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On Fuzzy Metric Spaces and their Applicationsin Fuzzy Environment
By
Sondos Abdelrahim Mohammad Eshtaya
Supervised by
Dr. Mohammad Al-Amleh

Abstract

In this thesis, the fuzzy metric spaces were investigated using
different definitions and point of views. Some were applied on regular sets

while others were applied on sets of fuzzy points.

The concept of complement of fuzzy metric spaces using fuzzy
scalars were studied and parallel results in classical analysis were found

under fuzzy Setting .

And finally , Fuzzy fixed point theorems on fuzzy metric space were

proved .



| ntroduction

The concept of fuzzy sets was first introduced by L.Zadah in 1965 in
his famous paper [26] . In this thesis the concept of fuzzy metric spaces

was investigated .

In chapter one, we concentrate on the basic definitions of fuzzy sets
and related concepts including fuzzy points, fuzzy functions and their

properties.

In chapter two, we went over a specia type of fuzzy sets, namely ,
fuzzy numbers and using them to define a fuzzy metric on a set of fuzzy

points.

In chapter three , a fuzzy scalar is defined and has been used to
measure the distance between two fuzzy points in the sense of Xia and
Guo(2003) [12] . This concept goes along and parallel the distance in
classical metric spaces .Also, the concept of Cauchy sequence and
completeness of fuzzy metric spaces was investigated as well as the fuzzy

topology induced by afuzzy metric space.

Finaly in chapter four , A new definition of fuzzy metric is
presented which is an extension of classical metric on a set X , with

applicationsin fixed point theory and other conceptsin classical analysis.
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Fuzzy Sets and Fuzzy Functions
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Chapter one

Fuzzy Setsand Fuzzy Functions

I ntroduction

Fuzzy sets, in Mathematics, are sets having elements with a
membership degree. This concept of sets was first generalized by professor
Lotfi A.Zaden in 1965 in his famous paper [26] , where the concept of
fuzzy sets was introduced, it was specifically designed for representing
uncertainty in mathematics and for dealing with vaguenessin many real life
problems, it is suitable for approximating reasoning mathematical models
that are hard to derive or giving a decision with incomplete information. In
classical set theory, an element either belongs or doesn’t belong to the set,
it is not the case in fuzzy setting, here, it has membership degree between
zero and one, which describes the new definition of the Characteristic
function in this chapter we will first give definitions of fuzzy sets, and then
we show some operations on them and properties involving these

operations.

Also we will introduce the concept of fuzzy points as especia case
of fuzzy subsets, and then we define fuzzy function as an extension of
functions between pairs of sets and explore the properties of fuzzy

operations of fuzzy sets and fuzzy points on fuzzy functions.
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1.1 fuzzy sets and fuzzy operations

In set theory a subset A of a set X can be identified with the

Characteristic function X, that maps X to {0,1} in away where al

elements of A goto 1, while X-A elementsgoto 0.

e X, x)=| 1lifxe A
0if x € X-A

And there for, there is a natural 1-1 correspondence between the
family of all subsets of X and the family of the characteristic functions on

X.
Definition 1.1.1

Let X be a set , a fuzzy subset of X is a function A that Maps X to the
closed interval [0, 1] .In other words, A: X —[0, 1], and A(x) is called the

grade of membership of the element x .
Example 1.1.2

Example of fuzzy subsets of X ={a, b, ¢}

A:a— 1 B:a —» .8
b— 4 b 7
c_>.2 c —l

Ca—>» 1
b —7

c —0



Definition 1.1.3

Regular subsets of X are a special case of fuzzy sets called crisp

fuzzy setswhere A(x) €{0,1}
Examplel1l.14
Let X={a b, c}

The regular subset A of X can be

A:a— 1

b/v

c 0

In this example:
acA=A(g=1
ce¢A=A(c)=0

We use different ways to represent a fuzzy sebset of X, in the

following example we describe some of this ways:
Example1.1.5

Consider the regular set X where X={a, b, ¢, d, €} and let A be the
fuzzy subset of X that maps X to [0, 1] by mapping:
a—+01b —>08c —05,d —0,ande —94.

We may represent A asthe set of ordered pairs:

A={(a, 0.1), (b, 0.8), (c, 0.5), (d, 0), (e, 0.4)}
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Using regular set notation or we may writeit as
A= {30.1, b0.8’ C0.51 dO’ %4}
1.2 operations on fuzzy sets

After these new concepts of fuzzy sets were defined, suitable
operations on them should be performed that extend the usual operations on

sets including the union, intersection, and complementation as follows:
Definition 1.2.1 [22]
Let A and B be two fuzzy subsetsof X. AnB, AUB,
And AC are fuzzy subsets of X defined as follows:
(ANnB) (x) = min {A(x), B(X)}
(AUB) (x) = max {A(x), B(x)}
AS(x) = 1- A(X)

These definitions are generalized to any number of fuzzy subsets of
X, so; for any family {Aa:a < A} of fuzzy subsets of X, where A is an

indexing set, we define:

(UA)X)=SUP{Aa (x):a e A}

(NA)X)=inf{Aa(x): a < A}

We illustrate the previous definitions by the following examples:



Example 1.2.2
Take the fuzzy subsets
A={(a 0.3), (b, 0.8), (c, 0), (d, 0.98)}
B={(a 0.8), (b, 0.1), (c, 0.1), (d, 0.3)}
Then: A n B ={(a 0.3), (b, 0.1), (c, 0), (d, 0.3)}
AUB ={(a 0.8), (b, 0.8), (c, 0.1), (d, 0.98)}
Example 1.2.3
Take an infinite number of fuzzy subsets.
Let X={a, b}
Al={(a 0.49), (b, 0.21}
A2 ={(a, 0.499), (b, 0.201)}

A3 ={(a 0.4999), (b, 0.2001)

Then (J A ={(a 05), (1,0.21)}

And () A ={(a 049), (b, 0.2)}

Let A and B be two fuzzy subsets of X, we have:

1. (A n B)© (x) = (AU B) (x).



2. (AUB)® (x) = (A°n B) (x).
Pr oof:

1) (A n B)%(x) = 1- min{ A(x), B(x) }

= | 1-A(X) if A(X) < B(X)
1- B(x) if B(x) < A(X)

~

= | 1-AX)if 1- A(X) >1- B(X)

1-B(x) if 1- B(x) > 1- A(X)

= max {1- A, 1-B ()}
= max {A°(x), B}
= (AU B°) (x)
2) {(AU B)°(¥)= 1-max{ A(x), B}

1- A(X) if A(X) = B(x)

1- B(x) if B(x) = A(X)

1- A(x) if 1- A(x) <1-B(X)
{ 1-B(x) if 1- B(x) <1-A(X)

= min {1-A(X), 1- B(x)}

=min{ A%x) , B(x) }

=(A°n B%) (x)
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This theorem can be generalized to any family of fuzzy subsets of X.

Specifically :

( LaJA)C= ( OAZ) and ( OA)C= (LaJAf) :

Now we compare two fuzzy subsets of a set X as one of them Containing
the other as follows:

Definition 1.2.4 [22]

Let A, B betwo fuzzy subsetsof X, wesay A B

tomean A(x) < B(x)foral xe X .

For example

Consider X ={ab,c,d} , andlet A ={(a,0.1), (b,0.8), (c,0),( d,0)}
B={ (a,0.4), (b,0.8), (c,0.1), (d,0)}. thenclearly A € B
Definition 1.2.5 [22]

The a-level of A denoted by A® is a subset of X, where the grade of

membership of itselements>a . That is,
A= {xeX: A(x) =a} , wherea >0
We define the zero level of A by :

A*°=theclosureof {x eX: A(x)>0})inR
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The support of A is defined as the set of al elements of X with non

zero membership and denoted by supp of A that is,

Supp (A) ={x € X : A(X) >0}

The following example displays some o —levels of some fuzzy subsets:
Let A={(a0.4), (b,0.7),(c0.3),(d,0.2) } beafuzzy subset
Of X ={ab,c,d} thenthe0.3-level = A®={ab,c}
The0.1- level = A'={ab,c,d}. and the support is:

A= X={ab,c,d}.

1.3 fuzzy points and fuzzy singletons

Definition 1.3.1 [23]

Let X beaset andleta€eX,

we define the fuzzy point (a, A) as afuzzy subset p

Of X suchthat p(a) =A, p(X - {a}) =0, where

0<A<1.

A fuzzy singletonis g=(a, A) but O<A <1

Definition 1.3.2 [23]

Let p=(a,A) beafuzzy point
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Pe Aifandonlyif A<A(aQ)

For example:

X={abc}

A={(a,04), (b,0.8), (c,0.1)}
Then(a,0.3) e A but(a,05) £A.
Definition 1.3.3 [16]

A fuzzy singleton (x , r) in X is said to be quasi- coincident with a

fuzzy set M in X if andonly if r +M(x) >1 and thisis denoted by
x,NQ M.

Remark : itisclear that x| quasi M<—> x| ¢ M®

Note: (Q= quasi).

Definition 1.3.4 [16]

A fuzzy subset A in X is called quasi- coincident with a fuzzy
subset B in X (denoted by A quasi B) if and only if

A (X)+ B(x) > 1for somexin X.
1.4 fuzzy functions

Now, we introduce the fuzzy function concept between two families

of fuzzy subsets corresponding to a function between two crisp sets.
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Definition 1.4.1 [22]

h: X — Y beany function.

for any fuzzy subset A of X , we define:

h: H(X) —» H(Y), by h*(A) to bethefuzzy subset of Y

defined by : h™(A)(y) = sup{ A(X) :x€ h*(y)} if h'(y)z ®
0 if hi(y) =

and we define the fuzzy function (h*)™ as(h*)*(B) for any fuzzy subset B
of Y by:

(h*)™* (B)(x) = B(h(x))

Now, we consider examples that clarify the above definition.
Example 1.4.2 [1]

TakeX={a b,c,d}.y=[u,v, m|

And h:X—Y by:a—u,b—>v,c—>vandd —v.

Let A bethefuzzy subset of X such that :

A={(a 0.2), (b, 0.5), (c, 0.6), (d, 0)}, then h* (A) is the fuzzy subset

of Y defined as. h*(A): Y — [0, 1]

u—>0.2v—> max{0.5,0.6,0} =0.6,andm —>0
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Example 1.4.3 [2]

Let X={a, b,c,d},Y={u,v,m} andh: X —Y.

be the function that mapsatouand b, cand d to v, and let

B: Y —>[0, 1] to be the fuzzy subset of Y that mapsuto 0.3, vto 0.5,
andmto 0.8

Then (h)™(B): X — [0, 1]

a—>03,b—>05c—>05andd —> 05

Theoreml1.4.4 [22]

(1) If p=(a, A) isafuzzy point in x, with support a, and with
Vaue= A, then h*(p) isafuzzy pointinY, cal it q, where

h*(p) =h(a)] =q, such that h(a) isthe support of g, and A is
thevalueof q.

