2.11)
ko = hf(xip1,u; + ks3), (2.12)

1

ul'+1 - ul' + g(kl + 2k2 + 2k3 + k4) (213)

Example 2.3: Consider the IVP in example 2.1

. sin(2x) — 2xu
u' = 22 , 1<x<2 u(l)=2

The solution by the midpoint method "RK2" and Runge-Kutta method

order four "RK4" using N = 10 are given in table 2.3



Table 2.3: The results of RK2 and RK4

13

i x; RK2 RK4
0 1.0 2.0000000 2.0000000
1 11 1.7251529 1.7241157
2 12 1.5019911 1.5004362
3 13 1.3156406 1.3138325
4 1.4 1.1565391 1.1546145
5 15 1.0183834 1.0164134
6 16 0.8969326 0.8949538
7 17 0.7892816 0.7873127
8 18 0.6934041 0.6914550
9 1.9 0.6078570 0.6099333
10 2.0 0.5315839 0.5296893

Maximum absolute error of RK2 for IVP is 0.19818485x 102
Maximum absolute error of RK4 for IVP is 0.34785891x 107>

2.1.2 Numerical methods for boundary-value problems

A Boundary Value Problem (BVP) is a differential equation together with a
set of boundary conditions. A solution to a BVP is a solution to the
differential equation which also satisfies the boundary conditions. We will
focus on two methods to approximate the solution of a second order of
linear BVP. The first method is the linear shooting method and the second
method is the linear finite difference method. We will focus on linear
equations since they will be used for comparison with wavelet methods in

chapter five.
A second-order linear BVVP can be written in the form:
u' =plu' +qx)u+r(x) fora<x<b (2.14)

u(a) =aandu(b) =p
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2.1.2.1 The Linear shooting method
The linear shooting method for linear BVPs is based on the replacement of
the linear BVP by two IVPs. Then the solution of the BVP is a linear

combinations of the solutions of the two 1VPs[26,32].

" =p@uy" +qx)u, +r(x), for a<x<h, (2.15)
with u,(a) = a andu,'(a) =0
and

u," =pu, + q(x)u,, for a<x <b, (2.16)
with u,(a) =0 and u,'(a) =

The solution to the BVP (2.14) is

B —uy(b)

u(x;) = uqy(x;) + BNOR

u,(x;) (2.17)

Where u; and u, are the solutions of (2.15) and (2.16) respectivly
Example 2.4: Consider the BVP:

u’"=-3u"+2u+2x+3, 0<x<1, u(0) =2andu(1l) =1
Using the linear shooting method with N = 10

First, we convert this problem into two IVPs

u" =-=-3u"+2u; +2x+3, 0<x<1, u(0)=2andu(1)=0;

and



u, = =3u,’ +2u, +2x, 0<x <1,

The solution to the BVVP is

1—uy(1)

u(x;) = uy(x;) + Wuz(xi)

The discrete solution of the two IVPs together with the BVP is given in

table 2.4

Table 2.4: The results of linear shooting

i X; Uy (%;) Uy (%) u(x;)
0 0.0 2.00000000 -7.19616313 2.00000000
1 0.1 1.40843171 -4.77470838 1.40843171
2 0.2 1.02226375 -3.04605634 1.02226375
3 0.3 0.78331776 -1.80076394 0.78331776
4 0.4 0.65103904 -0.89202648 0.65103904
5 0.5 0.59722789 -0.21690543 0.59722789
6 0.6 0.60234998 -0.29682014 0.60234998
7 0.7 0.65295283 0.69986330 0.65295283
8 0.8 0.73985699 1.02788028 0.73985699
9 0.9 0.85688993 1.30598925 0.85688993
10 1.0 1.00000000 1.55193574 1.00000000

2.1.2.2 Finite difference methods for linear boundary-value problems

In this section, we review the linear finite difference method for linear

BVPs. We will use this method in chapter five for comparison with

wavelets methods.

Main idea of finite difference methods.

Divide the domain into a member of subintervals, then approximate the
derivatives using numerical differentiation formulas at each interior point.

The result is a linear system of equations. This process is called
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discretization of the continuous problem [26, 29]. The solution of the linear

system is the discrete solution of the linear BVP.
Example 2.5: Consider the BVP
u"=4(u—x), 0<x<1, u(0) = 0and u(1) = 2.

use linear finite difference method to approximate the solution

WithN =9, then h = Z;:; = 1—10 ( xo and x4, are boundary points)

The mesh points are

Xo X1 Xz X3 X4 X5 Xg X7 Xg Xg Xqg

0.0/01/02]03/04]05/06]0.7/08]09]1.0

Use second-order centered-difference formula for u''(x;),i =1,2,...,9

and drop the error term, we get

Ujpr — 2U; + Ujg
hz

= 4ul- — 4xi

100(u;4q — 2u; + u;_1) = 400u; — 400x;, fori=1,2,..,9

u0=0, u10=2

Solve the system to get the discrete solution. The results are given in table

2.5
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Table 2.5: The result of linear finite difference method.

l X U;

0 0.0 0.00000000
1 0.1 0.10882378
2 0.2 0.22205946
3 0.3 0.34191297
4 0.4 0.47169324
5 0.5 0.61636364
6 0.6 0.78336924
7 0.7 0.98387764
8 0.8 1.23464024
9 0.9 156078414
10 1.0 2.00000000

2.2 Finite difference methods for solving partial differential equations
Just like finite difference methods for BVPs, finite difference methods for
PDEs, replace the derivatives by numerical differentiation formals.
However, for PDEs in two dimensions (two independent variables), the
domain is a plane region. To discretize the problem, generate a grid and
approximate the derivatives at each interior grid point to get a linear system
[29].

Example 2.6: Consider the wave like problem.

x2

utt—7uxx=0, 0<x<1 0<t<0.01

u(0,t) =0, u(1,t) =1+ sinh(t)
u(x,0) =x, u/(x,0) =x?
Using finite difference method with N + 1 = 32 subinterval of [0,1]

And M = 20 subinterval of [0,0.01]
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The space step size is h = é
The time step size is k = %
x; = ih, i=012..,N. t=jk j=012,.,M-1
Let u;; be the approximation of the solution u(x;, ¢;),
Xiz
utt(xii tj) =5 Uyx (X, t5)

Using 2™¢ —order centered-difference formula for u,, and u,, at the grid
point (x;, t;) and dropping the error terms, we get

Uijpr = 2U 5+ Ui joq X% Upyqj — 2Ug 5 + Uy
k? 2 h?

2

k2
Upjrr = 2Upj + Uy 1T X (Ui j — 205 + o ], 16t = ——

2h?
Ui jpr = AX P U4+ 200 = A2 )uy ; — AP uymg j — Uy jq
Sowhenj + 1isreplaced j + 2, we get

Uiz = AUy a1 + 200 = 202Uy g — AXP Ui jyg — Uy
For i =1,2,3,4,..,32 and j =1,2,34,...,20.

The boundary conditions imply: uy; = 0 and uy4,; = 1 + sinh(jk)

Initial conditions imply: u;, = ih and u;y,,; = (ih)?
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Table 2.6: The result of finite difference method for wave-like equation

l X U;

1 0.03125 0.0312597648
3 0.09375 0.0938378934
9) 0.15625 0.1564941463
7

9

0.21875 0.2192285265
0.28125 0.2820410392
11 | 0.34375 0.3449316610
13 | 0.40625 0.4079004237
15 | 0.46875 0.4709473089
17 | 0.53125 0.5340723150
19 | 0.59375 0.5972754320
21 | 0.65625 0.6605567180
23 | 0.71875 0.7239161120
25 | 0.78125 0.7873536280
27 | 0.84375 0.8508692660
29 | 0.90625 0.9144630310
31 | 0.96875 0.9781349360
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Chapter Three

Wavelets analysis

Wavelets can be used as basis for expanding a large class of functions.
Wavelet means a small wave where the sinusoids used in Fourier series are
big waves. In brief, a wavelet is an oscillation that decays quickly. Fourier
series uses the trigonometric functions; sine and cosine that do not decay,
I.e. they have infinite support. In the wavelet expansion of a function, the

bases are wavelets that decay quickly, i.e. they have finite support [8].

3.1 Wavelet transforms (WT)
In the year 1982, Jean Morlet introduced the idea of the wavelet transform
and provided a new mathematical tool for wavelet analysis. Definition

3.1[8]: Mother wavelets

A mother wavelet is a function ¥(x) that satisfies the following conditions

_ (e lywm)?
1. Cy = fO de < oo (31)

where W(w) is the Fourier transform of y(x) as a result [4,6]

f Yx)dx =0 (3.2)

2. a wavelet function is unit energy; that is

j YOOI dx = 1 (33)
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Where the energy of a function is defined to be the squared function
integrated over its domain by satisfying both equation (3.1, 3.2), the
wavelet function must have nonzero entries, but all departures from zero

must cancel out.
3. y is smooth, may be even infinitely often differentiable [30].

4. ¢y has a computationally convenient form; for example that ¥ is a

piecewise polynomial; i.e. as plane.

5. 1y has compact support; i.e. all function values are zero outside a certain

bounded interval.

A wavelet ¢, ,(x) is constructed from a mother wavelet by scaling and

translation.

Pap(x) = \/%l[)(%) , a,bER ,a#0 (3.4)

The parameter a is the scaling parameter or scale, and it measures the
degree of compression. The parameter b is the translation parameter which

determines the x — location of the wavelet.

If |a| < 1, then the wavelet is in the compressed version (smaller support
in the x — domain) of the mother wavelet and corresponds mainly to higher
frequencies. On the other hand, when |a| > 1, then ¥, ,(x) has a larger
x — width than ¥(x) and corresponds to two lower frequencies, thus
wavelets have space widths adapted to their frequency. This is the main
reason for the success of the Jean Morlet wavelets in signal processing and

time frequency signal analysis.
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There are three types of wavelet transform: The continuous wavelet
transform (CWT), the discrete wavelet transform (DWT), and the wavelet
series. The CWT transforms a continuous function to a continuous
function, The DWT transforms a discrete function to discrete function, and

the wavelet series transforms a continuous function to discrete function.
3.1.1 The continuous wavelet transforms and it's inverse

Definition 3.2[5]: The integral wavelet transform or continuous wavelet

transform of a function f(x) € L? with respect to some mother wavelet ¥

is defined as
Wyf(a,b) = [, f(wqpdx (35)
where
Yar@) = =9 (57),  a#0 (3.6)
Definition 3.3[6]: The factor \/ia = a‘% Is a normalizing factor. As a result
[Wasll, = ¥l (3.7)
[ Was@l*dx = [weorax (38)

Example 3.1: Consider the Mexican hat wavelet
Y(x) = (1 —2x2)e™™

also

Yap(x) = \/%1,0 (x _ b) - i(l _5 (ﬂ) )e_(%)z
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Fixing a = 1 and the translating factor b to any integer,

Wi, = P(x —b) = (1 — 2(x — b)?)e"*~1)" (see Figuer 3.3)

The Mexicen Hat Wavelst

N avelse
[ !
.

