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Extending Topological Properties to Fuzzy Topological Spaces
By
Ruba Mohammad Abdul-Fattah Adarbeh
Supervised by
Dr. Fawwaz Abudiak

Abstract

In this thesis the topological properties of fuzzy topological spaces
were investigated and have been associated with their duals in classical

topological spaces.

Fuzzy sets, fuzzy functions and fuzzy relations were presented along
with their properties. Different types of fuzzy topological spaces (FTS)
were introduced in Chang’s and Lowen’s sense as well as intuitionistic
(FTS). Many topological properties were proved to be extensions to those
in non fuzzy setting, while examples were presented for those non
extension properties. For instance, the closure of the product is not equal to

the product of the closures.

Also different approaches of separation axioms were investigated
using Q-neighborhoods and fuzzy points, it turns out that most of them are

not extension of classical separation axioms.

Fuzzy topological properties are considered, for instance, we studied
fuzzy connectedness and fuzzy compactness. It is found that the product of

an infinite number of fuzzy compact spaces may not be compact.

Finally, fuzzy continuity, fuzzy almost continuity and fuzzy &-

continuity were introduced with a theorem proved the way they are related.



Introduction

The concept of fuzzy sets was first introduced by Lotfi Zadeh
in1965 [38], then later on; Chang in [6] introduced the concept of fuzzy
topological space as an extension to classical topological space. After that,
many authors studied the topological properties under fuzzy settings.They
suggested different definitions for the same property which lead to different
approaches. In this thesis we study and investigate many of those
topological properties. We found that there were a lot of agreement
between properties in fuzzy and nonfuzzy setting, but also there were a lot

of differences.

In chapter one we concentrate on the concept of fuzzy sets and their
behaviors through set operations, which act in similar manner with regular
sets. Also, we went through some special types of fuzzy sets called fuzzy
points and fuzzy singletons, and explore the different relations which relate
them to fuzzy sets.We also extend any function f between any two regular
sets; £:X — Y; to a fuzzy function f between two families of fuzzy subsets;
fF(X) — F(Y). Finally we show that; among other properties; quasi
coincident relations are preserved under fuzzy functions and show the
relationship between the product of fuzzy functions and the fuzzy function

of the product space.

In chapter two, we started with the definition of a fuzzy topological
space as an extension to classical topological space in both Chang’s view

[6] and Lowen’s view [17]. We present the notion of fuzzy interior and
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fuzzy closure with their properties. After that we classify different types of
membership between fuzzy points and fuzzy sets which affects some
properties of “belonging”. Followed by definitions of fuzzy neighborhood
and Q-neighborhood systems, also fuzzy bases and fuzzy subbases were
presented. Then, the product fuzzy topology is introduced as well as its
properties concerns the fuzzy closure and fuzzy interior. Finally, we
present a generalization of fuzzy sets, namely, intuitionistic fuzzy sets and
the fuzzy topology they generalize, namely intuitionistic fuzzy topological

spaces which have been greatly studied by many authors.

In chapter three we study the extension of the separation axioms to a
fuzzy setting. We started with fuzzy Hausdorffness presenting three
different approaches. The first one is using fuzzy points and fuzzy
neighborhoods, while the second uses fuzzy points and Q-neighborhoods,
and the third approach uses crisp points of the set X. We then show that

these three different approaches are equivalent.

Another type of fuzzy Hausdorffness is using the a-level(a-
Hausdorffness) and then it is concluded that the space is Hausdorff if and
only if it is a-Hausdorff for each o € [0,1]. After that we went through
other separation axioms defining To, Ty, T,and T 21 using fuzzy points and
fuzzy neighborhoods,under those definitions it is proved that a fuzzy
topological space is T, if and only if every crisp singleton is closed, which
IS not the exact property of T; spaces in the nonfuzzy setting. This

suggested a stronger definition of T, space (T space) where the statement
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“every fuzzy singleton is closed” is valid. After that fuzzy regular and
normal spaces are defined, and some of their properties were presented.
Finally; separation axioms in intuitionistic fuzzy topological spaces were

defined and called IFT; and IFT,,... etc.

Chapter four deals with the concept of fuzzy connectedness and
fuzzy compactness. We have chosen a definition of fuzzy connectedness
(where 0, 1 are the only fuzzy clopen subsets of X), other equivalent
definitions of fuzzy connectedness were presented. Concerning the
extension of the connectedness property from nonfuzzy setting to fuzzy
setting, it is found that in fuzzy setting the product of fuzzy connected
spaces may not be fuzzy connected,contrary to the property in nonfuzzy
setting. Some other characterizations of fuzzy connectedness were
presented and proved. Then fuzzy compactness is defined using fuzzy open
cover and the finite intersection property parallel to compactness in regular
space. Some properties were extended. For instance, it is shown that “every
fuzzy closed subset of a fuzzy compact space is fuzzy compact”, “ the
fuzzy continuous image of a fuzzy compact space is fuzzy compact” and “
the finite product of fuzzy compact spaces is fuzzy compact”. This
complies with the classical topological spaces. But, the product of an
infinite number of fuzzy compact spaces may not be fuzzy compact

contrary to the nonfuzzy setting.