Proof:

if ™ (y)=®,q(y) =0

if hi(y)z®, q(y) =sup{p(x) : x€ h''(y)} here, there aretwo cases:

e caseone: if aeh™ (y)

q(y) =sup{p(x) : xeh™ (h(@)} ={A, 0,0,..} =\
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e casetwoa ¢ h(y)

qy) =sup={00,..} =0

(2) if g= (b, r) fuzzy pointin Y then h™(q) may not be fuzzy point in X.
The following examples explain this result.

Examplel.4.5

Suppose h''(b) is not asingleton, say h*(b) = {a, R}

then h**(q) ={a,, R, 0,0,...} whichis not afuzzy point .

Example 1.4.6

IF f(b) = @, then f (q) = ® which is not a fuzzy point According to the
previous example if f'(b) ; where g = b, ; is asingleton then ! (q) is a

fuzzy pointin X.

Thefollowing theorem shows the effect of fuzzy functions on the

quasi- coincident relation between afuzzy point and afuzzy set .
Theorem 1.4.7 [25]

Let h: X — Y beafunction, then for any fuzzy point p=(a, A)
and for any fuzzy subset A of X, we have:

if pquasi A thenh'(p) quasi h'(A).
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Proof

Let p=(a A) and h(p) = h(a)

Sincep quasi A then: A+ A(a) >1

Consider A+ h(A) (h(a))

|+ h(A)(h(®) = M sup {A(x) : xe h(h(a)}
> M A®d) >1

Theorem 1.4.8

If g=b, and f*(b) isasingleton (f'(b) = {a}) then f (q) is the fuzzy

point=a; andinthiscase: if qquas B thenf ™ (q) quas f *(B)
Proof
We have q quasi B which means A+ B(b) >1

Now ,
M f¥7Y(b)(a) =\ +B(f(a))

=A+B(b) >1
Thatis, f(q) quasi f(B).
Theorem 1.4.9

Let h: X—> Y beafunction
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A, B fuzzy subsets of X then :
1) h* (AUB) = h*(A) U h* (B)
2) h* (AnB) < h*(A) n h* (B)
Proof:
1) h*(AUB)(y)
If h'(y) = @ then h*(AUB)(y) =0
Now, (h*(A) U h*(B)(y) = max {h*(A)(y), h*(B)(Y)}
=max {0, 0}
=0
If h(y) 28 and let h™(y) = {Xq, X, X3}
h* (AUB)(y) = max{ (AUB)(x): x€ h*(y) }
= max {max{A (x) ,B(x) : x€ h™(y)}
=max { a,vby, aVh,, agvbs,...}
Where, A(Xy) = @, B(X1) =by, A(X2) = &, B(X,) =b,, A(Xs) =8, B(X3)= by
=max{aVvaag...,byvhvbav...}
=max {max{ A(x) . A(Xo),.... , max{ B(xy) ,B(Xy),.....}

=max {h*(A)(y), h*(B)(y)}
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= (h*(A) U h*(B))(Y)
- h*(AUB) = h*(A) U h*(B) .
Pr oof
2) want to prove h*(An B) & h*(A) n h*(B)
If h'(y) = ® then h*(AnB)(y) =0
Also, (h*(A) n h*(B)(y) = min{h*(A)(y), h*(B)(y)}

=min {0,0}

i.eh*(AnB) =h*(A) n h*(B)
If h (y) 2o
h* (AnB)(y)= max{ (AnB)(x) :xe h*(y)}
= max{ min A(x) ,B(X) : x€ h'(y)}
=max{ ay/\b1, a/\b;,as/\b3}
Now, max {a;/\by, a&/\b,, as/\bz} < min{avayVvas, bvb,vbs }
Because, ay/\b; < ayv &V & ayq Nbi<b;vbyvbs

ag/\bzsalvagvag 82/\b2Sb1Vb2Vb3

BN\b<ayvaVva x/N\bs<b;vb,vb;
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Leh*((AnB)(y) = min{h*(A)(y).,h*(B)()}
= (h*(A) n h*(B))(y)

i.e. h*(AnB) € h*(A) n h*(B)

Remak:

Example where h* (AnB) # h*(A) n h*(B)

X={a b} ,y={c}

W: X —»y 4, Aa 2 " a
a—»C \‘c
b/ 3 — b/ 4 +— b/'

now, h*(A):c —» 4
h*(B):c — .4
h*(A) n h*(B): c— 4
dso 2 A" a
N

c

e

h*(AnB):c —» .3

3«——Dh

i.eh*(An B) # h*(A) n h* (B) .
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Theorem 1.4.10
let h: X—>Y beafunction
A , B fuzzy subsets of X and
L , M befuzzy subsets of Y . Then:
L ()™ (LUM) = (h*)™ (L) u(h*) (M)
2. () LaM)=(h*)* (L) n (h*)* (M)
Proof :
(1) ()™ (LUM) => (h*)™* (LUM)(X) = (LUM)(h(x))
= (LUM)(h(x)) =
= max {L(h(x)), M(h(x)}
= max { ()™ (L)(x), ()™ (M)(x)}
= ((h)™M(L) U(h*) (M) (x)
= (h*) (L) U(h*)™ (M)
i.e (h*)*(L UM)=(h*)"*(L) U(h*)™ (M)
@ () LaM)=(h*)™ (LaM)(X)= (LnM) h(x)
=min {L(h(x)), M(h(x))}
= min ((h*)(L)(X),(h*) *(M)(x)}
= ()M (L) n (%) H(M)(x)

= (h)(L) n (%) (M)
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Chapter Two

Fuzzy Number and
Fuzzy Metric
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Chapter Two

Fuzzy Number and Fuzzy Metric

I ntroduction

How to define fuzzy metric is one of the fundamental problems in
fuzzy mathematics which is wildly used in fuzzy optimization and pattern

recognition . there are two approaches in this field till now.

Oneis using fuzzy numbers define metric in ordinary spaces . firstly

proposed by Kaleva (1984) [13] .

Fuzzy topology induced by fuzzy metric spaces ,fixed point
theorems and other propertiesof fuzzy metric spaces are studied by afew

researchers, Felbin (1992) [3] , George (1994) [4] , Hadzic (2002)[11] .

The other one is using rea numbers to measure the distances
between fuzzy sets .The references of this approach can be referred to, for
instance, Dia (1990) , Boxer (1997) , Fan (1998) , Brass (2002) , results of
these researches have been applied to many practical problems in fuzzy
environment, while usually different measures are used in different
problemsin other words, there does not exist a uniform measure that can be

used in al kinds of fuzzy environments.

Therefore, it is dtill interesting to find some kind of new fuzzy
measure such that it may be useful for solving some problems in fuzzy

environment.
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2.1: Fuzzy Number
Definition 2.1.1
A fuzzy number A isafuzzy subset of R,i.e. A: R — [0, 1]
Such that, there existsa, b, c,andd € Rsuchthata<b<c<d
with:
AX)= (0 ifx <a,x >d
Increasing fifx € [a b

Decreasing \,iifx € [c, d]

1 ifx € [b, q]

Note: if b=c, and between a and b there are linear function also between b

and c there are linear function then wesay A isatriangular fuzzy number.
Example 2.1.2
Given the fuzzy number:

4 x-1

A= | = ife x [14]

{5-x ,if x € [4,5

0 ,other wise
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/\EA:(1,4,5)

1 4 5

St:

In the previous example support of A = [1, 5] = A%~ ',

Also,A*=2-levelst: A’={x EX :AX)= .2}

2= XxXx-1 —» x4=16 , 2=5-Xx —» X,=4.8
3

2-level =A?=1[1.6,4.9].

Also , we can solve another exampleto find A* asfollows :

b= XxX-1 —>»x3=25, . 5=5-x —x,=45
3

Ingeneral, we can find A? st

a=-x-1 — , (x)? =1+3a
3

aA=5-x — 5 (xp*=5-a
Therefore,

A%= a-level=[1+32,5-A].
2.2 Addition of fuzzy number
Definition 2.2.1

Let A, B betwo fuzzy numbers, we define A+B by :
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(A+B)? =[ a? +b,? , &% +b,? ], whereA? =[ &%, a?]
Baz[bla’bza]

Example 2.2.2

Let A, B betwo fuzzy numbers defined by :

AKX) = | = ifxe[L4]

4 5-x  ifx €[4 5]

0 otherewise

BX) = [ x-2 if xe[23]

{5 If x € [3,7]

0 , Otherewise
We need to find (A+B)2 . To find (A+B)? we need firstly to find A2
And B2 .

Tofind A2 welet @ - XT_l —> x=1+ 30— ala=1+3a

Also, a=5-X —»Xx=5-0 —> aza:S—a
a
So, A =[1+3a,5-q].

To find Ba weleta=x-2 —Xx=2+a —>b1a=2+a.

Also, o= 7-X —>x=7—4a—>b2a=7—4a.
4
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So, BY = [2+0, 7 - 4q]
Now ,
Let Cc?=(A+B)" ,s0C=A+B.
Co=[a +h,", &+, ] =[1+30+2+a,5-a+7 - 4a]
a
So C =[3+4a,12-50].
In the previous example we can find ( A + B )(x) = C(x) asfollows:
a a
Inthelast example C =(A+B) =[3+4a,12-5a].
Tofind C(x) weneed to use c;@ , cza.
a
e, =3+4a , a €[0,1]
When a=0 then ¢,°=3+0=3.
When a=1 then ¢,'=3+4(1)=7.
So,when a=0 thenx;=3,whena=1thenx,=7.

So,x e [3,7],dsoweput X instead of cla and weput Yy instead

Ofu,then(cla=3+40()becomex=3+4y—> Y= x-3
4

st xe [3,7].
a
2) c;, =12-50 ,ae [0,1]

When o =0 then ¢, =12
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When a=1then ¢,'=12-5(1)=7
So,whena=0then x,=12 ,whena=1then x;=7.
Sox e [7,12], dsowe put x instead of cza and we put y instead

of athen 02a=12—50(,0(e [0,1] become :

x=12-5y —» y= 12-x ,x [7,12].

5
So,C(x)=(A+B)(X) = [ x-3 ,if xe [3,7]
4
<1i,if Xe [7,12]
5
. 0 , Otherewise

Remark:

In special case ( linear triangular fuzzy numbers) , we mean when we

have two fuzzy number A=(a,&,a)and B=(b; by, bsz), then
(A+B)(X)= (a1+b1,89+b2,83+b3).