1) Y, e ae(x-2)?)e -2 2) Y, 2 (1—2e(xa2)D)e- D7

Lhe Mexican Har Wavelet The Mexican Hat Wavelet
~

: i
LER "‘ 1.5
[od] \
If 05 \ 1
/ \
/ n? \
/ b 1
|’ 0l ‘I
‘/ \‘\“
2 /"-': ' . 0 :‘\": ’ i -1 -3 o 2 . i
/ ] "‘.\
\\_J/ . \\_F// N
3 4 —(3+
) ¢3,0=%(1—z*(§)2)e—(§>2 ¥ 20=vV3(1-25(3+x)2)e~(3=0°

Figure 3.1: graph of the Mexican hat wavelet

Figure 3.1 (1, 2) is the graph of the Mexican hat wavelet where a =1 and
b=2,a=1andb=-2, respectively, also fixingb =0and the scaling

factor (or dilation) parameter a € R anda#0

Yao = 7= (%) = Fmwa-2(2))e
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Notice that, the scaling factor a > 1 stretch's the wave see figure 3, while

0 < a < 1 shrinks the wave see figure 4
Definition 3.4 [4, 6]: Inverse wavelet transform

Let W(w) be the Fourier transform of the y (x).

Y(w) = flp(x)e‘iwxdx (3.9)

If Wy f(a,b)is a CWT of a function f(x) with a mother wavelet 1 (x),
then the inverse CWT is given by

f(x) = i j ji Wy f(a, b) g (x)dadb. (3.10)
Cy g la|? '

where ¢, is a constant that depends on the choice of the wavelet and is
given by

P w)I?
Cy = Wl dw < oo (3.11)

— 00

The inverse CWT exists if ¢y, is positive and finite.

Definition 3.5[3]: let ¢ be a smooth function that is defined on R and has

compact support. For j, k € Z define a function v; by
J .
Yi(x) =229(2/x—k), x€eR (3.12)

The function 1; is a scaling by j units and a translation by k units of the

mother wavelet .
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Example 3.2: To show the effect of scaling and translating, consider the

function ¥(x) = x2.

Use scaling and translations functions.

() = 229(2ix — k) = 25(2x —k)* ;xR ,j k€L
To understand the scaling role of j, fix k = 0 than

J j .
Pio(x) =229 (2x) = 22(2/x)* ,j€Zx€ER

Figure 3.2: (a) (b)
(@) The scaling role of j, fixk=0, in" mother wavelet "
(b) The translation role of k, fix j =0, in " mother wavelet

In figure 3.2(a), if j positive then the graph of v, is similar to the
graph compressed, but if j is negative than the graph of ¥, , is similar to

the graph of i but has localized as is figure 3.2(a) .

also, to understand the translation role of k .
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Fix=0.
Yor =¢(x—k)=(x—k)* k €Z ,x€R.

In figure 3.2(a), if kis positive then the graph to i, is similar to the

graph of ¥ but, shifted to the right, if k is negative, then the graph of
Yo IS similar to the graph of 3 but shift to the left as in figure 3.2(b) .

Definition 3.6[3]: The wavelet system {1/)]-,,{}]_ - from orthonormal basis

for L?(R) where
Vi = 2£¢(2jx —k), x€R (3.13)
Wise = O = 25wy (5,27) (314)
Theorem 3.1[ 3] : The system {lljj'k(x)}j,kezis orthogonal on (—oo, o)
[ iaComyCaax = {L U I=dk =k (315)

3.1.2 Discrete wavelet transforms (DWT)
Definition 3.7[9]: Discrete wavelet transform

In the CWT, replace the scaling parameter a by 2=/ and the translation

parameter b by k 27/, Integral (3.2) becomes

wyf(277,k277) = 2‘% f F)P(27x — k)dx (3.16)
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3.1.3 Wavelet series

Under certain conditions, the series expansion of a function in terms of a

given set of simple function {f,, }n= IS

(00]

F&) =) anfa@ (3.17)

n=0

The function and the set {f,, },,—omust satisfy certain conditions that enable
us finding the coefficientsa,,. For example Taylor series expands a periodic
function of period p = L that is analytic at point x, using the orthogonal
system {(x — xy)"}n=o While Fourier series expands a square integrable

function using the orthogonal trigonometric

(0.0)

system {sin (—), cos(—)! . Itis the orthogonality of such system on
y L L “Jn=0

[—L, L] that enable us to compute the coefficients in the expansion of the

function.
Definition 3.8[3]: Wavelet series
The wavelet series expansion of a given function f is given by:

fx) = ZjEZ Dkl Cj,kl/Jj,k(x) = ZjEZ Yierdf ilpbj,k>f}',k (3.18)
where the coefficients ¢; , or (f,;,) are uniquely defined by

i = {f i) = [ o FOOP, () dx (3.19)
where ¥, = 27y (2/x — k).
The wavelet system {Iljj'k}j,kez is fully determined by the function v, that

IS, we only need to store, information about the single function y to be
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used in (3.19). For existence of wavelet series expansion, the mother
wavelet must satisfy the admissibility conditions given in definition 3.1
In practice, we don't expect y to have all the above properties, so we need
to be careful and only insist on the properties that are needed in the
application we have in mind.
In cases where we need to work with the time behavior of functions as well
as their frequency-content, we must replace the wish for compact support
of either 1 or ¥ with the requirement that the function at last tends to zero
very fast. Formulated for the function v, such a requirement could be that
there exist constants c,a > 0,s.t

lp(x)| < ce” ™ \vx e R

Assuming the convergence of the wavelet series, we may use it to

approximate a given function by :
f(x) = Zj=—n Yk=-N Cj,kl/’j,k(x)
For sufficiently large value of n € N [3]

3.2 Advantages of Wavelet Theory [8]
1. The most advantage of wavelets is that they show a simultaneous
localization in time and frequency domain.
2. The next advantage of wavelets is the speed fast wavelet transform.
3. Wavelets have the great advantage of being able to separate the fine
details in a signal. Very small wavelets can be used to isolate very
fine details in a signal, while very large wavelets can identify coarse

details.
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4. A wavelet transform can be used to decompose a signal into
component wavelets.

5. In wavelet theory, it is often possible to obtain a good approximation
of the given function f by using only a few coefficients which is the
great achievement in comparison to Fourier transform.

6. Wavelet theory is capable of revealing aspects of data like trends,
breakdown points, and discontinuities in higher derivatives and self-
similarity.

7. It can often compress or de-noise a signal without appreciable

degradation.

3.3 Comparison of wavelet transform with Fourier transform

1. Fourier transform is a strong tool for analyzing a collection of
stationary signals (a signal with no change in the properties). Sine
and cosine (sinusoid signals), for example, are processed by the
application of Fourier transform. However, the analysis of non-
stationary signals (where the change in the properties occurs) is less
useful by Fourier application. On the contrary, wavelet transform is
applicable to both stationary and non-stationary signals [7, 8].

2. Fourier transform proves to be useful in certain areas out of
traditional signal processing. But it should be noted that the
mathematical design of wavelets is broader than the Fourier
transform, and to be more specific, the mathematics of wavelets

include Fourier transform [7, 8].
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3. Wavelet and Fourier transforms are mainly different in the domains
of time and frequency. Wavelets are well localized in time and
frequency, while Fourier application in such domains is standardized
in localizing them. While both have good effects out of localized
time and frequency, wavelet shows better representation by Walnut
multi-resolution analysis [7, 8, 9].

4. Fourier transform relies on a single scaled function ¥ (x), but the
wavelet transform has the ability to move the function and generate a

two-parameter series of functions v, , (x) defined [8, 9].
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Chapter Four
Haar wavelet

Wavelet transform or wavelet analysis is recently developed mathematical
applications for many problems. There are many wavelets. One of the most
simple and popular is the Haar wavelets.

Because of simplicity of Haar wavelet, it becomes an efficient technique
for solving many problems that arises in many branches of science,
engineering and economic. So, in the next chapter, we will use wavelets for
solving differential equations. Haar function was first introduced by the
Hungarian mathematician Alfred Haar in appendix of his doctoral thesis in
1910, and later, it was developed by others. Haar function is an odd
rectangular pulse pair, is the simplest and oldest orthonormal wavelet with
compact support. There are different definitions of Haar function and

various generalizations have been used [9, 25].
4.1 Haar Wavelet function

4.1.1 The Haar scaling function

There are two functions that play a primary role in wavelet analysis,
the scaling function ¢ and the wavelet . These two functions generate
a family of functions that can be used to break up or reconstruct
signals. To emphasize the family involving ¢ and y, ¢ is called the "father

wavelet " and 1 is the "mother wavelet".
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Example 4.1: The building blocks are translations and dilations ( both in

height and width ) in basic graph [2].

3

2}

g v v v

Figure 4.1: Voltage from a faulty meter

A

01 02 03 04 05 06 07 08 095 1

Figure 4.2: Approximation voltage signal by Haar function

The building blocks generated by the Haar scaling function are particularly

simple and illustrate the general idea underlying a multire- solution

analysis, which we will discuss next. The disadvantage of the Haar
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wavelets is that, they are discontinuous and therefore do not approximate

continuous signals very well.

4.1.2 Basic properties of the Haar scaling function
Definition 4.1[2]: The Haar scaling function, also called the father wavelet,

is defined as

if 0<x<1
else where

60 ={ 4.1)

Figure 4.3: Graph of the Haar scaling function.

Remark [2, 5]: The function ¢(x — k) has the same graph as ¢ but

translated to the right by k units (assuming k is positive).

Notation: we will use V, for the space of all functions of the form
Dz AP (x — k) ax €R (4.2)
where k ranges over any finite set of positive or negative integers.

Remark [2]: since ¢(x — k) is discontinuous atx = kand x =k + 1, an
alternative description of V, is that it consists of all piecewise constant

functions with possible discontinuities at integers. Each element of V, has
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finite or compact support which means the element is zero outside a

bounded set. The graph of a typical element of V, is given in Figure 4.4

az
I g
ap '
1 '

'
'
'
.
x ‘ [ S—
o ' ]
' ' '
i + . 4— x
-1! 0 1! 2 3! 4,
' ' ' '
— @ v oay )

Figure 4.4: Graph of typical element of V.

Note that a function in V, may not have discontinuities at all integers for

example, if a; = a, then the preceding sum is continuous at x = 2.
Example 4.2: The function
fl) =3¢p(x) —p(x — 1) + 2¢(x — 2) + 2¢(x — 3) — 2¢(x — 4) €V,

has discontinuities at x = 0,1,2,4 and 5 but not at x = 3 see figure (4.5).

Figure 4.5: Plot of fin example 4.2

We need thinner blocks to analyze signals of high frequency. For example,
the width of the building block ¢ (2x) is half the width of ¢(x), see figure
4.6
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Figure 4.6:

The function ¢p(2x — k) = ¢ (Z(x — S)) Is the same as the graph of the
function of ¢(2x) but shifted to right by gunits [2,5].

Notation: let V; be the space of functions of the form
Dkez AP (2x — k) ax €R (4.3)

Geometrically, V; is the space of piecewise constant functions of finite

support with possible discontinuities at half-integers {0, + 1/2, +1,+ 3/2,
).

Example 4.3: The function

f(x)=3¢p2x) —p2x—1)—¢pR2x—2)+2¢p(2x—-3) €V,

has discontinuities at x = 0 % ,1,2,; and 3 as shown in figure ( 4.7).