In chapter five we studied fuzzy continuous functions and explore

both local and global properties and prove that they are equivalent. After
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(4

that new types of fuzzy continuity were presented namely “ almost
continuity, &-continuity “ where new types of fuzzy open sets called “fuzzy
regular open sets” were used. Also “ fuzzy precontinuity “ using fuzzy

preopen sets. Finally “Generalized fuzzy continuity” using generalized

fuzzy sets.



Chapter One
Fuzzy Sets and Fuzzy Functions
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Chapter One

Fuzzy Sets and Fuzzy Functions

Introduction

Fuzzy sets, in Mathematics, are sets having elements with a
membership degree.This concept of sets was first generalized by Professor
Lotfi A. Zadeh in 1965 in his famous paper [38] where the concept of fuzzy
sets was introduced, it was specifically designed for representing
uncertainty in mathematics and for dealing with vagueness in many real life
problems, it is suitable for approximating reasoning mathematical Models
that are hard to derive or giving a decision with incomplete information. In
classical set theory, an element either belongs or doesn’t belong to the set,it
IS not the case in fuzzy setting, here, it has a membership degree between
zero and one,which describes the new definition of the characteristic
function. In this chapter we will first give definitions of fuzzy sets,then we
show some operations on them and properties involving these operations.
Also we will introduce the concept of fuzzy points as a special case of
fuzzy subsets, then we define fuzzy functions as an extension of functions
between pairs of sets and explore the properties of fuzzy operations of

fuzzy sets and fuzzy points on fuzzy functions.
1.1 Fuzzy Sets and Fuzzy Operations

In set theory a subset A of a set X can be identified with the
Characteristic function X 5 that maps X to {0,1} in a way where all
elements of A go to 1, while X-A elements go to 0.

. 1 ifxeA
€ XA(X)z{o iffxEX—A
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and therefore, there is a natural 1-1 correspondence between the family of

all subsets of X and the family of the characteristic functions on X.

Zadeh in [38] extended the definition of the characteristic functions
by replacing the set {0,1} by the closed interval [0,1] which is the bases to

the new definition of fuzzy sets.
Definition 1.1.1:

Let X be a regular set, a fuzzy subset of X is a function pa that maps
X to the closed interval [0,1]. In other words, pa: X — [0,1] and pa(X) is

called the grade of membership of the element x.

In the case of the characteristic function XX — {0,1} if Xa(X) =0
then; the grade of membership is 0; and this means that x doesn’t belong to
A, if the characteristic function X a(x) =1,then the grade of membership is
1;and this means that x belongs to A. But, in the case of fuzzy sets: pa (X)

could be any other number from 0 to 1.
Example 1.1.2:

ta(x) = 0.9 may mean that x is more likely to be in pa or if pa (X)=0.5 then
x may be half way between belonging to pa and not belonging to pa. It is
clear that regular subsets of X are a special case of fuzzy sets called crisp

fuzzy sets where pa(x)e {0,1} <[0,1].

We use different ways to represent a fuzzy subset of X.In the

following example we describe some of those ways:



Example 1.1.3:

Consider the regular set X where X={a,b,c,d,e} and let us be the
fuzzy subset of X that maps X to [0,1] by mapping:

a—0.1, b—0.8, c—0.5,d—0, and e—0.4.
We may represent ua as the set of ordered pairs:

ua = {(a, 0.2),(b, 0.8),(c,0.5), (d,0),(e, 0.4)} using regular set notation, or
we may write it as pa = {0.1.008Cos, do, €0.4 }.This last form will be mostly

used in this manuscript.

Another example that explains the concept of the grade of

membership is the following:
Example 1.1.4:

Take X to be a set of people, a fuzzy subset OLD may be defined to
be the answer of the question “to what degree a person x is old ? “the

answer could come in a membership function based on a person’s age

0 if x <20
OLD(x) ={ %2222 i 20 < x < 30
1 ifx>30

Graphically we have:



We may say that the percentage of belonging for any person with age
> 30 to being OLD is 100%, while a person with age 29 years old has a

percentage of 90% and we write:
OLD(29) = 0.9 or 90% and OLD(25)=0.5 or 50%

This grade of membership function is linear. But we may have the

nonlinear function that reflects the importance of the age needed. For

example:
0 if x <20
OLD(x) = Hlo(age of x —20)? if 20 < x <30
1 if x =230

And graphically it is:

1--
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Now,0LD(29) =.81 or 81%,0LD (25)= 0.25 or 25% which is less
than 50% (in the linear case) so being less than and away from 30 looses

more importance than in the linear case.