This result obtain directly without using a - level , only , when we

deal with triangular fuzzy numbers .We will illustrate this remark as

follows:
AX)=( xa < X< a
Q-
< ag-X &< X< ag
AB—
0 Otherwise
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B(X) = X-b]_ b]_S X< b2
b,-b,

-< b3—X bzs X< b3
bs—b,

L 0 Otherwise

A'=la(a-a)ta,s—0(3-a)]
B"=[a(by—by)+by,bs—a(bz—by)]

(A+B)'=[0(a—a+by—Dby)+a +b, a+b; — o (a-a+bs-by)

Which leads:
(A+B)(X) = [ X ~— (ar+by) , athi< X < axh,
(@t+by)-(autby)
< (agtbs - X) , +b< X < azt+bs
(3ths) - (aot+hy)
\ 0 , Otherwise

And the following example explain this remark
Example2.2.3

Given A=(1,3,7),B=(4,5,6) twolinear triangular fuzzy numbers

then :

(A+tB)=(1+4,3+5,7+6)=(5,8,13).

(A+BY) = [ x=5_ ,xe [5,8]

< 13-x ,xe [8,13]

0 , otherwise
N
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If we solve the previous example by a — level we will obtain the same

Answer asfollows:
A=(1,3,7) ,B=(4,5,6)

Wecanwrit;A and B asfollows:

A(x) = x=-1 ,ifxe [1,3]
2
< 7-x_, ifxe [3,7]
4
. 0 , otherwise
=
B(x) = x-4 ,ifxe [4,5]

<6-x ,ifxe [5,6]

0 , otherwise

—

Firstly , weneed tofind (A+B )2 =C% =[a° +b,a , & +b, ] .
a a a a a a

st: A =[a ,& ],B =[by ,by ]

. a a
tofind A~ welet a= x-1——» x=1+20 —» a; = 1+2a

2

Also, a=7-X —>x=7—4a—>a2a=7—40(

4

A% =[1+20.7-4a].
. a a
Tofind B welet a=x-4 —>x=a+4 —> b, =0a+4

Also,a=6-X —>» X=6-0 — b2a=6—a.



29

B® = [0 +4, 6-q]

a
C =[1+2a+0+4,7 - 40+ 6 —q]

=[5+3a, 13 -5a]

: a a
Tofind (A+B)(X) =C(x) weusec; and ¢,
c1a=5+3a,a e [0,1],when a=0 thenc,’=5—> x;=5.
when a = 1 then ¢, = 5+3(1) = 8—»X,=8.
a a

replace ¢; by x and aby ythen c; =5+3a become :

X=5+3y —> y=x-5 ,xe [5,8].
3

¢, =13-50 ,ae [0,1] ,when o=0thencl=13—» x,= 13
when a=1thenc,’=13-51)=8—>x,=8 .

0] cza:13—50(becomex:13—5y—>y= 13-x ,xe [8,13]

5
=—> C(x) = (A+B)(X) =~ x-5 ,x e [5,8]
3
< 13-x _,x e [8,13]
5
0 , otherwise

~

Therefore, the two answers arethe same.



30

2.3 Fuzzy Metric

Definition 2.3.1

1
Let X, Y, betwo fuzzy points,letk e (O, 5 ] be afixed number A> 0

, >0 .we define the k — distance by :

(X% ye) = | (AAT,KAADHI-KA V), Avr) | if xzy
(0, (1K) XN=r | F-r ) ifx=y

d« ( X» , yr) Isafuzzy metric such that :

1) de (X5, Yr) Isafuzzy number A, where support of A=0

2) de (% ,¥:)=0=(0,0,0) if andonly if x,=y;.

3) d (X, Yr) = i (Yr, Xn) -

4) de (Xn s ze) S Ae(Xn, Ye) + (Y, 22)

We can show that the previous conditions are satisfied as

follows:

1) de( Xy, Yr) isafuzzy number

A
/\ Isafuzzy number from definition 2.1.1
® L >
N

KO\ A N)+(L-K)(A v )
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/\ Is afuzzy number from definition 2.1.1
® ® >

AT

0
(1K) N—r |

2) *a)if de(%r,Y:)=0=(0,0,0) then (X, =Yy;)

Proof :

We have two cases :

Casel: xzy

(AAT,KAAD+A-K)YAvVr),Avr) =(0,0,0)

i.eA=0 and r =0, which is contradiction because A >0,r>0.
therefore x#y isnot trueand that is mean the two fuzzy point are
not distincit , they arethe same. i.e (x, =Y;).

i.e AAT, Avr, both not equal zero we could not apply rule 1 of the

definition of d( %y, V).
Case2: x=y

de(Xx,¥)=(0,0,00= (0, (L-k) A=r|, A-r[)
0 (1-k) h=rl=0 , but (1-k)#0

—> A-r=0
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A=r ,but x=y
XA =Yy .
*b) if x,=y; then de(x\,y:)=(0,0,0)
Now , X,=y, => x=y and A=r.
ie d(x,y)=(0,(1-k) N=r | N=r )=(0,0,0).
therefore, dk(xA,yr)=O_=(O,0,0) if andonly if x,=Yy;.
3) *c) de(Xn,¥r) = | (AAT,KAAN+HA-K)AVT),Avr) ,if xzy
(0, @A-Kk)A-r |N=-r)| ifx=y
*d) de (Y, %)= [ (FAN,K(rAN+A-K)(rvA),rvA),ifxzy
(0,(1=k) rkx [r=A ) ,ifx=y
When x#y incandd:
ANT=T AN
KAAN+HL-K)Avr) = k(rAN+1-Kk)(rvA),
AVI=TrvA.
aso,whenx=yincandd:
0=0,(L-kK) h=rE@ Kk =2 | h=r=k=al

So, d(Xn,yr)= de(yr,Xn).
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4) to prove 4 we have consider five cases, where every case
contains six cases as follow :

casel: x,y,zaredistinct

case2: X=y#z

case 3. X=zzy

case 4. y=z#X

case 5. x=y=z

Now , in every case of the previous cases, we consider the
following six cases:

Ar <t, A<t <r, r<A<t, r<t <A, t<A<r, t<r<A.

in this section we will prove some of those cases ( not al )
casel: x,y,zaredistinct with t<A <r
let A=di (X, z)= ANLKAAD+HL-K)Avt),Avt
=(t,kt+(1-K)A, M)
B=dc(Xn,yr)+de( yr,2z)
=((A, KM@K, r)) +((t, kt +(1-K)r,r))

= (Mt K (M) + (L k) 2, 2r)



Now , we want to show that :

A< B.

Let

=t ,=kt+(1-k)A,az3=A

and by=A+t, b=k (AM+t) + (L k) 2r,bz=2r
to provethat A < B we want to prove that :
ataptag < bpbytbs

Or D1y +hs- 81-8p-as 20 = (03— @) +(02 — &) +(b1—a1) 20.
A+t +Kk(A+t) +2r(1-k) +2r —t — kt - (1-k)A — A
AMt+ KA+ kt+2r—2kr+2r—t—kt— A+ kA=A
4r — 2kr — A + 2kA

= 2KA — A+ 4r - 2rk

=2kKA-A+3r+r - 2rk
=(-AMr)+2kA+3r-2rk sit:

* (-A+r) > 0 because fromgiven r>A.

1
* 2kr >0 becausefromgiven r>0and k e (O’E]'

* 3r—2rk >0 because:

1
Oo<k< 5
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=0<2rk <r
=0>-2rk >-r
=3r>3r-2rk>3r-r
=3r>3r-2rk>2r
=2r<3r-2rk<3r ,sincer>0.s02r>0,3r>0.
Therefore 3r-2rk>0.
Caseb: x=y=z withA<t<r
let A=di (%2, 2)=(0,(1-K)|]A-t|,t—=A) sincet>A:
(0,(1-K) |)\—t| ,t—A)become (0 ,(1-K)(t-A) ,t=A)
B=d(xxn,yr) +d( yr,2z)
=((0, (@-k)(r-A),r-A)) + ((0, A-K)(r-t) , r-t) )
=( 0, (1-k)(2r-A-t) , 2r-A-t)
Let : by =0, by, = (1-k)(2r-A-t) , by = 2r-A-t
a=0,a=(1-K)(t-A),a3 =t-A
b+ by+bz = 0+ (1-K)(2r-A-t) + 2r-A-t
>0 + (1-k)(2t-A-t) + 2t-A-t
= 0+(1-K)(t-A)+(t-A) = g +aptag

SO,A<B.
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Chapter Three
Fuzzy Scalar and Fuzzy Metric
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Chapter Three

Fuzzy Scalar and Fuzzy Metric

I ntroduction

In this chapter we will use fuzzy scalars (fuzzy points defined on the
real- valued space R) to measure the distance between fuzzy points, which
Is consistent with the theory of fuzzy linear spaces in the sense of Xia and

Guo (2003)[24] and hence more similar to the classical metric spaces.

The definitions in this chapter are different from the previous
definition because fuzzy scalars are used instead of fuzzy numbers or real
numbers to measure the distance between two fuzzy points. In this chapter
fuzzy scalars are introduced in measuring the distances between fuzzy

points.

Some basic concepts of fuzzy points and notations are presented

below.

Fuzzy points are fuzzy sets x, of the following form [ 17].

X1 (y) = A, y=X
0, xzy

where A&(0,1).
In this chapter , fuzzy points are denoted by ( x , A) , and the set of

al the fuzzy points defined on X is denoted by Pg(x) , where X is a

nonempty set .
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When X =R, fuzzy points are also called fuzzy scalars and the set
of all the fuzzy scalarsis denoted by S-(R) . afuzzy set A can be considerd

as aset of fuzzy points belonging toit,i.e:
A={(x,A):AX)=A}
Or aset of fuzzy pointson it ,
A={ (x,A):AX)=A}
3.1 Fuzzy Metric
Definition 3.1.1
Let (x,A)and(y,r) betwo fuzzy scalars .
We define the following :
1) @, N +(b,r)=(atb,min{A,r})
2) (a,A)=(b,r)means a>bor(a,A)=(b,r)
3) (a,A)>(b,r) means:b<a.
4) (a, A)issaid to be nonnegativeif a= 0.
The set of all nonnegative fuzzy scalarsis denoted by S'=(R) .
Proposition 3.1.2

The orders defined in definition 3.1.1 (2) and definition 3.1.1 (3)

are both partial orders.
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proof:

(1) Transitive

from definition 3.1.1 (3)

(a,AN)>(b,r) =——— azb
aso,(b,r)>(c,a) ——=b=>c

so, a=c since we deal with numbers —{a,A)>(c,a).
(2) Reflexive

want to prove that: (a,A)<(a,A)

Now (a,A)=(a,A),and from definition 3.1.1 (2) that is mean :
(a,A) < (a,A).