-
a

Figure 4.7:



36
Definition 4.2[2]: The space of V, is the space of all piecewise constant
function with discontinuities contained in the set of integers. The space

V, is the space of all piecewise consists functions with discontinuities
. . . 2n+1
contained in the set of half integers {T Y (NS Z}.

Definition 4.3[2]: suppose j is any nonnegative integer. The space of step

functions at level j, denoted by V; is defined to be the space spanned by the
set {...,p(27x + 1), ¢(27x),p(2/x — 1), ¢p(2/x — 2), ....} over The real
numbers. V; is the space of piecewise constant functions of finite support

whose discontinuities are contained in the set .
(7Y 0.2 3}
The same applies for V; < V,and so forth :
VW clh cViy clp cViyq..

Remark: This containment is strict. For example, the function ¢(2x)

belongs to V; but does not belong to V, [since ¢(2x) is discontinuous at

X = %].

Theorem 4.1]2]:

A function f (x) belongs to V, if and only if f(2/x) belong to V;.
A function £ (x) belongs to V; if and only if f(27/x) belongs to V.

Theorem 4.2[10]: A set of nonzero functions {¢(x — k), k € Z} in

L*space are orthonormal to each V; component.
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I —iNZ = [7 px—k)?dx = [ 1dx=1 (4.9)
(=) dplx =Kz = [ dplx—Dpx—k)dx =0, j#k (45)

x-J) x=k)

e - o=
el S
e - - - -

k41

. P = -

Jj+1

Figure 4.8: ¢(x — j) and ¢ (x — k) have disjoint support.
Theorem 4.3[11]: The set of functions {Zé ¢(2/x —k), k€ Z} is an

orthonormal basis of V;.

Definition 4.4[15]: The function

1 0<x < %
P(x) = -1 leye1 (4.6)
2
0 otherwise

Is called the "mother wavelet ".

The Haar wavelet has compact support, and clearly f_°°oo Y(x)dx = 0and

Y € L*(R), but this wavelet is not continuous.
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Figure 4.9: The Haar wavelet ¥ (x).

Figure 4.9 indicates that the Haar wavelet has good time localization but
poor frequency localization. Most of applications of wavelet exploit their
ability to approximate functions as efficiently as possible, which means as

few coefficients as possible.
Definition 4.5 [9]: Vanishing Moment

The wavelet is said to have M (M € N) vanishing moment if it satisfies

The following condition.

f x™"Y(x)dx =0, m=0,1,...M — 1. (4.7)
Remark [28, 30]: The smoothness of the wavelet increases as the number

of vanishing moment increases.

Remark [28]: The Haar wavelet ¢y has compact support on [ if it vanishes
outside I. If ¥ has M vanishing moment, then its support is at least of

length 2M — 1, so the Haar wavelet has minimum support equal to one.
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b7
had

-1 g 1

Figure 4.10: plot of the mother wavelet.

Definition 4.6[14]: a function in V; is orthogonal to V,, if and only if it is of

the form Y,eczar¥(x — k), a; €ER, (4.8)

let W, be the space of all functions of the form

Z a,P(x — k), a, € R,

k€EZ

where, again, we assume that only a finite number of a, are nonzero. Then

W, is the orthogonal complement of V,, in V;; in other words,
V1 - VO('DWO
Theorem 4.4[2]: let W; be the space of functions of the form

Z ap(2/x — k) a, € R (4.9)

k€eZ

where we assume that only a finite number of the coefficients a; are

nonzero. W; is the orthogonal complement of V; in V;,; and
Vier = V,@OW (4.10)
Definition 4.7[2]: The Haar wavelet can be written as

Y(x) = p(2x) — p(2x = 1) (4.11)
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4.2 Properties of Haar wavelet.
1. Haar wavelet is very well localized in the x domain, but not continuous.

2. [ Y()dx=0 and ["[Pp(0)|?dx =1 (4.12)

3. Any continuous real function can be approximated by linear combination

of ¢(x), p(2x), Pp(4x),...,(27x) and their shifted functions,

This extends the function space where any function can be approximated

by continuous functions.

4. Any continuous real function can be approximated by linear combination

of the constant function y(x), ¥(2x), Y(4x),..,1(27x) and their shifted

functions.

5. A Wavelet function can be written as a combination of wavelet functions

with different scales: Y (x) = ¢(2x) — p(2x — 1) (4.13)
Similarly, for the scaling function: ¢(x) = ¢(2x) + ¢p(2x — 1) (4.14)
6. Haar function are orthogonal.

ie. [© 27my(2/x — k)Yp(2™x —n)dx =8 Sin (4.15)
7. The integration of Haar wavelets can be expandable into Haar series.
4.3 Wavelet collocation method

Collocation method [9] used in numerical solution of differential equations.
The main idea involves numerical operators acting on point values

(collocation points) in the physical space, or dividing the domain as a
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number of points and calculates the solution about it. Generally, wavelet
collocation methods are created by choosing a wavelet and some kinds of
grid structure which will be computationally adapted.
In effect, one obtains finites differences on non-uniform grid. The
treatment of nonlinearities in wavelet collocation method is straight
forward task.

4.4 Haar wavelet transformation

The Haar wavelet is system [15, 17].

1 for x €leg, &)

J .
hi(x) = 22yp(2/x — k) ={ -1 forx€[e,,e3) (4.16)
0 otherwise
k k+0.5 k+1
Where & = ; ) &y = m &3 = —.

where m=2/, j=0,12,../, k=012, ... ,m—1

j indicates the level of wavelet or the dilation parameter or scaling

(changing levels ).
k denotes translation parameter.
J denotes the maximum level of resolution.

The index i in h;(x) is determined by i = m+ k + 1. In the case of
minimal valuesm = 1, k = 0, we have i = 2. The maximum value of i is

i =2M = 2/*1,

Fori = 1, the function h, (x) is the scaling function or the father wavelet

for the family of the Haar wavelets which is defined as
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1 x €10,1)
0 otherwise

hy(x) = { (4.17)

For i = 2, the function h,(x) is the mother wavelet for the family of the
Haar wavelet which is defined as
1 0<x< 1/2

0 otherwise

For i = 3, the function h;(x) is defined as

(1 xE[O%)

hs;(x) = { e %é) (4.19)

k 0 otherwise

For i = 4, the function h,(x) is defined as

" c 2 3)
S R
hy(x) = 3 4 (4.20)
_1 eEl|l— —
X 4’4)

0 otherwise

Theorem 4.5[16]: Haar wavelets are orthogonal to each other and therefore

constitute an orthogonal basis shown as.

1 —-J | — e J
[ hiGOhy (x)dx = {2 . L=2 J’l’; 1 (4.21)

Table 4.1: Index computations for Haar basis function

j o 1 |2 2 2 2 |3 3 3 3 3 |...

k o(f0 1. |0 1 2 3 (0 1 2 3 4

i=2/+k+1 2|13 4 5 6 7 8|9 10 11 12 13
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Figure 4.11: The first eight Haar functions

The orthogonal set of Haar wavelets from h,(x) to hg(x) is shown in
figure 4.11, which contains a family of single square wavelets. The first
basis h,(x) is called scaling function, which is equal to one for whole unit
time interval. The second basis h,(x) is the fundamental square wave is
called mother wavelet. The others, h;(x) to hg(x) are generated from

h,(x) via two operations: dilation and translation.
4.5 Function approximation

Any function u(x) € L?[1,0) can be decomposed as [ 17]

(00)

u(x) = z a,h,(x), i € {0}UN, (4.22)

i=0

where the coefficients a,, are determined as,
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1 1

ag = fu(x)ho(x)dx, a, = 2jfu(x)hl-(x)dx (4.23)

0 0

where n=2/+k j=>0, 0<k<2/, x€[0,1)

such that the following error norm € :

2

e = | [ulx)— aihi(x)] dx, m=2/, je{0}UN (4.24)
[l0-2

IS minimized
Usually, the series expansion of u(x) contains infinite number of terms. if

u(x) is piecewise constant by itself, or many be approximated as piecewise

constant during each subinterval.

4.6 Convergence analysis of Haar wavelets

Assume that f(x) is a differentiable function with
If(x)| <K, Vvxe€(a,b) suchthat |f'(x)|<K.

where K is a positive constant. Haar wavelet approximation for the function

f(x) isgiven by

2M

()= ) @) (4:25)

i=1

Babolian and Shahsavaran [21] have shown that the square of the error

norm for wavelet approximation is given by

3

12M?

£ ) = fu@II* = (4.26)
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Therefore,  [If(x) = fu ()l = 0 ().

The maximum absolute error = L, = max.|u; (x) —ui(x)| (4.27)

: : L
The maximum relative error = L, ;- = |e—z°)| (4.28)
ul X

where uf and uf are the exact and Haar solution respectively at the [™
collocation points x;, L = 1,2, ...,2m. We choose the computational domain
[ 0,1 ] for each numerical example.

4.7 Integration of Haar wavelets

We want to integrate differential equations following the method of Chen
and Hsiao method ( CHM ) and we'll talk about this principal method more

clearly in the next chapter. We have to evaluate the integrals[16].

PiaC)=[ [ . [ h(@dt®=

(a—time)
a=1,2,..n, i=12,.. 2M

1
(a-1)

f:(x —1)* th;(1)dt (4.29)

The case a = 0 corresponds to the function h; (7).

Taking account of h;(x), these integrals can be calculated analytically. By

doing so, we obtain

( 0 forx < g
i[x — &% for x € [g, &]
Pai () = 5 i{[x —&]% = 2[x — &]%} for x € [g,,&] (4-30)
Z{lx - 1% = 2[x — &]* + [x — &3]} forx > &

These formulas hold for i > 1. In the casei =1, we havee; = A,¢, =

& =B, and
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1
Pra(¥) = — (@ =A%,

In the Haar wavelet method [16], the following integrals are used

P 1(x) = fhi(r)dr (4.31)
0

X—¢& X E[&,¢&)
Pii(x) = {83 —X XE[&,€) (4.32)
0 otherwise

X

Py (x) = jPi,v(T)dT ) v=123,... (4.33)
0

Some calculated P; ,,1(x) ,v = 1,2, ... are given below

(0 x € [0,¢&)
_ 2
% x € [&1, &)
Pio(x) =< 1 (55-x)? 4,34
l,Z( ) 4m2 — 32 X E [82, 83) ( )
1
\ ) X € [83, 1)
(0 x €[0,&)
23
(x 681) X € [81182)
Pis(x) ={(x—¢&,) (g5—1x)3 (4.35)
- X € [&,,&3)
4m? 6
X —¢€
L 4m22 X € [&g5,1]
(0 X € [Or 81)
(x —&)*
241 X € [g1, &)
Pia(x) =1 (x—g,) (g5 —x)* 1 € [, 60) (4.36)
8m2 24 192m* * ° Ew s
X — & 1
X € [&3,1]
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Similarly for P; ,(x), v = 5,6, .., are obtained in similar way.
4.8 The product operational matrix of the Haar wavelet

The integrals in (4.32- 4.36) are evaluated can be used for all differential

equations [14].

It is convenient to pass to the matrix formulation. For this purpose the
1

interval x € [0, 1] is divided into 2m parts each of length Ax = Py , Where

m = 27. We define the collocation points where we will approximate any

function as
_a-1 1=1,2,..2 4.37
X = e for l=1,2,..2m (4.37)

At these collocation points, we discretize the Haar function h;(x) to

obtain H,,,x», Ccoefficient matrix called Haar matrix.