On the other hand we may have the function

0 if x <20
OLD(x) = 1—F1()(ageofx—30)2 if 20 <x <30
1 if x =30

Which has the graph:

1

In this case:OLD(29) =.99 or 99% and OLD (25)= 0.75 or 75%
which is more than 50%(linear case). This membership grade function
reflects that being close to,but less that 30 gains more importance than in

the linear case.

There are other types of fuzzy subsets, the fuzzy constant subset of X
is one which is the function that takes all elements of X to a constant c,

where ¢ € [0,1], and it is denoted by c.
Special fuzzy constant subsets are 1 and 0, where,

1: is the fuzzy subset of X that takes all the elements of X to 1
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and 0 is the fuzzy subset of X that takes all the elements of X to 0.
1.2 Operations on Fuzzy Sets

After these new concepts of fuzzy sets were defined, suitable
operations on them should be performed that extend the usual operations on

sets including the union, intersection and complementation as follows:
Definition 1.2.1 [35]:

Let ua and pg be two fuzzy subsets of X, paA ps, uaV us, pa © are fuzzy

subsets of X defined as follows:
(Ha A pg)(x) =min{ pa (X), pe (X)}-
(Ha V pg)(x) = max{ pa (X), us (X)}-
b “(x) = 1- pa (X).
These definitions are generalized to any number of fuzzy subsets of
X,s0; for any family { pa: o € A} of fuzzy subsets of X, where A is an
indexing set, we define:
(Vo Had)(x) = sup { pai(X) o € A}
(Ag Hag)(x) = inf { pa, (X): 0 € A}

We illustrate the previous definitions by the following examples.
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Example 1.2.2:
(1) Take the fuzzy subsets

ua = {a03, bos, Co, dogg} and g ={ags, bo.1, Co.1, dos}

then: pua A pug = {a03, bo.1, Co, dos}

a V pg = {ags, Dos, Co1, dogs} and pa®= {ao7, bo2, C1, dooz}
(2) Take an infinite number of fuzzy subsets.

Let X={a,b},

mar={ o9, D21 }

a2={ 20.499, D201 }

tas={ 80.4999, 2001 }

Then Vfil nuAl' :{ do .5, b.21 } and /\loil ‘uAi :{ ap .49, blg }
(3) For the continuous graph case:

Take X=[0,4], ua and pg are as follows:

e = 1
M KB
{f 2 3 f t 2 3
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Then pa A pg and ppa © are as follows:

1 Ha A He
| h 3 3 g

To show that this definition extends the union, intersection and

complementation applied on regular subsets of X, we have:

(Mave)(x) = max{ pa (X), us (X)}.

In case, X €A or X eB then pa(x)=1 or pg (X)=1 which implies that max {

pa (X), ps (X) } =150 (nave)(x)=1i.e. x eAUB

But, if x¢A and x¢&B then pa (x)=0 and pg (X)=0 Which implies that max {

pa (X), ue (x) } =0 and (pave)(X)=0
so X € AUB, which complies with the regular definition of “union”.

In similar manner, we may show the same for intersection and

complementation

We will see in the next theorem that we can extend Demorgan’s

Laws from regular (crisp) sets to fuzzy subsets:
Theorem: 1.2.3 [ 35]

Let pa and pg be two fuzzy subsets of X, we have:

L. (ua A pg)° (x)= (ua® V ug°) (X).
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2. (pa V pg)° (x)= (pa® A pg®) ().

Proof:
1) (ua A pg)© (X) = 1-min { pa (x), ps (X)}

={1 — A if pa(x) < ppx®)
1—pp®) if pp(x) S pa(x)

={1 —paifl—pa(x)>1—ppk)
1-—pp®ifl—pp)>1—pax)

=max {1- pa (x), 1- us (X)}
=max { pa“(X), ps"(X)}
= (ua® V g )(x)

2) (ua V pg)© (X) = 1-max { pa (), s (X)}

={1 —ua®ifpa(x) = ppx)
1—pp®)if pp(x) = pa(x)

:{1_P-A(X) if1—pa(x) <1-ppx)
1-pup®)ifl—pp(x) <1—palx)

=min {1- pa (), 1- pg (X)}
=min { pa“(x), ps° (X)}
= (ua® A ps°) (X)

This theorem can be generalized to any family of fuzzy subsets of

X. specifically:

(Va [ Aa) ‘= (/\a UA(CI ) and (/\a UAa) ¢ =(Va MAE,)
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Now we compare two fuzzy subsets of a set X as one of them

containing the other as follows:
Definition 1.2.4 [35]:

Let pa, ug be two fuzzy subsets of X, we say pa < ug to mean ta (x) <

ug (X) forall xe X.