(3) Antisymmetric

We want to prove :if (a,A)<(b,r)and (b,r)<(a,A)then:
(a,AN)=(b,r).
Since(a,A)<(b,r)thena<bor(a,A)=(b,r).*
Also(b,r)<(a,A) then b<a or(b,r)=(a,A).**

From (*) and (**) (a,A)=(b,r).
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Definition 3.1.3

Suppose X is anonempty set define :

D:P:(X) X PE(X) — » SHR)

satisfies :

1) non negative : D((x,A) , (y,r)) = 0 iff x=y and A =r = 1

2) symmetric : D((x,A) , (y.r)) = D((y.).(x,A)) -

3) Triangle inequality :

D((x,1 ),(z,p))<D((x,1 ),(y,r)+D(y.r),(z,p))
Forany (X,A),(y.r).(z,p) € P«(X)

D iscaled afuzzy metric defined on P-(x) and D((x, I ), (y,r))iscaled

afuzzy distance between the two fuzzy points.

and ( Pe(x) , D) issaid to be afuzzy metric space .
Now we look at few examples:

Example3.14

Suppose (X ,d) is an ordinary metric space . the distance of any two

fuzzy points (x,A), (y, r)in Pe(X) isdefined by :

D((x,A).(y.n) = (d(x,y) , min {A,r})

Where d(x,y) is the distance between x andy defined in (X ,d) .
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Then ( Pe(x) , D) isafuzzy metric space.
Proof :

We can prove that D satisfies the three conditionsin definition 3.1.2
1) non negative : suppose (x,A) and (y,r) are two fuzzy points in Pg(X) .
Sinced isametric , then d(x,y) =2 0. itis clear that :

D((x,A) , (y,)) =0 iff d (x,y) =0and min { A, r } = 1 which is equivelant
to (x=y and A=r=1) .

2) symmetric : for any { (x,A) , (y,r) } < P(x) One have:
D((x.A), (y.r)) = (d(xy) ,min{A,r})
= (d(y.x), min{r,A})
=D((y.r) , (X,A)) .
3) triangle inequality: for any { (x\), (.,r), (z.5) } & Pe(x) , we have:
D((x.A) ,(z,s)) = (d(x,2) , min { A, s})
<(d(xy) +d(y,z), min{A,s,r})
= (d(x.y) , min {Ar})+(d(y,z) , min{r,s}) .

=D ((xA), (y.n) + D ((y.1), (z9)) -
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Example 3.1.5

We denote R® the usua 2- dimensional Euclidean space . the
distance between arbitrary two fuzzy points p= (X1, Y1) and Q = (X2, Y>)

denoted by :
D (P, Q) isdefined by : (d(P,Q), min { A, r}) where

d(P.Q)=(X-x)2+(y,-Y)2 .

proof :
letP=(X1,Y1),Q=(X2,Y2),R=(X3,Yys3) then:

We can prove that D satisfies the three conditionsin definition 3.1.2
1) non negative : suppose (P,A) and (Q ,r) are two fuzzy points in Pg(X) .
Sinced isametric , then d(P,Q)=0. itis clear that :

D((P,A), (Q,))=0iffd (P,Q) =0and min { A, r } = 1 which is equivelant
to (P=Q and A=r=1) .

2) symmetric : for any {(P.A), (Q.1)} < Pe(x) One have:
D((P.A), Q) =(d(P.Q), min{A,r})
=(d@QpP),min{r,A})
=D(Q.1) . (P.N).

3) triangle inequality: for any { (P,A), (Q,r), (R,s)} <& Pg(x), we have:
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D ((P.A).(R:s)) = (d(P.R) , min { A, s})
<(d(P.Q) +d(QR), min{A,s,r})
=(d(P,Q) , min {Ar} )+(d(QR) , min{rs}) .
=D ((P.A), (Q.n) +D((QN), (RS)) .
Definition 3.1.6

suppose X is anonempty set and D : Pe(x) x Pe(X)—> S'(R) isa
mapping ( p(X) , D) issaid to be a strong fuzzy metric space if it satisfies

the following conditions :
(1) non negative : D((x,\) , (y,1)) =0 iff x=y and A =r = 1
(2) symmetric : D((x,A) , (y.r)) = D((y.1),(x,)) .
(3) D((X.N) , zp)) < D((X.N) . (¥ .1) +D((Y.r) ,(z.P))
Remark 3.1.7

Every strong fuzzy metric space is afuzzy metric space .
Because :
(1) non negative : D((x,\) , (y,)) = 0 iff x=y and A =r = 1 and
(2) symmetric : D((x,A) , (y.r)) = D((y.r).(x,A)) , are the same .

And (3) which say : (3) D((x,A) , (z,p)) < D((x ,A) , (v .1)) +D((y.1),
(z,p)) implies (3) which says:
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D((x, 1), (z,p))<D((x,1 ),(y,r)+D(y.r).(z,p))
Forany (X ,A),(y,r),(z,p) € P(X).
3.2 The completeness of fuzzy metric space

In this section, we mainly consider the convergence of a sequence of
fuzzy points and the completeness of induced fuzzy metric spaces. Since
fuzzy scalars are used to measure the distances between fuzzy points, the

convergence of a sequence of fuzzy scalarsis considered first.
Definition 3.2.1

Let{ (a,, A\n) } be asequence of fuzzy scalars . it is said to be convergent

to afuzzy scalar (a,A) ,A#0.

e |im(a,A)=(a,A if |ima=a.also{A:A<A,ieN}isa

n—oo n—oo

finite set and there exists a subsequence of { A; } denoted by { A;} , such
that |[jmA=A.

n—oo

Example 3.2.2

Consider the sequence of fuzzy scalars { (a,0.3), (a, 0.51), (a,0.4),
(a,0501),(a,02),(a 05001), (a,0.50001), ....} .thissequenceis

convergent since :
we can find afinite setsay {A} ={ .3,.4,.2 }.

aso, we can find asubsequence of { A;} say:
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{M}= {51, 501,.5001,.50001,....}

such that :

lim {.51,.501,.5001,.50001,....} =05

Therefore the sequence{ (a,, \n)} —— (a,A) =(a, 0.5)
Definition 3.2.3

Suppose ( Pe(X) , D) isthe induced fuzzy metric space of (x , d) and
{ (X, An)} isasequance of fuzzy pointsin ( Pe(X), D) .

{ (X, An)} issaid to be convergent to afuzzy point (x, A) ,if :

lim D%, ] ,),(x,1 )=0

n—oo

Andforanyre (0, 1] suchthat:

||m D((Xn1| n)1(X1r)):0r

n—oo

One has A=r.(x,A)iscalled the limit of the sequence , denoted by :

lim (Xn,Aq) = (X, A).

n—oo

Proposition 3.2.4

Suppose {( Xn , Ay )} is asequence of fuzzy pointsin (Pe(X),D) and
(X,A) € (Pe(X),D),A#0 . we have that :

lim (Xa, ], )=(x,1 )ifadonlyif |jmx.=X,

n—oo n—oo
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{I,:1,<! ,jeN }isafiniteset and thereexists a

subsequenceof { |  } denotedby : {| |} ,suchthat: |jm | ,=

n—oo

Definition 3.2.5

A sequence{ X, } of apointsin ametric space ( X ,d) iscaled a
Cauchy sequence if for each € > 0, there exists a positive integer N such

that d(X,, Xm) < € whenever nm=N .
Remark 3.2.6

If the sequence { x, } inametric space ( X , d) isa Cauchy , then
weshall write ©  |im d( Xn, Xm) =0

n—oo

Definition 3.2.7

A metric space ( X ,d ) is complete if every Cauchy sequence in

(X, d) converges.

Definition 3.2.8

A sequence of fuzzy points ( x,, | ) € (Pe(X) , D) issaid to be a
cauchy sequence if there exists some A € (0, 1] such that :

lim D ((Xmens Amen) » (X0, An)) =0y, v MmeN

n—oo

Remark 3.2.9

Every Cauchy sequence of fuzzy points defined above has a unique

fuzzy point asitslimit .
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Definition 3.2.10

An induced fuzzy metric spaceis said to be complete if any Cauchy

sequencein it hasalimit in the space.
3.3 Fuzzy topology spacesinduced by fuzzy metric spaces.

In this section we provide a suitable method to construct a fuzzy
topology of any ordinary metric space. To do this, the definition of fuzzy
closed sets with respect to induced fuzzy metric space is given first .
suppose ( X , d) isan ordinary metric space . since afuzzy set A in X can
be represent as a set of fuzzy points belonging toit, A can beregarded as a
subset of Pe(X) called afuzzy set in the induced fuzzy metric space (Pe(X),

D) in the following definition .
Definition 3.3.1

A fuzzy set A in (Pe(X) , D) issaid to be closed if the limit of any
Cauchy sequencein A belongstoit . afuzzy set A in (Pe(X) ,D ) issaid to
be open if A® isafuzzy closed set , where: AS(X) = 1- A(X) , forany X €
X.

Remarke 3.3.2

We will show that every induced fuzzy metric space can induced a

fuzzy topology .
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Lemma 3.3.3[17]

Any subsequence of a Cauchy sequence of fuzzy points is aso a

Cauchy seguence and has the same limit as the original one.

Theorem 3.3.4

Suppose (Pr(X) , D) istheinduced fuzzy metric space of a metric space (
X,d).Then ( X, Tg ) is a fuzzy topology space in the sense of p,

(1980)[17] , called the fuzzy topology space induced by:

(Pe(X), D), where Tr Isdefined by :
Te={ A < Pg(X) :Aisafuzzy closed setin (Ps(X),D) .}

Proof :

Te satisfies the three conditions in the definition of fuzzy topology as

follows:

1) itisclear that X and ¢ are fuzzy closed sets.

2) For any {A, B} < Tg, weprovein thefollowing that A UB € T . for

any Cauchy sequence of fuzzy points { (Y., ¥y } includedinAUB , A
or B, say A , must contain a subsequence { (Ym, ¥m) } of

{ (Yo, %)} .(lemma3.3.1)

{ (Ym,¥n) } isaso aCauchy sequence and hence hasalimit . since A isa
closed fuzzy set , thelimit of { (ym, ¥n) } whichisasothelimitof { (y,

, ¥,) } isincluded in A . in consequence, the limit of
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{ (yn,¥%,)}isincludedin AUB , whichimpliesthat A UB € Tr.

J)forany { A} < T, wherel isan arbitrary index set , it only need to be

proved that N A; e Tg .for any Cauchy sequencein N A; , denoted by { ( X,
| )}

Wehavethat { (x,,| )} < Aiforanyiel . sinceevery A;isaclosed
fuzzy set, thelimit of {( x,, | )} isinA; foranyi el . It followsthat N A,

iIsaclosed fuzzy set in the sense of definition 3.3.1. Therefore NA; € Tr.
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Chapter Four

Some results of metric spaces
and Fuzzy metric spaces
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Chapter Four

Some results of metric spaces and Fuzzy metric spaces

I ntroduction

In this chapter , we will deal with the concept of fuzzy metric spaces
as well as some properties and applications in fixed point theory under

fuzzy setting .