The Haar coefficient matrix H is defined as

Hipy (@, 1) = hy(xy) (4.38)
To compute H, we define a vector of Haar functions

hemy () = [Ro(x), hy (%), . hpp—1 ()]" (4.39)

where m is the dimension of the vector. These vectors are used to compute

each column of Haar matrix as

Homy = [h(m) (%) Rom) (%) oot By (Mnin_l D)lT (4.40)

The integral matrices P, have the elements P,(i,l) = P;, (D).
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Chen and Hsiao defined the integral matrix in a different way. They

calculated P,y from the equation

x
jh(m)(l’)d’[ = P(m)h(m)(X) , X € [0,1) (441)
0

The result is the square matrix P,y = Panxm) Which is called the

operational matrix of integration [13].

Chen and Hsiao method showed that the following recursive formula

holds:
2m P —H
, LT g e 42
(7x%) (5%%)
where O m m is null matrix.
2 2
T
Hemy = [h(m) (%0), h(m) (x1), eess h(m) (xm—l)] (4.43)

l l+1 - 1 .
where — < x; < — and Hepym) = ;H(mem)dlag(r)

It should be noted that calculations for P,y and H,,y must be carried

out only once. Since H and H~! contain many zeros, this phenomenon
makes the Haar transform faster than Fourier transform, this is one of the

reasons for rapid convergence of Haar wavelet series [19].

Then u(x) will terminate at finite terms [17].
m-—1

u(x) = Z a, h, (x) = a(Tm) hmy (x) (4.44)

i=0
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where the coefficient vector a{m) and the Haar function vector h,)(x) are

defined as
a{m) =[ag,as, . am_1] and Ry (x) = [ho(x), hy (), ... Rn—1 ()"
Example 4.4: Haar matrices

We start with Haar matrix of order one: Hqy = [1]

1. Haar matrix of order two

The first two Haar function vectors with x = % ,1 = 1,3 can be expressed
the following:
h . —-h ! h 1_T—11T

(2)(4)_ | °(4>’ 1(4)_ =1.1]

o ()= oo =17

which can be written in matrix from as

1 N
oy = [ (3) b (3)] =1
2. Haar matrix of order four

The first four Haar function vectors with x == ,1=1,3,5,7 can be

Q| =

expressed as follows:

< (3 )1 10117
T

Q)= 1o Q) o Q) = 01,17
Q)=o) Q)1 o Q- 11001
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o Q)= Q) () 1 Q) = 1.1,

which can be written in matrix from as

1 1 1 1
He = [ (5) hew (3) heo (3) e @]T:i _11 _ol _01
0 O 1 -1

3. The same method can be written as Haar matrix of order eight.

1 1 1 1 1 1 1 1]

1 1 1 1 -1 -1 -1 -1

1 1 -1-10 0 0 O

. 00 0 0 1 1 -1 -1
®71 .10 0 0 0 0 O
00 1 -1 0 0 0 O

0 0 0 1 -1 0 0

0 0 0 0 0 1 -1

Example 4.5: The operational matrix of integration shown as

We start with the operational matrix of order one: P,y = E]

1. The operational matrix of order two is obtained by the recursive formula

and the operational matrix of rank one defined as

112 -
P(Z)zlL o}

2. The operational matrix of order four is obtained by the recursive formula

and the operational matrix of rank two defined as
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8 —4 -2 -2

1la 0 -2 2
P=%l1 1 0 o
1 0 0

3. The operational matrix of order eight is obtained by the recursive

formula and the operational matrix of rank four defined as

32 16 -8 -8 -4 —4 —4 —4]

6 0 -8 8 -4 -4 4 4

4 4 0 0 -4 4 0 0

114 4 0 0 -4 4 0 0
Po=%l1 1 2 0o 0 o0 o o
1 1 -2 0 0 0 0 0

1 -1 0 2 0 0 0 0

1 -1 0 -2 0 0 0 O]
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Chapter Five
Wavelet method for differential equations

Haar wavelets functions appear very attractive in many applications as in
solving differential equations, image processing, data compression and
computer graphics. In this thesis, we use Haar wavelet method for solving
differential equations. In this chapter, we consider second-order linear

ordinary differential equations and linear partial differential equations.

5.1 The method of solution for differential equations

The Haar wavelet is the simplest orthonormal wavelet with compact
support. It should be mentioned that the Haar wavelet has a fundamental
imperfection, it is not continuous. At points of discontinuity the derivatives
do not exist, therefore it is not possible to apply the Haar wavelet directly
for solving differential equations.

There are two ways to avoid the discontinuity problem. First, The
piecewise constant Haar functions can be regularized with interpolation
splines. This technique has been applied by Cattani. This greatly
complicates the solutions process, losing the main advantage of Haar
wavelets, namely its simplicity [23]. The second possibility, the method we
adopt, is the use of Chen and Hsiao method. They recommend expanding
the highest derivative appearing in the differential equation in terms of its
Haar series instead of expanding the solution. Then the expansion is
integrated a number of times equals the order of the highest derivative to

obtain the expansion of the solution and all of its derivatives through
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integration. In the power series method, we start with the power series
expansion of the solution, and then we obtain the expansion of the
derivatives through differentiation. Here we start with the wavelet
expansion of the highest derivative and we obtain the wavelet expansion of
lower order derivatives and the solution itself through integration.
In this thesis we will adopt the method of Chen and Hsiao method (CHM).
Chen and Hsiao demonstrated the possibilities of their method by solving
linear system of Ordinary Differential Equations (ODEs) and Partial
Differential Equations (PDESs) [23, 24].
The main idea of Chen and Hsiao method (CHM) technique is to convert a
differential equation into a system of algebraic equations; which involves a
finite number of variables, the solution procedure is either reduced or
simplified accordingly[17,18 ].
The boundary conditions are incorporated by using integration constants.
This approach has been realized for the Haar wavelet by Chen and Hsiao
method [18, 20].
The procedure is given in the following five steps.
Step (1): In the differential equation. Expand the highest derivative in its
Haar series.
Step (2): Integrate the expansion in step (1) repeatedly and using the given
conditions until getting the expansion of the solution u(x) this way, we
have the expansion of the solution and all of its derivatives that appear in

the equation.
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Step (3): Substitute the expansion of the solution and its derivatives

obtained in step (2) into the equation and evaluate at the collocation points

21-1 1-0.5 . .
X = rX = — ,1=1,2,..,2m for a given resolution M ; the

4m

result is the system of algebraic equations.

Step (4): Solve the system of algebraic equations obtained in step (3), For
the wavelet coefficients a;.

Step (5): Replace the coefficients a; in the expansion of the solution to get

the solution with resolution M.

5.2 Haar wavelet transformation for linear ordinary differential
equations
In this section, we solve second order linear ordinary differential equation

using Haar wavelet method.

The general form for a second order linear ODE is

u” 4+ pg COu' () + p(ulx) = f(x) (5.1)
where x € [a, b]

We intend to do J levels of resolutions, hence we let 2M = 2/*1, The

interval [a, b] will be divided into 2M subintervals hence Ax = bZ;Ma and the

matrices are of dimensions 2M X 2M .

5.2.1 Initial value problems
To explain the approximation of solutions to a second-order linear I\VP

using Haar wavelet series. Consider the general second-order linear 1VP

u” (%) + pa Ou' () + pa (ulx) = f(x) (5.2)
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with initial conditions u(0) = a and u'(0) = o.

where the coefficients u,(x) and u,(x) are assumed to be expandable in

Haar series.
To begin the approximation, we follow Ulo Lepik [15, 21, 22, 24].
Step (1): We assume that
u(x) = Y2M a;h;(x), foragiven resolution level M (5.3)
Step (2): Now integrate (5.3) and (5.4) from 0 to x, to get
w'(x) = ¥ Py (x) + ' (0) = I P2 (x) + o (5.4)
u(x) = XM a; Pio(x) + xo + u(0)
= YMa;P,(x) +x0+a (5.5)

Step (3): Substitute (5.3)-(5.5) into (5.2), simplify and evaluate at the

. . 21-1
collocation points x; = E'l =12,..,2m.

2M
D ailhie) + 1 () Py (1) + B ()P (1)
i=1
= f(0) = 1 ()0 = 1 () 0 — ] (5:6)

Step (4): Solve the system in step (3) for the wavelet coefficients a;.

Step (5): Obtain the numerical solution for u(x) by using the coefficients

a; in the wavelet series expansion of the solution.
The procedure is generalized to higher-order I\VVPs in similar way

Example 5.1: Consider the second-order homogeneous IVP:
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u”(x)+%u(x) =0, 0<x<1

u(0) =1, u'(0) = 0.

with the exact solution

X

u(x) = cos (E)
Using three levels of Haar wavelet (] = 3)

Step (1): Expand the highest derivative u" (x),

2M

WG = ) ahi()

=1

Step (2): Integrate both sides from 0 to x.

jxu”(r) dt = jxiw: a;h;(t)dt

0 0 i=1

u'(x) —u'(0) = i a; Jx h;(t)dt
i=1 0

u'(x) = ilz a;P;1(x)

Again, integrate both sides from 0 to x.

jxu’(r)dr = fiw:aiPi’l(r)dt
u(x) —u(0) = iw:aipi,z(x)

u(x) = Z a;P;,(x) +1

i=1



Step (3): Substitute u(x) and its derivatives in the equation and evaluate at

the collocation points x;.

u(x) + %u(x) =0

2M

i=1
2M

1o 1
Z a; h;(x) + 12 a;P;,(x) = 2
im1
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1 1
Z a; [hi(xl) + ZPi,Z(xl)] = 1=12,..16

i=1

Step (4): Solving the system of linear equation by direct method. We obtain

the wavelet coefficients a;.

Step (5): Substitute the coefficients in u(x) to get the solution.

Table 5.1 shows the exact and the approximate solutions at different nodes.

Table 5.1: The numerical solution of example 5.1

Node(x/32) Exact Haar solution Error
1 0.99987793 0.99987799 6.000 x 1078
3 0.99890157 0.99890190 3.400 x 1077
5 0.99694979 0.99695021 4.100 x 1077
7 0.99402452 0.99402576 1.250 x 1076
9 0.99012859 0.99012999 1.400 x 10
11 0.98526582 0.98526860 2.780 x 107°
13 0.97944095 0.97944397 3.010 x 10
15 0.97265968 0.97266461 4940 x 10°°
17 0.96492862 0.96493385 5.240 x 107°
19 0.95625532 0.95626301 7.690 x 107
21 0.94664826 0.94665631 8.050 x 10~°
23 0.93611681 0.93612783 1.101 x 1075
25 0.92467126 0.92468269 1.143 x 1075
27 0.91232278 0.91233768 1.489 x 10~°
29 0.89908344 0.89909880 1.536 X 107°
31 0.88496616 0.88498545 1.929 x 1075
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Maximum absolute error of Haar wavelet for 1\VP is 1.929 x 10~°

Comparison between Exact and Haar solution

ot
L=
LA
1

0 .20 002 004 095 098
r— axis

Haar|

| + Exact

Figure 5.1: The exact and numerical solutions of example 5.1

Drawing Error of Haar solution
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r— axis

Error of Haar|

Figure 5.2: Error in the wavelet solution of example 5.1
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Example 5.2: Consider the second-order inhomogeneous IVP:
u''(x) + u(x) = sin(x) + xcos(x), 0 <x <1

u(0)=1, u'(0) =1.

with the exact solution

u(x) = cos(x) + %Sin(x) + 1 (x? sin(x) — x cos(x))

Using three levels of Haar wavelet (J = 3)
Step (1): Expand the highest derivative u"’ (x),
u’(x) = X a; by (x)

Step (2): Integrate both sides from 0 to x.

Jyu'(@dr = [ 2 ahy(T)dr

2M X

= w'(x) — ' (0) = z a; j hy (T)dz
i=1 0

u'(x) = z a;P;,(x) +1

Again, integrate both sides from 0 to x.

x X 2M x

fu’(r)dr= jZaiPijl(T)dT+de

0 0 i=1 0
2M

u(x) —u(0) = Z a;P;,(x) +x

i=1
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2M

u(x) = Z a;Pi,(x) +x+1
i=1
Step (3): Substitute u(x) and its derivatives in the equation and evaluate at

the collocation points x;.
u''(x) + u(x) = sin(x) + x cos(x)

2M
Z a; [hi () + Py 5 (x)] = sin(x;) + x; cos(x) —x,— 1,1 =1,2,...,16.

i=1

Step (4): Solving the system of linear equations in step (3), we obtain the

wavelet coefficients a;.

Step (5): Substitute the coefficient in u(x) to get the solution.

Table 5.2 shows the exact and the approximate solutions at different nodes.

Table 5.2: Haar wavelet and RK4 method, for example 5.2

Node(x/32) Exact Haar solution Runge-Kutta 4
1 1.03076684 1.03079305 1.03076684
3 1.08949571 1.08963744 1.08949572
5 1.14469969 1.14489222 1.14469969
7 1.19664324 1.19695329 1.19664325
9 1.24559411 1.24595329 1.24559411

11 1.29181853 1.29229015 1.29181853
13 1.33557659 1.33609320 1.33557659
15 1.37711767 1.37773557 1.37711768
17 1.41667605 1.41733311 1.41667606
19 1.45446674 1.45520769 1.45446675
21 1.49068148 1.49145409 1.49068150
23 1.52548513 1.52631904 1.52548514
25 1.55901222 1.55986889 1.55901223
27 1.59136390 1.59225504 1.59136391
29 1.62260531 1.62350935 1.62260532
31 1.65276320 1.65367175 1.65276321
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Comparison between Exact, Haar solution and Runge-Kutta(4)

xr— axis

T
1.6

| < Exact — — Haar

Runge Kutta (4) |

Figure 5.3: The exact and numerical solutions (Haar solution and RK4).

Table 5.3: Error using Haar wavelet method and RK4 for example 5.2

Node(x/32) | Error of Haar Error of RK4
1 2.2610 x 1075 1x 1078
3 14173 x 1074 1x10°8
5 1.9253 x 1074 1x10°8
7 3.1004 x 1074 1x 1078
9 3.5896 x 1074 1x1077
11 47163 x 10~* 1x10°8
13 5.1662 x 104 1x 1078
15 6.1790 x 10~* 1x10°8
17 6.5705 x 10~* 1x10°8
19 7.4095 x 1074 1x 1078
21 7.7260 x 10™* 2x 1078
23 8.3390 x 107* 1x1077
25 8.5663 x 10™* 1x10°8
27 89113 x 107* 1x 1078
29 9.0404 x 10~* 1x10°8
31 9.0855 x 107* 1x 1078
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Comparison between Error of Haar and Error of Runge-Kutta(4)
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Figure 5.4: Error using Haar wavelet method and RK4 for example 5.2

Maximum absolute errors at different resolutions we given the following

table.

Table 5.4: Convergence of Haar wavelet for initial value problem.

Level of 2M Lo Ratio of Linre

resolution L
J=3 16 |9.0855x 10~* 5.6024 x 10~*
J=4 32 [2.2735x 107* | 0.2525044810 | 1.3881 x 10~*
J=5 64 |5.6910x 107> | 0.2503188916 | 3.4433 x 10>
J=6 128 | 1.4220 x 107> | 0.2498682130 | 8.5655 x 10~°
J=7 256 | 3.5600 x 107° | 0.2503516174 | 2.1491 x 10~°
J=8 512 |8.9010 x 10~7 | 0.2500280899 | 5.3433x 1077
J=9 1024 | 2.2011 x 1077 | 0.2472868217 | 1.3201x 1077
J=10 2048 | 6.0012 x 1078 | 0.2726454954 | 3.5901x 108
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Comparison between Maximum Absolute Error and Maximum
Ralative Error for IVP
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Figure 5.5: Comparison between maximum relative error and maximum absolute error

in example 5.2

Example 5.3: Consider the 4" —order of I\VP:

u® (x) + xu(x) = 16 sin(2x) + xsin(2x), 0<x < 1.
u(0)=0,u'(0) =2, u"(0) =0,u""(0) = -8.

with the exact solution

u(x) = sin(2x).

Using three levels of Haar wavelet (] = 3)

Step (1): Expand the highest derivative u™ (x),

2M

D) = ) arhi(x)

i=1
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Step (2): Integrate both sides from 0 to x

X X 2M

fu(4)(r)dr = fZaihi(T)dT
0 o i=1
2M 2M
u"(x) —u"(0) = z a;Pi1(x) = u"(x) = Z a;P; 1 (x) +u""(0)
i=1 i=1
2M
W) = ) aPyy () -8
i=1

Again, integrate both sides from 0 to x

X X 2M x
j u'"'(t)dt = jz a;P; 1 (r)dt — f 8drt
0 o i=1 0
2M
= u"(x) — u"(0) = z a;P;,(x) — 8x
i=1
2M
u''(x) = z a;P;,(x) — 8x
i=1

Again, integrate both sides from 0 to x

x X 2M x
fu”(r)dr = fzaipi'Z(T)dT_f8T dt
0 0 i=1 0
2M
= u'(x) —u'(0) = Z a;P; 3(x) — 4x*
i=1
2M
u'(x) = Z a;P;3(x) —4x* + 2
i=1

Again, integrate both sides from 0 to x.
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x X 2M x x
f u'(7)dt = jz a;P; 3 (7)dt — f 4t dt + J 2dt
0 0 i=1 0 0
2M A
u(x) —u(0) = z a;P;4(x) — §x3 + 2x
i=1
2M A
u(x) = Z a;P;4(x) — §x3 + 2x
i=1

Step (3): Substitute u(x) and its derivatives in the equation and evaluate at

the collocation points x;.

u® (%) + xu(x) = 16 sin(2x) + xsin(2x)

2M 2M
4
Z a; h;(x)x <Z a;P; 4(x) — §x3 + 2x ) = 16sin(2x) + xsin(2x)

i=1 i=1

2M .

Z a; [ () + x, P4 ()] = 16sin(2 x;) + x;sin(2x) + §xl4 — 2x,2,
i=1

[=1,2,..,16.

Step (4): Solving the system of linear equation, we obtain the wavelet

coefficients a;.
Step (5): Substitute the coefficients in u(x) to get the solution.

Table 5.5 shows the exact and the approximate solutions at different nodes.
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Table 5.5: The numerical solution of example 5.3

Node(x/32) Exact Haar solution RK4 for system
1 0.06245932 0.06245939 0.06245931
3 0.18640330 0.18640761 0.18640328
5 0.30743851 0.30746207 0.30743864
7 0.42367626 0.42374063 0.42367741
9 0.53330267 0.53343726 0.53330804

11 0.63460708 0.63484409 0.63462502
13 0.72600866 0.72638354 0.72605734
15 0.80608111 0.80662775 0.80619522
17 0.87357494 0.87432576 0.87381471
19 0.92743692 0.92841901 0.92789968
21 0.96682656 0.96806159 0.96766088
23 0.99112919 0.99263072 0.99255173
25 0.99996559 1.00173857 1.00228037
27 0.99319785 0.99523685 0.99681803
29 0.97093160 0.97321914 0.97640324
31 0.93351428 0.93601905 0.94154190

Comparison between Exact, Haar solution and Runge-Kutta for system

e
—
o
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Runge-Kutta for system — — Haar solution |

Figure 5.6: The exact and numerical solutions of example 5.3




Table 5.6: Error using Haar wavelet and RK4 for system for example 5.3
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Node(x/32) | Error of Haar | Error of RK4 for system
1 0.00000007 0.00000001
3 0.00000431 0.00000002
5 0.00002356 0.00000013
7 0.00006437 0.00000115
9 0.00013459 0.00000537
11 0.00023701 0.00001794
13 0.00037488 0.00004868
15 0.00054664 0.00011411
17 0.00075082 0.00023977
19 0.00098210 0.00046276

21 0.00123504 0.00083432
23 0.00150153 0.00142254
25 0.00177298 0.00231478
27 0.00203900 0.00362018
29 0.00228755 0.00547162
31 0.00250477 0.00802762

Comparison between Error of Haar method and Error of Runge-Kutte for system method
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Maximum absolute error of Haar wavelet for 1\VVP is 0.00250477

Maximum absolute error of RK4 for VP is 0.00802762
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Figure 5.7: Error using Haar wavelet and RK4 for system for example 5.3
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5.2.2 The general solution for boundary value problems
The objective of this section is to construct a simple collocation method
with the Haar basis functions for the numerical solution of linear second-
order BVPs arising in the mathematical modeling of different engineering
applications. To test applicability of the Haar wavelets, we focus on the

following type of BVPs defined in the interval [0, 1]:
The general form of a 2" — order linear BVP is
u"(x) + p (Ou' () + p(ulx) = f(x) 0<x<1 (5.7)
subject to one of the following four sets of different boundary conditions.
Case 1: u'(0) = ay, u'(1) = By;
Case 2: u(0) = a,, u(l) = fy;
Case 3: u'(0) = a3, u(l) = Bs;
Case 4: u(0) = a,, u'(1) = By;
where aq, a,, a3, a4, B1, B2, B3, B4 are real constants.
Following Ulo Lepik [15, 21, 24,27]
We introduce the following notation:
1

Ci1= f P;1(7)dr

0
Case 1: u'" (x) = ¢(x, u(x),w' (x)) with u'(0) =ay, u(l)=p;

Step (1): We assume that
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2M

w0 = ) ah)

i=1

Step (2): Now integrate (5.8) from 0 to x.

2M 2M
u'(x) = 2 a;P;;(x) +u'(0) = Z a;P;1(x) + ay
i=1 im1

Now integrate (5.8) from x to 1.