The problem of constructing an interesting theory of fuzzy metric
spaces has been suggested by several authers . some of them modified the
classical definition of metric spaces . others put new independent
definitions but it turns out that they are really an extension of the classical
definition . so it would be wise to present the concepts of classical metric
spaces in the first section of this chapter ( section 4.1) followed by the

extention of the definition and properties to fuzzy metric spaces .
4.1 Metric spaces

we defined a metric space on a set X to be the orderd pair (X ,d)
where X isaset, and d is a non-negative real valued function on the set X

x X that is symmetric , satisfies the triangle inequality
d* ({0}) ={ (x x): XEX } . if thislast condition is replaced by

d*{0}) o { (x,x) :x € X} thenthe pair (X , d) iscalled p psedo metric

space.

we will present now some examples:
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Example4.1.1

Let X = R™ defineafunctiond: R™xR™ R

By d(P,Q)= max

1<i<m

X — yi‘ ; where P = (X1,Xo,...,Xm)

Q= (YuY2 - 1 Ym)

The function d is usually called the max metric on R™ and denoted

by doo and(X , dw) isametric space.
Example4.1.2

let X =R. definethefunction d: X xX — Rbyd(x,y) = (x-y)?

then d isnot ametric and (X , d) is not a metric space.
Definition 4.1.3

let ( X , d) beametric space and r be a positive real number. the

open ball in (X ,d) of radiusr centered at ae X is defined by:

B(a,r)={yeX:d(a,y <r} .andaiscaled the center of the open
ball .

The open ball B(a,r) is aso called aneighberhood of the point a € X.

It is clear that for any two open balls of the same center , one of them

Should be Contains the other .
Definition 4.1.4

let (X ,d) beametric space, { X, } beasequencein X .
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The sequence { X, } converges to a point a in X if for each € >0

thereisapositiveinteger N suchthat d (x,,a) <€, whenever n>N .
and we write X, _,a

observethat x, —j,a isequivalentto:

lim d(X.,a)=0.

n—oo

Definition 4.1.5
Let (X, d) beametric space and A be asubset of X .

A point x € X iscalled (‘alimit point ) of A if each open ball with

the center x contains at least one point of A different from x , that is

{B(x,r)={x} } NA} £®; forevery r >0 we say x isacluster point of

A if each open ball with center x as a nonempty intersection with A .
Remark 4.1.6

The set of all limit points of A is caled the derived set of A and
denoted by A' and the set of all cluster point of A iscalled the closure of A
and denoted by A .

Consider now , the following example :
Example4.1.7

Let X =Rand defineametricon X by d(x,y)= |x —y |, whichis
called the usual metricon R . thesequence{ﬁ :n € N} is asequencein R

and convergesto 0 inR..



Remark 4.1.8

In ametric space (X , d) , if asequence {x,} convergesto a. then a
IS a cluster point , but the converse is not true . the following example

explains:
Example4.1.9
Consider the sequence{ (-1)": ne N} in (R, usua metric) .
Then -1 and 1 are the cluster pointsof { X,} .
But the sequence{ (-1)" : n € N '} does not converge .
Definition 4.1.10

A sequence { x,} of apointsin ametric space ( X ,d) iscaled a
Cauchy sequence if for each € > 0, there exists a positive integer k such

that d ( Xp, Xm) <€ whenevernm=Kk.
Remark 4.1.11

It is clear that , in any metric space ( X ,d) , if asequence {X,} isa
Cauchy sequencethen |jm d(Xn, Xm) = 0.

It is obvious that every convergent sequence is a cauchy seguence .

Definition 4.1.12

A metric space ( X , d) is complete if every Cauchy sequence in

(X, d) converges.
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Example 4.1.13

let X =R be equipped with the usual metric d and consider the
sequence{ X,} in X by :

1
{1- =:neN}
3 €

. . 1 1
Then [imd(xn, Xm) = I|m(§—?)=0 :

hence the sequence { 1 - 3i :ne N} isaCauchy sequence.

we provide an example of a sequence in a metric space ( X , d)

which is cauchy sequence.
Example4.1.14
In (R, usua metric) ;

Consider the sequence{ x, } where:

n+1l
X,= 1- %+1—i+.....+ (1) . forneN
n

3 4

This sequence is a cauchy sequence becauseif n>m=k;

<

d(Xn, Xm) = s%

1
m

m+1 m+2

S
n

And rerefore, d ( X, , Xm) <E whenever k >§

Observe that not every Cauchy sequence in a metric space

converges. thisisillustrated by an example below .
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Example 4.1.15

Let X = (0, 1) be equipped with the usual metric d . then the

sequence

{ % , % ,% . } in Xis Cauchy but does not converge to a point in X .
This shows that a metric space ( X , d) isnot complete .

Definition 4.1.16

Let (X,,d;)and(X;,,d,) bemetric spacesand let P=(Xx; , X»)

Q=(Yy1,Y-) bearbitrary pointsin the product X =X;x X, .

define :

d(P,Q)=max{ di(xs,y1),d(X2,¥2)} .

thend isametricon X and (X ,d) iscalled :

the product of themetric spaces(x;,d;)and (X, dy) .

Definition 4.1.17
Let (X,,dy),n=12,.... be metric spaces , X = ﬁ X, . then
n=1

definethemetricdon X ; d (P, Q) = iz’”dn(xn,yn) ;

where P ={ X1,X2,X3,...}

And Q ={ y1,¥2,¥3...}arein X . ( X, d) isacomplete metric space

if andonly if each (X,,d,),n=1,2, ... iscomplete .
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Definition 4.1.18

A subset A of ametric space ( X , d) issaid to be open if given any
point X € A , thereexists r>0suchthaaB (x,r) c A.andwesay aset B

isclosed if B isopen.

There are severa ways to characterize closed sets in metric spaces

the following are among them :
*asubset A inametric spaceis closed if it contains al itslimit points.

* asubset A in ametric spaceis closed if A equals the set of cluster points
of A .

The following are always true : in any metric space (X,d) each open

ball isan open set .
Definition 4.1.19

The sets of closure set and derived set of A are combined by the
relation: A=A UA'.

Definition 4.1.20

Let ( X, d) beametric space and let A be a nonempty subset of X .
we say that A is bounded if there exist a positive real number M such

that :

d(x,y)=<pm ,foralx,yeA.

if A isbounded, we define the diameter of A as:
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da(A)=sup{d(x,y):x,yeA} .if Aisunbounded, we writedia
(A)=o.

if A=dwewritedia(A)=0.
Definition 4.1.21
A subset A of ametric space ( X ,d) issaid to be:
* rare (or nowheredense) in X if it isclosure A has no interior points.

* meager (or of first category ) in X , if A isthe union of the countable

many sets each of whichisrarein X .
* non — meager ( or of second category ) in X if A isnot meager in X .
Definition 4.1.22
Let (X,d)and (Y ,p) betwo metric spaces amapping :
f: (X,d) —(Y,p)isanisometry if: p(f(x),f(y))=d(x,y)

Foral x,ye X .themetric space( x, d) issaid to be isometric to

the metric space (y , p ) when there exists some isometry from ( X , d) into

Definition 4.1.23

Let (X, d) beametric space . ametric space (X', d') issaidto be
a completion of the metric space ( X , d ) if ( X', d') is complete and

(X, d)isisometric to adense subset of ( X', d').
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Example 4.1.24
(R, usual metric) isacompletion of (Q, usual metric) .
Theorem 4.1.25

Every metric space ( X , d ) has a completion and any two

completionsof ( X , d) areisometric to each other .
Remark 4.1.26

In other words, up to isometry , there exists a unique completion of

any metric space.

Definition 4.1.27

Let (x,d) beametric spaceand A;, Ay, ..... be a sequence of
Sets.

Then A{,A,, ....... Is said to be nested if A; oA, A3 > ...
Theorem 4.1.28

Every nested sequence of nonempty closed sets with metric diameter

zero has nonempty intersection .
4.2 Continuity and Uniform Continuity in Metric Spaces
Definition 4.2.1

Let (X ,d)beametric space,andlet T < X .wesay T is bounded

if thereexists r>0suchthat T < B(ar) for someain X .
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Bolzano — walerstrass theorem :

If T isabounded subset of R" with infinitely many pointsthen T has

at least onelimit pointa, a€R".

Definition 4.2.2

Let G be a collection of open sets in the metric space ( X ,d) . we

&in isan open cover for A < Xif UgeeG 2 A.

Definition 4.2.3

We say the metric space ( X , d) is compact if every open cover of

X has afinite subcover .
Remark 4.2.4

An equivalent definition for a metric space to be compact is the

following :

For any sequence { F; } of closed subsets in ( X , d) , if the
intersection of any finite subfamily is not empty then the intersection of the

elements of the sequence is not empty .
Proposition 4.2.5
Every compact subset A of ametric space( X , d) isbounded .

One of the most important properties of a closed and bounded
interval in R when equipped with the usual metric is given in the next

theorem .
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Theorem 4.2.6
Hene Borel theorem

Let T be aclosed and bounded subset of ( R", usual metric) then T is

compact .

We provide examples on (R , usua metric ) where theorem is not

applied .
Example 4.2.7

In( R, usua metric) , T, =[ 0, 2 ) isclosed but not bounded . it is
not compact ; because the open cover { (-1, n): n € N} has no finite

subcover ,and T, =( 0, 1) is bounded but not closed . it is not compact by

taking the open cover { (ﬁ, 1) :n €N} hasno finite subcover .

Let X be any infinite set and d be the discrete metricthen ( X ,d) is
not compact . because take the open cover { B( x , % ) : X € X } this open

cover has no finite subcover . observe herethat ( X , d) isbounded .
Definition 4.2.8

Let ( X, d) beametric space we say that D < X isadense if

D=X
Definition 4.2.9

Let (X ,d) beametric space. if thereis a countable dense subset in

(X,d)then(X,d)issadtobeseparable.
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We now provide an example of a metric space which is not

separable.
Example 4.2.10

Let X denotethe infinite set and d be discrete metric . then the metric

space ( X , d) isnot separable.
Definition 4.2.11

A space X isa T, — space ( Haus dorff space) iff whenever x and y
aredistinct pointsof X , therearedigoint open setsuandvin X withx e u

andyev.
Proposition 4.2.12

Every metric space is a Housdorff space .
Proof:

Let (X ,d)beametric space , let x ,y € X with x#y , sincex #y

d( x,y)=r>0,tskeu=B(x,z),v=B(y,z)thenunv=0and

(X, d)isHausdorff .
Definition 4.2.13
Let(X,d)and (Y ,p) bemetric spaces.

Thefunction f:(X,d) —— (Y, p) issad to be continuous at

the point xge X if for each € > 0 there exists a d > 0 such that : p ( f(x)
f(xo)) <€
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Whenever d(x,Xo)<d .

Weshall say thatf: (X ,d)—> (Y ,p)iscontinuousifitis

continuous at every X € X .