. L 2M
j u''(t)dt = j Z a;h;(t)drt
x * =1

2M

Ll u''(t)dt =Z[f01

i=1

a;h;(t)dt — j xaihi (7)dr]
0

2M
pr—u'(x) =a; — Z a;P; 1 (x)
i=1

From (5.9) and (5.10), we have a; = f; — a;
Hence the corresponding approximations are

w’'(x) = (By — a)hy (x) + L5 ahi(x)
Integrate (5.11) from 0 to x.

w'(x) = ay + (By — )Py (x) + X5 aiPy 1 (x)

Again, integrate (5.12) from 0 to x.

u() = u0) + @x + (B — )Pro() + ) aiPip(®)
=2

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)
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Step (3): Substituting the value of u(x),u’(x) and u"(x) in the given

differential equation, we obtain system of equations, simplify and evaluate

at the collocation points x; = %,l =12,..,2m

(B — ahy (x) + T a;hi (x) = d(xp, a1 + (By — 1) P4 () +
e a;P; 1 (x), u(0) + a;x; + (B — ay)Pyo(x) + ¥ a;Pi,(x) ) 1=

1,2,...,2m

Step (4): Solve the above system of equations for the unknowns «(0) and

a;, fori #1,
Step (5): Obtain the numerical solution for u(x) in (5.13)
Case 2: u"(x) = ¢p(x,u(x),u'(x)) with u(0) = az, u(l) =p,;

Step (1): We assume that

2M

W (x) = Z a;hy () (5.14)

i=1

Step (2): Now integrate (5.14) from 0 to x

u'(x) =u'(0) + z a;P; 1 (x) (5.15)

Again, integrate (5.15) from 0 to x

u(x) = u(0) + xu'(0) + Z a;P; ,(x) (5.16)
i=1

Now substituting x = 1, in equation (5.16) to get
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2M
u(1) =u(0) +u'(0) + z a;P; (1)

2M
f2 =a; +u'(0) + z aiPi,Z(l)
i=1

2M
u'(0) =B, —a; — z a;P;,(1)
i=1
2M 2M
u() = @ +x(By — @y = ) aPp(D) + ) aiPrp(¥)
i=1 i=1
2M 2M
ulx) =a, +xp, —xa, — xz a;P; (1) + z a;P; »(x) (5.17)
i=1 i=1
2M 2M
W@ ==t = ) aPp(D+ ) aPp() (5.18)
i=1 i=1

Step (3): Substitute these value of u(x),u’(x) and u"(x) in the given

differential equation we obtain system of equations, simplify and evaluate

at the collocation points x; = %,l =12,..,2m

M oahi(x) = d(x;,a; +x,6, — x; poFe) a;P;,(1) +
2122/11 aiPi,Z(xl):,Bz —Qap — 12241 aiPi,z(l) + 212241 aipi,z(xl) ), L=

1,2,...,16 (5.19)
Step (4): Solve the above system of equations for unknowns a;,

Step (5): Obtain the numerical solution for u(x) in (5.17).
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Case 3: u"'(x) = ¢p(x,u(x),u'(x)) with UI(O) = a3, u(l) = ﬁgi

Step (1): We assume that

2M
u''(x) = Z a;h;(x) (5.20)

i=1

Step (2): Now integrate (5.20) from 0 to x.

2M
W@ = w0+ ) Py ()

2M
u'(x) =a3+ Z a;P; 1 (x) (5.21)

Now integrate (5.21) from x to 1.
u(1) — u(x) = as [ vdr — X2 [a; [ Pia()dT + a; [ Py (2)de]

u(l) —ul) = as(1 —x) — X a;Cpp + X5 aiPip(x)

2M 2M
u() = B3 — (1= = ) @iy + ) aPry(¥) (5.22)
i=1 i=1

Step (3): Substituting the values of u(x),u'(x) and u''(x) in the given

differential equation, we obtain the system of equations, simplify and

evaluate at the collocation points x; = il—;ll,l =12,..,2m

2M
D aihi(e) = (B — a3(1 - )
=1 2M 2M 2M
— z a;Ciq + z a;P;,(x;) a3 + Z a;P;1(x;))
=1 im1 im1

Step (4): Solve the above system of equations for the unknowns a;,
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Step (5): Obtain the numerical solution for u(x) in (5.22)

Case 4: u"' (x) = ¢p(x, u(x),u' (x)) with u(0) = ay, u (1) = By

Step (1): We assume that

2M

u''(x) = Z a;h;(x) (5.23)

i=1

Step (2): Now integrate (5.23) with respect to T from x to 1
2M 1 2M x
u'(l) —u'(x) = Z aif h;(t)dt — z aij h;(t) dt
i=1 "0 i=1 "0
2M
W@ = w1 - g+ ) @by ()
i=1

2M
W@ = fr =+ ) @by () (5.24)
i=1
Integrate equation (5.24) with respect to 7 from 0 to x.
2M
u(x) = w(0) + (B — @)X + ) 4Py (®)
i=1
2M
u() = a4 + (B — @)x + ) aiPip() (5.25)
i=1
Step (3): Substituting these value of u(x),u’'(x) and u'' (x) in the given

differential equation, we obtain system of equations, simplify and evaluate

at the collocation points x; = 2;—1_”1,1 =12, ..,2m
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2M 2M
Z ahi(x;)) = p(x,aq + (By —a)x; + z al-Pi,z(xl) , Pa—aq
i=1 i=1

2M
+ ) aPa()
i=1

Step (4): Solve the above system of equations for the unknowns a; , using

collocation method.

Step (5): Obtain the numerical solution for u(x) in (5.25)
Example 5.4: Consider the second-order homogeneous the BVPs :
u'(x)=5u'(x) =0, 0<x<1.

u(0)=1,u(1)=0

with the exact solution

5 5x

e’ —e
u(x) = 51

Using three levels of Haar wavelet (] = 3)

Step(1): Expand u"’ (x) in wavelet series.

2M

w0 = ) ahi()

i=1

Step (2): Integrate both sides from 0 to x.

X X 2M

fu”(r) dt = f; a;h;(t)dt

0 0

2M X
u'(x) —u'(0) = Z a; f h;(t)dt
i=1 0
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2M
W@ =)+ ) P ()
i=1
Again, integrate both sides from 0 to x

u(x) = u(0) + xu'(0) + Z a;P; ,(x)
i=1

Now substitute u(1) to determine u'(0)

2M

w(1) = u(0) + 1/ (0) + z a;P;»(1)

i=1

2M
w(0) = —1- ) aPy(1)
i=1

2M 2M
u() = w(0) — ¥ = x ) aPp(D+ ) aiPp()
i=1 i=1
2M 2M
ux)=1-x-— xz a;P;,(1) + z a;P; ,(x)
i=1 i=1

Step (3): Substitute u(x) and its derivatives in the equation, and evaluate at
the collocation points x;.
u"(x)—5u’'(x) =0

2M

Z a; [hi(xl) + 5Pi,2(1) - 5Pi’1(xl)] = —5, [ = 1,2, ,16

i=1

Step (4): Evaluate at the collocation points x;, solve the system of the

linear equations for wavelet coefficients a;.

Step (5): Substitute the coefficient in u(x) to get the solution.
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Table 5.7 shows the exact and the approximate solutions at different nodes.

Table 5.7: The numerical solution of example 5.4

Node(x/32) Exact Haar Solution Error

1 0.99885276 0.99885507 0.00000231
3 0.99594341 0.99595121 0.00000780
5 0.99196679 0.99198147 0.00001468
7 0.98653140 0.98655462 0.00002322
9 0.97910211 0.97913582 0.00003371
11 0.96894747 0.96899391 0.00004644
13 0.95506772 0.95512935 0.00006163
15 0.93609635 0.93617573 0.00007938
17 0.91016556 0.91026508 0.00009952
19 0.87422238 0.87484378 0.00012141
21 0.82627729 0.82642091 0.00014362
23 0.76006071 0.76022417 0.00016346
25 0.66955337 0.66972955 0.00017617
27 0.54584451 0.54601839 0.00017388
29 0.37675454 0.37689837 0.00014383
31 0.14563596 0.14570195 0.00006598

Camparison between Exact, Haar Solution

0.4

0.3

0.6 0.7
X — axis

| -

Exact

Haar |

0.3

0%

Figure 5.8: The exact and numerical solutions of example 5.4
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Drawing Error of Haar solution
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Figure 5.9: Error in example 5.4

Maximum absolute errors at different resolutions we given the following

table.

Table 5.8: Convergence of Haar wavelet for boundary value problem.

Level of 2M Lo Ratio of
resolution Lo

J=3 16 1.7617x 10™*

J=4 32 4.3332 x 107> 0.2459687100

64 1.0517 x 107° 0.2427109084
128 6.4961 x 10°° 0.2545008535
256 1.6532 x 107° 0.2501550082
512 41357 x 1077 0.2500901309
1024 1.0343 x 1077 0.2495810433
2048 2.5814 x 1078 0.2491245803
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Comparison between Maximum Absolute Error and
Maximum Ralative Error for BVP
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Figure 5.10: Comparison between maximum relative error and maximum absolute error

in example 5.4

Example 5.5: Consider the second—-order inhomogeneous the BVP:
u”’(x) +u(x) =sin(x) + xcos(x), 0<x<1.

w(0) =1,u(1) = 1.667433

with the exact solution

u(x) = cos(x) + Zsin(x) + 2 (x? sin(x) — x cos(x))

Using three levels of Haar wavelet (J = 3)

Step (1): Expand u''(x) in wavelet series

2M

w0 = ) ah)

i=1
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Step (2): Integrate both sides from 0 to x

X X 2M

u'(t)dr = a;h;(t)dt
o2
2M
W@ - w(0) = ) aPu(x)
i=1
2M
u' () =u' 0+ ) a;P;;(x)

Again, integrate both sides from 0 to x again

2M

u(x) —u(0) = a;P; ,(x) +xu'(0)
2M

u(x) =u(0) + xu'(0) + a;P; 5 (x)

where u'(0) is unknown, u’(0) can be found by considering

u(1) = 1.667433

2M
u(l) = z a;Pi, +u'(0) +1
i=1
2M
W (0) = 0.667433 — z a;P; (1)
i=1
2M 2M
u(x) = Z a;Pi(x) —x z a;P;»(1) + 0.667433x + 1
i=1 i=1

Step (3): Substitute u(x) and its derivatives in the equation

u''(x) + u(x) = sin(x) + x cos(x)



2M

i=1

2M
Z a;h;(x) + z a;P,(1)+1+x

=1

= sin(x) + x cos(x)

2M

80

> a[hie) + Pia(e) = 3Py (D]

i=1

2M
- Z a;P;1(1) + 0.667433

i=1

= sin(x;) + x; cos(x;) — 0.667433x; — 1,
l=1,2,..,16

Step (4): Evaluate at the collocation points x;, solve the system of linear

equation for wavelet coefficients a;.

Step (5): Substitute the coefficient in u(x) to get the solution.

Table 5.8 shows the exact and the approximate of Haar wavelet, finite

difference and linear shooting solutions at different nodes.

Table 5.9: The numerical solution for example 5.5

Haar Finite Linear
Node(x/32) Exact solution Difference | Shooting
1 1.03076684 | 1.03731194 | 1.01223017 | 1.01228100
3 1.08949571 | 1.10240672 | 1.03942495 | 1.03941897
5 1.14469969 | 1.15966881 | 1.06995086 | 1.06994136
7 1.19664324 | 1.20816745 | 1.10344680 | 1.10343418
9 1.24559411 | 1.25667542 | 1.13957272 | 1.13955791
11 1.29181853 | 1.29703658 | 1.17801204 | 1.17799453
13 1.33557659 | 1.33667609 | 1.21847403 | 1.21845484
15 1.37711767 | 1.37260730 | 1.26069621 | 1.26006759
17 1.41667605 | 1.41526066 | 1.30444677 | 1.30442598
19 1.45446674 | 1.45050873 | 1.34952690 | 1.34950727
21 1.49068148 | 1.48339958 | 1.39577316 | 1.39575340
23 1.52548513 | 1.53448845 | 1.44305974 | 1.44309160
25 1.55901222 | 1.54951312 | 1.49130075 | 1.49128505
27 1.59136390 | 1.58348080 | 1.54045242 | 1.54044062
29 1.62260531 | 1.61703899 | 1.59051518 | 1.59050700
31 1.65276320 | 1.65066385 | 1.64153577 | 1.64153278
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Comparison between Exact , Haar Solution , Linear Shooting and Finite Difference

T

2 i}
X— axs

| ¢ Exact Linear Shooting

Haar Finite Di.fferenr:el

Figure 5.11: The exact and numerical solutions( Haar solution, linear shooting and

finite difference )

Table 5.10: Error in example 5.5

Node(x/32) | Error of Haar Error of Finite Error of Linear
Difference Shooting

1 0.00654510 0.01853667 0.01853874
3 0.01291101 0.05007075 0.05007674
5 0.01496912 0.07474883 0.07475833
7 0.01152421 0.09319644 0.09320907
9 0.01108131 0.15602139 0.1563620
11 0.00521805 0.21380649 0.21382400
13 0.00109950 0.11710256 0.11712175
15 0.00451037 0.11642146 0.11644175
17 0.00141539 0.11222928 0.11225007
19 0.00395801 0.10503984 0.10496046
21 0.00728190 0.09490832 0.09492809
23 0.00900332 0.08242539 0.08244353
25 0.00949910 0.06771147 0.06772716
27 0.00788310 0.05091148 0.05092388
29 0.00556632 0.03207013 0.03209831
31 0.00209935 0.01122743 0.01123041
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Comparison between Error of Haar, Error of Linear Shooting and
Error of Finite Difference

T
0.1 02 0.3 0.4 0.3 0.6 0.7 0.8 0.9
X — axis

| “  Error of Linear Shooting Error of Haar Error of Finite Di:['ferenr:e|

Figure 5.12: Error in example 5.5

Table 5.11: Maximum absolute error of the equation

Maximum absolute error
Haar Solution Finite Difference Linear Shooting
0.01496912 0.21380649 0.21382400

5.3 Haar wavelet method for linear partial differential equations

In this section, we investigate the method of Haar Wavelet for solving
partial differential equation. Our investigation is a computational one, so
we use two model problems; the well-known Klein-Gordon equation and a
wave-like equation. Both are second-order linear homogeneous in one
dimension. We will use the notation 7 = u;, @' = u,, and so on.

This method consists of reducing the problem into a system of algebraic
equations by first expanding the terms of maximum derivative in the

equation as Haar wavelet series with a finite number of terms. Second, we
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use the operational matrix of Haar wavelet which we established earlier,
then the system of algebraic equations for the wavelet coefficient

Example 5.6: Consider the linear Klein-Gordon equation [17]
Upr — Uy = U, 0<x<1 (5.26)
subject to the initial conditions
u(x,0) =1+ sin(x), u:(x,0)=0. (5.27)
and the boundary conditions
w(,t) =u(1,t) =0, t>0. (5.28)
with exact solution
u(x,t) = sin(x) + cosh(t)

Step (1): Using resolution level ] = 4

Lett, =2 s=12,.,N,and let x; =21 =12, .., 2m. Now,

expand i (x, t) in terms of Haar wavelets

2M

(66 = ) @), £ € (ts tosal, (5.29)

=1
where the column vector q; is constant in the subinterval t € (¢, ts,1]-

Step (2): Integrate equation.(5.30) twice with respect to t from ¢, to t and

twice from 0 to x,

2M
W(xt) = (t—t,) Z ahy () + 1 (%, t,), (5.30)
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2M

u'(x,t) = (¢ _ZtS) Z ah;(x)+ (t—tHu'" (x,t;) +u'"(x,t5) (5.31)
2M _
W (x,t) = z a;P; 1 (%) + it'(0, ) (5.32)
-
ii(x,t) = z a;P,5 (%) + 110, £) + xit’ (0, ¢) (5.33)

2M
Wl t) = (t—t,) Z ;P () + 1(x, t5) + (0, £) — (0, ;)
i=1

+x[W(0,8) — (0, t,)] (5.34)
(t— )2 2M
u(,t) = == z ;P (%) + u(x, ty) + (¢ — t)i(x, t5) + u(0, )

_u(o» ts) - (t - ts)il,(o, ts) + x[u’(x, ts) - u’(O, ts) -
(t —t)u'(0,t5) (5.35)
Using the boundary conditions, equations.(5.33)-(5.35) become

i(x,t) = N5 a;Pip(x) — x L2 aiPi (1) (5.36)

W50 = (= t) ) aPip() +ix, L)

—x(t—t,) 2 a;P;,(1) (5.37)

t—ts)? .
uCe,t) = M 0P, () + ulx ) + (¢ — £ t) -

g(t —t)? Y ;P (1) (5.38)
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Evaluate equations (5.30)-(5.31) and equations (5.35) at x = x; and t =

toyq, USING At = toq — t
2M
Wy ) = A6 Y aghy(e) + (21,8, (5:39)

i=1

2M
At? ,
u’' (X, tey1) = 72 azh;(x;) + At 0" (x;, t5) +u'" (x, t5)  (5.40)
i=1

u(xp, tspq) = 12241 a;P;, (x1) — x 21231 aiPi,z(l) (5.41)
2M 2M

u(xy, toyq) = Atz a;P; 5 (x;) +u(x;, ts) + At x; z a;P;,(1) (5.42)
i=1 i=1

2M
At? .
U tean) = = ) @Pa () + ey ) + At iCr ¢) —

=1
1 2M
S Bt Zaipi,z(l) (5.43)
i=1
where x; = Zl—_l, l=1,2,..,2m.
im

Step(3): The scheme is
il(xl, ts+1) - u”(xl: ts+1) = u(xl» ts+1) (5-44‘)

(ie) d(xytsrr) = ulxy ter) + u(xp, tsiq) (5:45)

2M
a; [Z a;P; ,(x;)
im1
2M

2M 1 2M
— X z a;P; (1) — At? Z a;P;,(x;) + EAtle Z aiPi,z(l)]
i=1 i=1 i=1

= u(xl: ts) + At[u(xl' ts) + Tl”(xl, ts)]

+u’ (x ts) (5.46)
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Step (4): The Haar coefficients vector a; are calculated from the system of

linear equation. (5.46).

Step (5): The solution of the problem is determined according to equation

(5.43) as follows [17].
u(x;,0) =1+ sin(x;)

u' (x;,0) = cos(x;), u''(x;,0)=—sin(x), u'(x,0) =0 and

u(x,0)=0
Adomain decomposition method (ADM)

Adomain decomposition methods are dividing and conquer methods for the
parallel and computational solution of partial differential equations of
elliptic or parabolic type. They include iterative algorithms for solving the
discretized equations, techniques for non-matching grid discretizations and
techniques for heterogeneous approximations. An introduction to this
method can be found in [26].

The results in table 5.12 and table 5.13 are obtained from [17].

Table 5.12 shows the exact and the approximate at different nodes.

Table 5.12: Numerical result of the linear Klein-Gordon equation

Node Exact Haar solution
0.015 2.453 x 107° 2133 x107°
0.046 9.772 %X 107> 9.385 x 10~°
0.078 2.525x 107* 2.549 x 107*
0.109 1.171x 1074 1.118 x 10~
0.453 4541 x 107* 4556 x 10~*
0.484 2.112x 107% 2.153x 107*
0.515 3.322x 107> 3.342 x 107>
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Table 5.13: Maximum absolute error of the equation at different time

t Maximum absolute error
Haar solution ADM
0.1 5.201 x 10711 3.201 x 10710
0.3 4427 x 1078 3.121 x 1077
0.5 2.325x 107> 1.907x 1073

Example 5.7: Consider the one—dimensional wave-like equation [19]

x2

utt—7uxx=0 ,0<x<1,t>0 (5.47)

subject to the initial conditions
u(x,0) = x, u(x, 0) = x? (5.48)
and boundary conditions
u(0,t) =0, u(l,t) =1+sinh(t) t>0 (5.49)
the exact solution is
u(x, t) = x + x? sinh(t)

Step (1): Using resolution level J = 3

Lett, =2 s=12,.,N,and let x, =21 =12, .., 2m. Now,

expand i (x, t) in terms of Haar wavelets

2M

@068 = ) ahi(x) € [ty toul, (5.50)

=1

Step (2): Integrate equation.(5.50) twice with respect to t from t; to t and

twice with respect to x from 0 to x, we obtain
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2M
W t) = (¢ — tg) 2 ahy () + 1" (%, t,), (5.51)
- )Z_ZM
u'(x,t) = > 2 Z ah;(x)+ (t—tHu'" (x,t;) +u"(x,t;) (5.52)
(¢ —t.)? 2M
W 6) = = ) PG + (£ — £ (x, £) = (0, £5)]
+u'(x, t;) —u'(0,t5) + u'(0,t) (5.53)
(t _¢ )2 2M
u(x,0) = = ) Py (0 + (¢~ £l t) (0, )

—xu'(0,t,)] +ulx,t) —u(0,t;) — x[u'(0,t;) —u'(0,t)]
+ u(0,t) (5.54)

ux, t) = (t —tg) X2 a; Py () + [ulx, t) — (0, t5) + x ' (0, t5)]
+x 1 (0,8) + 1(0,t) (5.55)

i(x,t) = X2 a;P; 5 (x) — x i’ (0, t) + it (0, t) (5.56)

Using the initial and boundary conditions, we have the following
equations as

u(x,0) =x,u(x,0) =x%> 0<x<1
u(0,t) = go(t) =0

u(0,t5) = go(ts) =0

u(l,t;) = g1(ts) = 1 + sinh(ts)
u(0,t,) = go(ts) =0

u(1,t) = g1(ts) = cosh(ts)

(0, ts) = g(’),(ts) =0
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(1, ts) = gil(ts) = sinh(ts)

Put x = 1 in formulas (5.53) and (5.55) and by using condition, we have

u'(0,t) —u'(0,t,) (¢~ tS)Zia P;,(1) + (t — t;)[cosh(ts)
L) — yls) = —————— ifi2 — s s
2 i=1
—u'(0,t,)] + (1 + sinh(t) — 1 — sinh(t,) (5.57)
2M
u'(0,t) = — ) a;P;,(1) — sinh(t) (5.58)

Substitute equations (5.57) and (5.58) into equations (5.52) through (5.60)

and evaluate x = x; and t =t 4

2M
14 (t _ t )2 I
W () = ) i) + (G — £ G )
i=1
+u'' (x;, t5) (5.59
, At? ., , At?
W ) = = ) @Pi() + AL (3, £5) = ' Gey ) — -
i=1
2M
Z a;P;(x;) — At[ cosh(ty)] + sinh(tg,1) — sinh(ty) (5.60)
i=1

At? . .
u(xl’ts+1)= T 122/11 aiPi,Z (xl) + At[u(xlr ts) - u(o' ts)] + u(xl: ts)