Now, we present an equivalent definition of continuity using

sequences.
Theorem 4.2.14

Let (X ,d)and (Y , p) be metric spaces . then the following

statements are equivalent :

*f.(X,d) —— (Y ,p) iscontinuous.
**For asequence{ x,} andapointxin(X,d)
|i!np(f(xn),f(x))=0,whenever |i!nd(xn,x)=0.

An example of an identity function that is not continuous.
Example 4.2.15

Let f: (R, usua metric) —» (R, discrete metric )

Where f(x) =x for each x € R . then f is not a continuous function .

to seethis, take a sequence { % :neN} ,then:

limd(%:,0)=0 ,But |imp(f(x),f(0)=1.



Definition 4.2.16
Let(X,d)and (Y ,p) betwo metric spaces.

Thefunctionf: (X ,d) _, (Y, p) isuniformly continuous on X
if and only if for every € >0thereexistsad > 0suchthatif x;e X , X, € X

and d(x;,X%)<d ,then p(f(xy),f(xy))<e.
We provide an example of auniformly continuous function .
Example 4.2.17

Let X =[ 0, 1] beequipped with the usual metricdand Y =R be

equipped with the usual metric p . consider the function :
f:[0,1] — 4, R givenby:
f(x)=2x+1forxe[0,1].clearlyfisuniformly continuouson[ 0, 1].

Next we provide an example of a function which is not uniformly

continuous .
Example 4.2.18

Let X =R,Y =R beequipped with the usual metrics and
f:R—»RGivenby f(x) =x?. then f isnot uniformly continuous .
4.3 Fuzzy Metric Space

In this section the concept of fuzzy metric space we deal with is due
to Geoge and veeramani [5] and the axiomatic of thistheory is explained as

follows.
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Definition 4.3.1[ 5]

Leto:[0,1]x[0,1] —> [0,1] beacontinuous function

satisties the following conditions :
1. o(r,t)=o(t,r).
2. (o(r,o(s,t))=a(a(r,s),t)
.o(t,1)=t
4. t<r ,s<m ——»o(t,s)<o(r,m)

A fuzzy metric spaceisan ordered triple (X , D, ¢ ) . such that X is
a ( nonempty ) set , o isacontinuous s— norm and D is afuzzy set in

X x X x (0, ) satisfying the following conditions :
1. D(x,y,t)>0

2. D(x ,y,t)=1ifandonlyif x=y

3. Dx,y,t)=D(y,x,t)

4. s (D(x,y,t),D(y,z,s)) = D(x,z,t+s)
5 D(x,y,_ ):(0,0) —0,1]iscontinuous.
Whenever x,y,zEX . s,tE(0,»).

Remarke 4.3.2

The axiom 2 is equivalent to the following :
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D(x,x,t)=1fordlxeX and t>0,andD (x,y,t)<1

foralx#*y ,andt>0.

Now we illustrate the previous definition by the following examples:

Example 4.3.3[5]

Let (X, d) beametric space . denoted by (a. b) the usual product
foral a,be[0, 1], andlet Dy bethe fuzzy set defined on

XXXXx(0,0)by:

Dd:

| is called standard fuzzy metric space .
t+ |V —

Example 4.3.4[18]

Let (X ,d) beametric space , and B( x, r ) the open ball centered
inx e X Withradiusr >0, thenforeachneN ,(X,D, » )isafuzzy

metric space where D isgiven by :

1

y-X

e t

D(x,y,t)=

foral x,y e X ,t>0. D isafuzzy metric space.

Example 4.3.5[21]

Let X=R" . define forx ,ye X ,t>0

D(X,y,t): min{x,y }+t

max{x,y }+t

D(x,y,t)isafuzzy metric space.
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Definition 4.3.6

A fuzzy metric D on X is said to be stationary [8] , if D does not
dependont,i.eif foreachx,y e X, thefunction Dy, (t) =D (X ,y.,t)is

constant . in this case we write
D(x,y)insteadof D (x,y,t)and By (X, €) instead of By (X, €, t)

WhereBy (X ,e,t)={yeX:D(x,y,t)>1-¢c}forallxe X,
€e(0,1)andt>0.

Definition 4.3.7

A subset A of X issaid to be F — bounded if there exist t > 0 and
re(0,1)suchthat D(x,y,t) >1-r,foralx,yeA.
Proposition 4.3.8

If (X ,d)isametric space, then : A <« Xisboundedin (X ,d) if
andonly if itisF—bounded in(X,Dq,s ).

Definition 4.3.9

A topological space ( X, 1) is said to be fuzzy metrizable if there

exists a fuzzy metric D on X compatible witht,i.etTp=T.
Definition 4.3.10

A sequence { X, } in afuzzy metric space (X ,D, s )iscdled a
Cauchy sequence.
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(or D —cauchy ), if foreachee (0, 1),t> 0 thereexists ng e N such

that:
D(Xy,Xm,t)>1-¢,forallm, n= ng.
Proposition 4.3.11

{ x,} isad- Cauchy sequence, i.e a Cauchy sequencein ( X ,d) if
and only if it isa Cauchy sequencein (X , Dy, s )

Definition 4.3.12

Let (X, D, s ) beafuzzy metric space, asequence{ X, } in X is
said to be convergent to apoint x e X if |jmD (X%, x,t) =1, for all

n—o

t>0.
Remark 4.3.13

A metrizable topological space ( X , T ) is said to be completely
metrizable if it admits a complete metric . On the other hand , a fuzzy
metric space ( X , D, s ) iscaled complete if every Cauchy sequence is
convergent . if (X, D, s ) isacomplete fuzzy metric space , we say that

D isacomplete fuzzy metricon X .
Theorem 4.3.14

Let (X ,D, s ) beacomplete fuzzy metric space . then ( X, Tp ) is

completely metrizable .
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4.4 Continuity and uniform continuity
Definition 4.4.1

A mapping from X to Y is said to be uniformly continuous if for
eachee(0,1) ,andeacht>0, thereexistre (0,1) ands>0, such

that:
L(f(x),f(y),t)>1-¢ .WheneverD (x,y,s)>1-r.
Definition 4.4.2

We say that a real valued function f on the fuzzy metric space

(X, D, s )isR - uniformly continuous provided that for each € > 0 ,

thereexistre (0,1) and s>0suchthat |f(x)- f(y)| <& whenever D (x,

y,s)>1-r.
Definition 4.4.3

A fuzzy metric (D, s ) onaset X is called equinormal if for each
pair of disjoint nonempty closed subsets A and B of (X, Tp ) thereiss>0

such that :
Sup{D(a,b,s):aeA,beB} < 1.
Theorem 4.4.4 18]

For afuzzy metric space ( X, D, s ) thefollowing are equivalent:

1. for each fuzzy metric space (Y ,L, g ') any continuous mapping

from (x,1p)to (Y, 1 )isuniformly continuous as a mapping
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From(X,D,g"')to(Y,L,g").

2. every real valued continuous function on (x , Tp) is R — uniformly

continuouson (X ,D,s ).
3. (D, s )isanequinomal fuzzy metricon X .
Definition 4.4.5

A mapping f from a fuzzy metric space ( X , D) to afuzzy metric
space(Y ,L)iscaled t—uniformly continuous if for eachee (0, 1) and

eacht> 0, thereexists re (0, 1) such that
L(f(x),f(y),t)>1-¢,wheneverD(x,y t)>1-r.
Remark 4.4.6 [7]

Every continuous mapping from a compact fuzzy metric space to a

fuzzy metric spaceis uniformly continuous .
Proposition 4.4.7
Every continuous mapping from a compact fuzzy metric space

(X,D,s )toafuzzy metric space (Y ,L , s ) ist — uniformly

continuous .
Definition 4.4.8

A fuzzy metric (D ,s )onaset X iscaled t — equinormal if for

each pair of digoint nonempty closed subsets A and B of ( x, Tp) and each
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t>0,sup{D(a,b,t):aeA,beB}<1.
Theorem 4.4.9
For afuzzy metric space( X, D, s ) thefollowing are equivalent :

1. for each fuzzy metric space (Y, L, ¢) any continuous mapping from

(x, ) to(y, 1 )ist—uniformly continuous as a mapping from
(X,D,s )to(Y,L,*).
2. thefuzzy metric (D, s )ist—equinormal .
4.5 On completion of fuzzy metric spaces

Given ametric space ( X , d) we shall denote by ( X', d') the
( metric completion) of (X ,d).

In a first attempt to obtain a satisfactory idea of fuzzy metric
completion we start by analyzing the relationship between the standard

fuzzy metricsof d and d', respectively .
Example4.5.1

Let ( X ,d) beametric space and let f be an isometry from ( X , d)

onto a dense subspace of ( X', d') .the standard fuzzy metric

(Dg,.)of disgiven by :

t

Dd,(x',y',t)=m '
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Alsowe have f:x -Dwhere D=X',foralx',y eX andt>0,

hence, we have :
Dg(x,y,t)=Dg=(f(x),f(y),t)fordlx,yeXandt>0.
Definition 4.5.2

Let(X,D,s )and (Y, L, ) betwo fuzzy metric spaces .

A mapping f from X to Y is calld an isometry if for each x , y € X
andeacht>0,D (x,y,t)=L (f(x),f(y),t).

Definition 4.5.3

Two fuzzy metric spaces ( X ,D,s )and (Y, L, ) are called

isometric if thereis an isometry from X onto Y .
Definition 4.5.4

Let (X ,D, s) beafuzzy metric space. A fuzzy metric completion

of (X, D,s )isacompletefuzzy metric space (Y, L, *) such that
(X,D, s )isisometric to adense Subspaceof y .

Next , we show that there exists a fuzzy metric space that does not

admit any fuzzy metric completion .
Example 4.5.5[10]

Let (X,)  and (Y,)  betwo sequences of distinct points such

tha ANB=® where A={X,:n=3}andB={Y,:n=3}.
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Put X = A UB. Defineareal vaued function mon X x X x (0, =)

asfollows:

1 1

D(Xn,Xm)=D(Yn,¥m)=1-[ ],

nAm nvm

D (Xn,Ym) =D (Ym,Xa) = ~+—, foraln,m=3.then
(X,D,y ) astationary fuzzy metric space.

Now , we want to talk about a characterizing completable fuzzy

metric spaces .
Definition 4.5.6

Let ( X, D, s ) beafuzzy metric space . then a par a,, b, of
cauchy sequencesin X ,iscalled:

a. point — equivalent if thereiss>0suchthat |jmD (a,,b,,s)=1

n—oo

b.equivalent , denoted by a,-b, ,if |[mD (&, b, t)=1foralt>0.

n—oo

Theorem 4.5.7

A fuzzy metric space ( X , D, s ) iscompletable if and only if it

satisfies the two following conditions :

1. given two Cauchy sequences (&, )n , (b)) In X , then

limD (&, by, t)isacontinuous function on ( 0, @ ) with values in

t—n

(0,1].