2M
At?
—u(0,t,) — x; TZ a;P; (1) — x;Atcosh(ts) — x;[ 1 + sinh(t;)
i=1

— 1 —sinh(ts4q1)] (5.61)
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2M

W ) = A6 ) @iPyp(v) + [, t5) = (0, £5)]
i=1
2M
— At x; z a;P;;(1) + x; cosh(t,) + x; cosh(ts11) (5.62)
i=1
2M
Uxy toyr) = Z a;[Py2 (%) — x,P; 2 (1] + x; sinh(ts44) (5.63)
i=1
05 ifi=1
Pi,z(l) = { 1 r
o ifi>1

Step (3): After substituting value from equation (5.63) in the wave—like
equation, we have

21 ai| Pia(x) —x,Pp(D)] = T G, t) + xy sinh(tey) - (5.64)

Equation (5.64) is the algebraic from of the wave-like equation (5.47)

Step (4): Solve these algebraic equations for the Haar wavelet coefficients
a;. Then from equation (5.61) we obtain the solution of u, which is very
near to the exact solution. This solution process is started with

u(x;,0) = x, u(x,0) =xf,  u'(x,0)=0, u'(x,0)=0

Step (5): Substitute the coefficient in u(x, t) to get the solution.
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Table 5.14: The numerical solution for wave like equation at t = 0.01

Node(x/32) Exact Haar solution Finite Difference
1 0.0312597657 0.0312599298 0.0312597648
3 0.0938378920 0.0938380223 0.0938378934
5 0.1564941446 0.1564942398 0.1564941463
7 0.2192285236 0.2192285824 0.2192285265
9 0.2820410288 0.2820410499 0.2820410392

11 0.3449316603 0.3449316424 0.3449316610
13 0.4079004181 0.4079003599 0.4079004237
15 0.4709473022 0.4709472025 0.4709473089
17 0.5340723126 0.5340721700 0.5340723150
19 0.5972754493 0.5972752625 0.5972754320
21 0.6605567124 0.6605564800 0.6605567180
23 0.7239161017 0.7239158225 0.7239161120
25 0.7873536173 0.7873539011 0.7873536280
27 0.8508692592 0.8508688826 0.8508692660
29 0.9144630275 0.9144626001 0.9144630310
31 0.9781349220 0.9781344426 0.9781349360

Comparison between Exact, Haar Wavelet and Finite Difference at

time 0.01

0.9

0.8 1

i I i I
035 0.6
X— AX%§

0.7

0.8

0e 1.0

| ¢  Exact

Finite Difference — - — Haar |

Figure 5.13: The exact and numerical solutions for wave-like equation at t = 0.01




Table 5.15: The numerical solution for wave like equationat t = 0.1
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Node(x/32) Exact Haar Solution | Finite Difference
1 0.0313478191 | 0.0313372164 | 0.0313483056
3 0.0946303718 | 0.0945975851 | 0.0946315015
5 0.1586954773 | 0.1586392033 | 0.1586972575
7 0.2235431355 | 0.2234620805 | 0.2235455489
9 0.2891733464 | 0.2890662093 | 0.2891764013

11 0.3555861101 | 0.3554515354 | 0.3555897902
13 0.4227814265 | 0.4226181026 | 0.4227857460
15 0.4907592957 | 0.4905662266 | 0.4907642376
17 0.5595197175 | 0.5592956532 | 0.5595252760
19 0.6290626921 | 0.6288045412 | 0.6290688740
21 0.6993882195 | 0.6990943723 | 0.6993949970
23 0.7704962996 | 0.7701758784 | 0.7705037060
25 0.8423869324 | 0.8420404232 | 0.8423949610
27 0.9150601179 | 0.9146254566 | 0.9150687420
29 0.9885158562 | 0.9879813151 | 0.9885250770
31 1.0627541472 | 1.0624725665 | 1.0627620760

Comparison between Exact , Haar Solution and Finite Difference at time 0.1

0.9+
0.8 4

0.7+

]

Figure 5.14: The exact and numerical solutions for wave-like equation at t = 0.1

: .
0.6 07
X— axis

0.3 09 10

| + Exact

Finite Difference — - — Hnar|
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Table 5.16: The numerical solution for wave like equation at t = 0.2

Node(x/32) Exact Haar Solution | Finite Difference
1 0.0314466171 | 0.0315090527 | 0.0314505129
3 0.0955195547 | 0.0957000100 | 0.0955286338
5 0.1611654297 | 0.1614547701 | 0.1611796646
7 0.2283842423 | 0.2286851414 | 0.2284035991
9 0.2971759923 | 0.2975533380 | 0.2972004527

11 0.3675406799 | 0.3679767595 | 0.3675702126
13 0.4394783051 | 0.4399711571 | 0.4395128894
15 0.5129888677 | 0.5135150107 | 0.5130284782
17 0.5880723679 | 0.5886319063 | 0.5881169880
19 0.6647288055 | 0.6653084730 | 0.6647783620
21 0.7429581807 | 0.7436810026 | 0.7430126860
23 0.8227204935 | 0.8233571460 | 0.8228199150
25 0.9041357437 | 0.9047271867 | 0.9042000630
27 0.9870839314 | 0.9870173730 | 0.9871531000
29 1.0716050567 | 1.0721586763 | 1.0716765050
31 1.1576991195 | 1.1582201252 | 1.1577405680

Comparison between Exact , Haar Solution and Finite Difference at
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0.6
¥0.34
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Figure 5.14 : The exact and numerical solutions for wave-like equation at t = 0.2
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Table 5.17: Maximum error of the equation at different time

t Maximum absolute error
Haar solution Finite Difference
0.01 47934 x 1077 1.7400 x 1078
0.1 3.4651 x 10™* 8.0287 x 107°
0.2 7.2282 x 10™* 7.1448 x 107>

Example 5.8: Consider the one-dimensional diffusion equation.
Up = Uyy 0<x<1, t>0 (5.65)
subject to the initial conditions
u(x,0) = sin(mx) (5.66)
and the boundary conditions
u(0,t) = u(l,t) =0, t>0 (5.67)
with exact solution

-2t

u(x,t) = e " tsin(mx)

Step (1): Assume
Let x; = Zi—r_nl ,1=1,2,...,2m. Now, expand ii"(x,t) in terms of Haar

wavelets, using time stepping from 0 to .
W' (x,t) = YM a;hi(x) t € (0,t] (5.68)

Step (2): Integrate equation (5.62). with respect to t from 0 to ¢t and twice

from O to x
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2M
u'(x,t) =t z a;h;(x) — m? sin(mx) (5.69)
m
u'(x,t) = tz a;P;1(x) —mcos(mx) + m (5.70)
o
u(x, t) = tz a;P; 5 (x) — sin(mx) + mx (5.71)
Now,
2M
W (x,t) = z a;P; 1 (%) + (0, £) (5.72)
2M _
u(x,t) = z ;P (%) + x1t' (0, £) + (0, ¢) (5.73)

Using the boundary conditions, set x = 1 to find (0, t) in equation (5.73)

2M

'l:l,,(O, t) = - CliPl', (1) ( 574‘)
2M 2M

u(x,t) = ) a;Pi,(x) —x ) a;P;,(1) (5.75)
20 J

Evaluate equations (5.68)-(5.73) at x = x; and using time stepping.

21-1
where x; = et l=1,2,..,2m.

Step(3): The scheme is

u(x;, t) =u'"(x,t) (5.76)

Z ai[thi(xl) — P;,(x) + lei,Z(l)] = w?sin(mx;) (5.77)

i=1



Step (4): Solve these algebraic equations for the Haar wavelet coefficients
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a;. Then from equation (5.77) we obtain the solution of u

Step (5): Substitute the coefficient in u(x, t) to get the solution.

Using resolution level (J = 3)of Haar wavelet.

Table 5.18 shows the exact and the approximate at different nodes.

Table 5.18: The numerical solution for diffusion equation at time ¢t = 0.1

Node

X[node]

Exact

Haar

Rel. Error

0.06250000

0.00731763

0.00731859

1.309296468007e-04

0.12500000

0.01463244

0.01463433

1.287644526372e-04

0.18750000

0.02194161

0.02194436

1.251883252893e-04

0.25000000

0.02924232

0.02924584

1.202501261167e-04

0.31250000

0.03653176

0.03653592

1.140183951630e-04

0.37500000

0.04380711

0.04381178

1.065814856472e-04

0.43750000

0.05106557

0.05107058

9.804773763998e-05

0.50000000

0.05830435

0.05830951

8.854569095200e-05

0.56250000

0.06552065

0.06552578

7.822433840886e-05

0.62500000

0.07271169

0.07271658

6.725341943953e-05

0.68750000

0.07987470

0.07987916

5.582375551514e-05

0.75000000

0.08700692

0.08701076

4.414762759099¢e-05

0.81250000

0.09410559

0.09410864

3.245919693256e-05

0.87500000

0.10116798

0.10117011

2.101497058229e-05

0.93750000

0.10819137

0.10819247

1.009431217516e-05

Maximum Relative Error: 1.309296468007e-04

Using resolution level (J = 4) of Haar wavelet




Table 5.19: The numerical solution for diffusion equation at time ¢t = 0.1
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Node

X[node]

Exact

Haar

Rel. Error

0.03125000

0.00365899

0.00365947

1.312811991005e-04

0.09375000

0.01097557

0.01097699

1.298351547165e-04

0.15625000

0.01828791

0.01829023

1.269625778754e-04

0.21875000

0.02559320

0.02559634

1.227025307863e-04

0.28125000

0.03288862

0.03289247

1.171137024611e-04

0.34375000

0.04017137

0.04017580

1.102745239021e-04

0.40625000

0.04743863

0.04744348

1.022833220901e-04

0.46875000

0.05468760

0.05469270

9.325851330626e-05

0.53125000

0.06191549

0.06192065

8.333883609117e-05

0.59375000

0.06911950

0.06912453

7.268362452537e-05

0.65625000

0.07629687

0.07630156

6.147312282756e-05

0.71875000

0.08344483

0.08344900

4.990884147190e-05

0.78125000

0.09056062

0.09056408

3.821395634789e-05

27

0.84375000

0.09764149

0.09764409

2.663375179110e-05

29

0.90625000

0.10468472

0.10468634

1.543610844166e-05

31

0.96875000

0.11168760

0.11168815

4.912037629605e-06

Maximum Relative Error: 1.312811991005e-04

5.4 Conclusion
The Haar wavelet method is computationally efficient and the algorithm

can easily be implemented on computer.

1. Numerical comparisons demonstrate that classical numerical method is
reliable and accurate. Refer to examples (5.2, 5.3, 5.5, 5.6, 5.7)

2. The distinctive feature is that it can be applied, to initial and boundary
value problems without transformation of BVPs into I\VVPs as needed for
the Runge-Kutta methods. In Haar wavelet method the initial and
boundary conditions intervention directly without complicated .

3. Simple applicability and fast convergence of the Haar wavelets provides

a solid foundation, for using these functions in the context of numerical
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approximation ordinary differential equations and partial differential
equations.

. The main advantage of this method is its simplicity and small
computation costs, it is due to the sparsity of the transform matrices and
to the small number of significant wavelet coefficients, Hence, the
present method is a very reliable, simple, fast, minimal computation
costs and flexible.

. Our computationally result shows that, the convergence the method is

quadratic the infinite norm but the need investigation.
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