2. each pair of point — equivalent Cauchy sequencesis equivaent .
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Definition 4.5.8 [15]

Let (X, D) beafuzzy metric space . asequence{ X,} in X issad
to be point Convergent to Xo € X if |jmD (X, X0, %) =1, for somet,

>0.
Remark 4.5.9 [15]

In such acasewe say that { X,,} isp - convergenttox,foralt>0.

Now , the following properties hold :

L if imD (X, X, t1)=1and |imD (X,,y,tz) =1 thenx=y

n—oo n—oo

2. |if IimD(Xn,Xo,to)zlthen IimD(Xnk1XO1tO)=1 for each
n—o k—o

subseuence ( Xnk ) of { X, } .

An example of ap — convergent sequence which is not convergent is

given in the next example.
Example4.5.10[ 15]

Let{ x,} < (0, 1) beastrictly increasing sequence convergent to 1

respect to the usual topology of Rand X ={ X,} U{ 1} defineon
X?x R*the function D given by :
D(x,x,t)=1foreachxeX ,t>0,D(Xn,Xm,t)=min{ X,,Xn},

foral m,neN,t>0,andD (Xx,,1,t)=D(1,x,,t)=
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min{ x,,t} ,foralneN,t>0.then(D, s )isafuzzy metricon X,

wherea* b=min { a, b} . the sequence { X, } is not convergent since
|imD(Xn,1,%)z%.neverthel%sitisp—convergenttol,since

n—oo

limD (X,,1,1)=1.

4.6 Principal fuzzy metrics
Definition 4.6.1

We say that the fuzzy metric space (X, D, s)

Isprincipal if {B(X,r,t):r&€[0,1]isaloca baseat x € X, for each x
€Xandeacht>0.

Theorem 4.6.2

The fuzzy metric space ( X , D ) is principa if and only if all

p —convergent sequences are convergent .
Definition 4.6.3

Let ( X, D) beafuzzy metric space . A sequence{ X, } in X issad
to be p— Cauchy if foreache e (0, 1) thereareny € N and to > 0 such that:

D(Xh,Xm,to)>1—¢cfor alln,mz=ng,i.e |imD (Xn, Xm,to) =1 for
somety,>0.
Remark 4.6.4

{ X, } isaCauchy sequenceif and only if { x,} isp— Cauchy for al t>0

and it isclear that , p — convergent sequences are p — Cauchy .
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Definition 4.6.5
The fuzzy metric space ( X , D) iscalled p — completeif every

p — Cauchy sequence in X is p — convergent to some point of X . in this

case D iscalled p— complete .
Proposition 4.6.6

Let (x, D) beaprincipal fuzzy metric space . if X isp — complete

then X is complete.
Definition 4.6.7

F is said to be continuous at xo € X if givenee (0,1)andt >0,

thereexistd e (0,1)ands>0,suchthat D (Xy,%x,S)>1-d implies
L (f(xa) , f(x) , t)>1-¢.
Definition 4.6.8

We will say that a mapping f from the fuzzy metric space (x, D)
to a fuzzy metric space (Y , L ) ist — continuous at xo € X if given
€e(0,1)andt>0thereexistsd €(0,1)suchthatD (Xo,%x,t)>1-d,
impliesL (f(xo) ,f(x),t)>1-¢.

Remark 4.6.9 [11]

We say that f ist — continuous on X if it ist — continuous at each

point of X.
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If D isastationary fuzzy metric then each continuous mapping ist —

continuous and clearly if fist— continuousat X then f is continuous at X .
The converseisfalse. [11]

Remark 4.6.10

It is clear that each t — uniformly continuous mapping is t —
continuous and the converseis not true.

Example 4.6.11

This is example of a t — continuous mapping which is not t —
uniformly continuous .

Let X={1,2,3, .... } .consider on X the fuzzy metric D for the
usual product, given by :

D(m,n,t)= mtm i} ¢ m#n,t<l
T max{m,n} = '’ !
max{m n} '

Tp isthe discrete topology on X .

Now , consider the mapping f : X —»R defined by :

f(x) = 1 ifx isodd
0 if xiseven

Consider the fuzzy metric D on X and the standard fuzzy metric

D|.| on R . we will seethat f is not t — uniformly continuous for these
fuzzy metrics.
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Lett=1and € =0.5.foreveryd € (0, 1) thereexist n e X such
that —>1-d.
n+1
AndsoD (n,n+l,t)= ﬁ>1-(5,therefor

1
1+1

DI.| = (f(n), f(n+1),t) =

S

And sofisnot t— uniformly continuous.
Proposition 4.6.12

Let f be a mapping from the fuzzy metric space ( X , D) to the fuzzy
metric space (Y , L ) , continuous a X . if D is principal then f ist —

continuous at Xg .
4.7 Fixed point theoremsin fuzzy metric spaces
I ntroduction

The concept of a fuzzy set was introduced by zadeh [26] in 1965 .
this concept was used in topology and analysis by many authors . George
and veeramani [6] modified the concept of fuzzy metric space introduced
by kramosil and michalek [14]and defined the hausdorff topology of fuzzy
metric spaces , which have important applications [20] in quantum particle

physics.

The aim of this section is to obtain fixed point of mapping satisfying

an implicit relation on fuzzy metric spaces .

First, we have defined in previous sections of this chapter the

continuous t — norm which satisfies 4 conditions and we aso defined a
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fuzzy metric space ( x , D, s ) such that x is a non empty set ,s iSS—
normand D isafuzzy seton X x X x (0, =) satisfying five conditions..
and we have defined a compact fuzzy metric space and complete fuzzy

metric space..

And we said that a sequence{ X, } issaid to be convergeto x in X ,
if and only if

limD(%n, X ,t)=1foralt>0.

n—o

Also asequence{ X, } in X isan D — Cauchy sequence if and only

ifforeachee(0,1),t>0, thereexists ny € N such that
D(Xm,Xn,t)>1-gforanym,n =ny.

Definition 4.7.1

Let(x,D,s )beafuzzy metric space. fort> 0, the open ball
B(x,r,t)withacenter xe X and aradius 0 <r < 1isdefined by:
B(x,r,t)={yeX,D(x,yt)>1-r}.

Remark 4.7.2

A subset A < X iscaled open if for each x € A , thereexistt > 0
and O<r<1lsuchthat B(x,r,t) c A.LetTtdenote the family of all
open subsets of X . then , T is called the topology on X induced by the
fuzzy metric D . Thistopology is hausdorff . asubset A of X issaidto be F

— bounded if thereexistt > 0and 0 <r < 1 such that:
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D(x,y,t)>1-r fordlx,yeA.
Example4.7.3
Let X =R.denotea* b=ab.forala,be[0,1].

Foreachte (0, w), define:

D(x,y,t) = ,foradl x,yeX .then,(x,D, s )isafuzzy

t
t+|x—y|

metric space..
Definition 4.7.4

Let(x,D,s ) beafuzzy metric space. D is said to be continuous

on

XXXX(0,2) if imD(Xn,¥n,th)=D(Xx,y,t)

n—oo

Whenever { (Xn,¥Yn,t,) } isasequencein X x X x (0, =) , thatis:

limD (X, X, t)=|imD (yn,y,t)=1

n—oo n—oo

limD (x,y.,t)=D(x,y,t)

Now , consider (x, D, s ) beafuzzy metric spaceands=® < X .

Define d,(s,t)=inf{ D(x,y,t):x,yes} foralt>0.foran

An={ Xn, Xnt1 s ceree } in fuzzy metric space (x,D, s ),

Letro(t)=d, (An,t),thenr,(t)isfiniteforal ne N, { ry(t) } is

non increasing ry(t) —r(t) forsome 0 =r(t) =1,andasor,(t) =
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D(x ,xc,t)foradlL,k=n.
Let & bethe set of all continuous function
F:[0,11°x[0,1] »[-1,1]

Such that F is nondecreasing on [ 0, 1 ] satisfying the following

conditions .
(F):F(u,u,u),v)=0impliesthat v =y (u) where
y:[0,1] —»[ 0, 1] isanondecreasing continuous function with
y(s) >sforse[0,1).
Example 4.7.5
F:[0,11°x[0,1] »[-1,1] . defined the following :
LF((t,to,t3),t)=y(min{t,t,,t3})—1s.
2.F((t.t2.t:) ) =y ( Yat) ~ts suchthat forevery 3 = 0, > 5, =1,
where
Y(s)=<'for 0O<h<1.

In this section , our main result is the following theorem .
Theorem 4.7.6

Let ( X, D, s ) beacomplete bounded fuzzy metric spaceand T a

self map of X satisfying for al x ,y e X theimplicit relation .
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1.F(D(x,y,t),D(Tx,x,t),D(Tx,y,t),D(Tx, Ty, t)=0

whereF € € .
Then, T hasauniquefixed point pin X , and T is continuous at p .

Proof :

LaxoexandTXn=Xn+1,|etrn(t)=dD:(An,t),WhereAn:{Xn,
Xns1, ---- } - then, we know |jm ra(t) = r(t) for some 0 = r(t) = 1. if X

n—oo

=X, forsomene N, then T hasafixed point, p € X , assume that Xn+1 X
foreachne N.letk e N befixed.taking X =Xn1,Y =Xwmz1in1l, where

n=kandmeN ,wehave:

F(D(Xn-lyxn+m-1,t) ’ D(TXn-l1Xn-l1t) ’ D(TXn-11Xn+m-1,t) ’ D
(TXn-l y TXn+m-1at))

=F(D(Xn-l 1Xn+m-11t)1D(Xn1Xn-lyt)1 D(Xnyxn+m-11t)1D(Xn1xn+m1t))

=0
Thus, we have
F(roa (1), ra(®) , ra®) , D (X, Xnem, 1)) =0

Since F is nondecreasing on [ 0 , 1 ] . dso , since rqt) is

nonincreasing we have:
F ( rk-l(t) ’ rk-l(t) ) rk-l(t) ’ D (Xn ] Xn+m ’ t )) {—: O
Which impliesthat :

D (Xn, Xnem, t) = Y (fa(t))
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Thus, foral n =k ,wehave inf { D (Xn, Xnm, t) } = 1(t) = y(rna(t))

n>k
Lettingk —o0, wegetr(t) = y(rt)).ifr(t) #1, then:

rit) =y(r()) =r(),whichisacontradiction . thusr(t) = 1, and hence

lim Yn(t) = 1, thus, given € > 0, there exists an ng € N such that r,(t) > 1 -

n—oo

€.

Then, wehaveforn Zngandme N, D ( Xn, Xpum ,t)>1—-€,
therefore , { X} is a Cauchy sequencein X . by the completeness of X ,

there existsap € X such that

lim Txn = [imXm1=P.

Taking x=X,,y=pinl,wehave:
F(D(Xn1p1t)1D(Txnap’t)aD(Txnaxnat)’D(TXn’Tp’t))
=F(D(Xn1p1t)1D(Xn+11p1t);D(Xn+11xn1t)1

D (Xpe1, Tp, 1)) 0.

Taking |jm . we have:

n—oo

F(D(p,p,t),D(p,p,t),D(p.p,t),D(p,Tp,t))=0
WhichimpliesthatD (p, T,,t) 2y (D(p,p,t))=y (1) =1

Hence , T, = p . for the uniqueness , let p and w be fixed points of T .

takingx=p,y=winl, wehave:
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F(D(p,w,t),D(T,,p,t),D(T,,W,t),D(T,, Tuw,t))
=F(D(p,w,t),D(p,p,t),D(p,w,t),D(p,w,t))=0
Since Fisnondecreasingon[ 0, 1]°, we have:

F(D(p,w,t),D(p,w,t),D(p,w,t),D(p,w,t))=0

Which impliesthat D (p,w,t)=2y(D(p,w,t))>D(p,w,t),

which is a contradiction . thus , we have p = w . now , we show that T is
continuousat p . let{ y,} beasequencein X and |jmYyn=p.taking x =

n—oo

pP,Y=VYninl,wehave:
F(D(P,Yn,t),D(Tp.p,t),D(Tp,Yn,t),D(Tp, Tyn.t))

=F(D(p,yn,t),D(p,p,1),D(P,Yn,1),D(P, Tyn,t)) =0

Which impliesthat y (D(p, Tyn,t)) =Y (D (p,yn,t)) . taking limit inf,

we have:

lim inf{ ¥ (D(p, Ty, )} = |im inf Y(D (P, 1)) =

y(@d=1.

Thus |im Tyn=p =T, . hence, T iscontinuousat p .

n—oo

Theorem 4.7.7

Let (x,D,s ) beacompact fuzzy metric space and T a continuous

self map of X satisfying for all x,y e X with:
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1.F(D(x,y,t),D(Tx,x,t),D(Tx,y,t),D(Tx,Ty,t)) <0,

whereFe &,
Then, T hasauniquefixed point pinX .
Proof :

We know that forn=1,2, ..... ,T"X iscompactand T™X < T"X .

let Xo= ﬁ T"X . then , X, is a nonempty compact subset of X . and TX, =

n=1

Xo,weclamthat Xgisasingleton set . suppose X, isnot singleton . then

we know that the function :
D:XxXx(0,) -[-1,1] hasaminimum vaue.
that is , thereexistsa( Xo, Yo, t) € XoX XoX (0, w) such that

D(Xo,Yo,t)=D(x,y,t)foralx,yeXq,since TXo=Xq, there exist

X1,Y1 € Xgsuchthat TX;=Xg, Ty1 =Yo . thuswe have:
F(D(X1,Y1,t),D(Xo,X1,t),D(Xo,Y1,t),D(Xo,Y0,1))<0
AndsoF (D (Xo,Y0,t),D(Xo,Y0,t),D (X0,Yo,t),
D(Xo,Yo0,t))<O

Which impliesthat D ( Xo, Yo, t) >D (X0, Yo, t) . thisisa
contradiction. thus , X, is singleton , and hence T has a fixed point in X.

uniqueness of fixed point of T followsfrom 1.
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Definition 4.7.8
We define a function ®:[0,1] - [0,1]st:
(p1) @ is strictly decreasing and left continuous .

(po) (1 )=0ifandonlyif I =1

Andwehave ||m® (1 )=®(1)=0

| —>1-

Theorem 4.7.9

Let(x,D,s )beanD - complete fuzzy metric spaceand T : X —

Xisasef - mapof X, and suppose that
®:[0,1]>[0,1] st
1. @ is strictly decreasing and left continuous

2.9(1 )=0ifandonlyif I =1.let k:(0,w) ->(0,1) beafunction.

if foranyt>0, T satisfies the following condition
P(D(Tx, Ty, t))=k(®).®(D(x,y,t)) (1)
Wherex ,y e X and x# y, then T has aunique fixed point .
Proof :

Let xo beapointin X , define X1 =Txpand 1,(t) =D ( Xn , Xpe1 , t)
foralneNU{ 0} ,t>0.now wefirst provethat T hasafixed point . the

proof is divided into two cases .
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Case 1:

If thereexistsng e N U { 0} such that X,0+1= Xm0, 1.€ Txno = Xno , then

it followsthat X, isafixed point of T .
Case?2:

We assume that 0 < t,(t) < 1 for each n . that is to say , the
relationship X, # Xn+1 holdstruefor eachn. from (1), for every t >0, we

can obtain :
D(Tn(t)) = P (D(Xn , Xne1 , 1))
=@ (D(Txnts Txn, 1)) =K@E) . D(Tha(t)) <@ (Tha(t)) (2

Since @ is strictly decreasing , it is easy to show that { T,(t) } isan

increasing sequence for every t > 0 with respectton.

we put |im Tn (t) = 1(t) and suppose that 0 <1(t) < 1. by (2)

n—oo

then T,(t) < T(t) implies that :

P (Trea(t)) = K(1) . @ (Ta(1)) - (3)

For every t, by supposing that n —% , since ® is left continuous , we have:
P(t(t) ) = k(). @(1(t)) =@ (T(t)) . (4)

Which is a contradiction , hence t(t) = 1, that is , the sequence {t,(t)}

convergesto 1l foranyt>0.
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next , we show that the sequence{ X,,} isan D — Cauchy sequence,

suppose that it is not . then there exist 0 < € <1 and two sequences

{ p(n) } and{ q(n) } suchthat foreveryne NU {0} andt> 0, we obtain

that :
p(n) "}q(n) 2n1D(Xp(n)’XQ(n)’t)£ 1-¢.
D(Xp(n)-ly Xq(n) 1 t) >1-¢ , and D (Xp(n) , Xq(n) , t) >1-¢ (5)

For eachh n e N U {0} , we suppose that S,(t) = D( Xpm) » Xqm) - t) , then we
havel — > Sn(t) =D ( Xp(n) 1 Xq(n) ) t) =D (Xp(n)-l ) Xp(n) ) t/z )*D (Xp(n)-l ,

Xq(n)yt/2)>Tp(n)(t/2)*(1_8)' (6)

Since 14(t/2) > las n > foreveryt , supposing that n— oo, we note

that :

{ si(t) } convergesto 1 — ¢ for any t >0, moreover by (1) , we have :

D (D Xpry » Xqy» t)) = K@) . ® (D (Xpmy1s Xqry-1, 1)) <P (D (Xpgy1

Xq(n)-l ) t )) (7)
According to the monotonicity of ® .

we know that D(Xp(n) » Xqry » t) > D(Xp(r)-1 » Xqmy-1 » 1) for each n . thus, on

the basis of the formula ( 5) we can obtain :
1-¢& = D(Xp(r) s Xq) » ) > DXpy1» Xqp2, 1) >1-€  (8)

Clearly , thisleadsto a contradiction .
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In particular , we consider a nother case.

that is, thereexistsnge N U {0} suchthat D (X, , Xn,t) =1—¢ forallm
, N =Ny .obviously , for any pe N , we know that D ( Xnosps2 » Xnotps1, 1) =

1-¢.

as @ is monotonic , it is easy to see that the sequence

{ D (Xno+p+2 » Xno+pe1, 1) = @

foral t>0. thus, we can obtain :

D (D (Xnospr2 » Xnorpr1 s 1)) = K(t) . @ (D( Xnorpra s Xnowp s t) ) - (9)

By supposing that p —oe , we have ® (a) = 0, which is aso a

contradiction .

Hence { X, } isan D - cauchy sequence in the D — complete fuzzy metric
space X .
there for , we conclude that there exists a point x € X such that:

[imXn =X

n—oo

now , we will show that x is afixed point of T . since 0 < Ty(t) <1, there
exists a subsequence{ X,y } of { X} suchthat X, # X foreveryneN.

from (2) , we can obtain :
qu)(D(Xr(n)ﬂyTx,t)):cD (D(TXr(n)yTX ,t)) <

k(t) . @ (D (X, X, 1)) (10)
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By supposingthat n —c in(10), we have:

0=d(D (X, Ty,t)) £ k(t).®(D(x,x,t))=k().P(1)=0(11)
Sowecanget @ (D (x, Ty, t)) =0. according to the property (p,)
Itiseasy to show that D(x, T ,t)=1 ,i.e, Ty=X.

We claim that X is the unique fixed point of T . assume that y #+ x

iIsanother fixed point of T , we then obtain :
P(D(x,y,t))=@(D(Tx,Ty,t)) = k() . ®(D(x,y, 1)) <
(D (x,y,t) (12)
Which isacontradiction . the proof of the theorem is now completed .
Example 4.7.10

Let X be the subset of R* defined by :
X={A,B,C,D,E},whee A=(0,0),B=(1,0),

C=(1,2),D=(0,1),E=(1,3)

-2d(x.y)

®()=1- VT forallte[0,1]andD (x,y,t)=e ¢, foralt>

0, whered (x , y ) denotes the Euclidean of R?.

clearly (x, D, * ) isan D — complete fuzzy metric space with respect to

thet—norm:a* b=ab

let T: X — X begivenby :
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T(A)=T(B)=T(C)=T(D)=A,T(E)=B

Definefunction k: (0,%) > (0,1) as

KO = | 1-et ,0<t=2

£ m2

t+1

One can see that the function & satisfies (py) and (p,) , and the
function k also satisfies the formula (1) , now , al the hypotheses of
theorem 4.7.3 are satisfied and thus T has a unique fixed point , that is X =
A.

Theorem 4.7.11

Let (x,D,s ) beacompact fuzzy metric space and T a continuous
self — map of X and suppose that @ : [0,1] —» [ 0, 1] satisfies the
foregoing (p) and (py) . if for any t > 0, T satisfies the following

condition :

Q(D(Tx, Ty, t))<P(x,y,t)) (*)

Where x ,y e X and x #y . thus T has aunique fixed point .
Proof :

Let xobeapointin X . define Xpi1 = Txn, WithneNU{ 0} , and
the sequence{ T"xo} . if T"xo = T™'xo for somen , then there exists z € X

such that z = T*, for adl k = n . so we assume that T"x, = T™x, for
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every n.since (x, D, s )isacompact fuzzy metric space, there exists a
subsequence { T"™x,} of { T"X, } such that :
Ty, — x € X asn —0@ . according to the continuity of T, we have

lim Xkeys2= TO) and |jm Xkysz = T(X)

n—oo n—oo

As @ is left continuous , it follows that :

® (DX, Ty, 1) = [im® (D (Xkm » Xk@ysar t))

n—oo

= im® (D (X1 s Xkaez 1)) =P (D (Ty, T, 1)) (**)

n—oo

Now , we show that Ty = x . otherwise, by (* ) we can obtain:
@ (D (Ty,T%, 1)) < ®(D(x,Tx,t)).
Obvioudly , thisis contrary to the formula ( ** ) .

The proof of uniguenessis similar to that of theorem 4.7. 3.
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