For example:

Consider X ={a, b, ¢, d }, and let ug = {a9.4,b0.,Co.1, do } and
ua = {a0.1, bosg, Co, do}, then clearly pa < g

one of the basic notions of fuzzy sets is the notion of a-level
Definition:1.2.5 [ 35]:

The a-level of padenoted by ua* is a subset of X, where the grade of
membership of its elements > o. That is, pa” = {X €X: pa (x)> o }, where a

>0
We define the O-level in case of X is the real line by
ua’ =the closure of({xeX: pa (X)>0}) in R.

The support of p, is defined as the set of all elements of X with nonzero

membership and is denoted by supp of u, that is,

supp (a) = {xeX: pa (x)>0}.
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The following example displays some a-levels of some fuzzy

subsets:

let ua = {@0.4, bo7, Co3, doo} be a fuzzy subset of X = {a,b, c,d } Then the
0.3-level = us %*= {a,b,c}, the 0.1 level = pa **={a,b,c,d}. And the support
(uA):X:{a’ b, C!d}

We say that a fuzzy set ua in X, where X is infinite, is countable

whenever supp(ua) is countable.
The following example computes some a-levels:
Example: 1.2.6

The following represents the graph of a fuzzy subset of R=(-c0,0)

with its function representation.

x—2 ifxe€l23]

1 j € [3,5
where pa (X) = 8—x l{fxx E[[5 é]

3
0 elsewhere

the 0.4 level of this fuzzy set is, pa %% = {X € X: pa (x) > 0.4}
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04<x-2=>x>24

04> S‘T" = X <6.8,50 pua’*=[2.4, 6.8]

In general,the a-level can be found as follows:
pa® =[x, x3]
Now, o =x{* — 2, and this implies that x{*=o+2

a
2

And o=

8— .
—~ which means x§'= 8-3a

So pa® = [0+2, 8-30]

For a= 0.4, pp**=[2.4, 6.8]

1.3 Fuzzy Points and Fuzzy Singletons

As a special case of fuzzy subsets of X are the fuzzy points. They
were defined by Wong [34], and later on, other definitions were presented

by Srivastava [32] and Ming and Liu [22]
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Definition 1.3.1:[34]:

Let X be a regular set, a fuzzy point p is a fuzzy subset of X that
takes an element a to a number A such that A € (0,1) and takes the

remaining elements to zero, and it will be denoted by p = a;.

Support (p) = {a}, p (a)= A, and p(X-{a})=0.

We define a fuzzy singleton x, in X as a fuzzy subset in X which
takes an element x to r where re(0,1], and takes everything else to zero for
example: if X={a, b, c, d}, then a fuzzy point a, 3 is the fuzzy subset {a s,

bOs CO’ dO}
Remark:

From now on we will use A instead of us as a notation for fuzzy

subset, and we use F(X) to be the family of all fuzzy subsets of X.
Definition 1.3.2 [34]:

Let p be the fuzzy point a,, and A be a fuzzy subset of X, since a, Iis

a fuzzy subset of X,we may define p e Aif and only if L < A(a)
That is a, € A if and only if L < A(a)
For example:let X= {a, b, ¢, d} and A={ag4, bos, Co3,doo} then: by €A

but co9 EA.
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Definition:1.3.3 [22]

A fuzzy singleton x, in X is said to be quasi-coincident (in short Q-
coincident) with a fuzzy set A in X if and only if r + A(x) >1 and this is

denoted by x; Q A

Remark: it is clear that 3, Q A © a, & A°

Definition 1.3.4 [22]:

A fuzzy subset A in X is called Q-coincident with a fuzzy subset B

in X (denoted by A Q B) if and only if A(x) + B(x) > 1 for some x in X
1.4 Fuzzy Functions

Now, we introduce the fuzzy function concept between two families

of fuzzy subsets corresponding to a function between two crisp sets
Definition 1.4.1 [35]:

Let X and Y be two regular sets, and let f: X —Y be any function.
For any fuzzy subset A of X; we define:

f:F(X) — F(Y), by f(A) to be the fuzzy subset of Y defined by:

_ _(Sup {A(x):xef1(y)} iff1(y) = ¢
Faw) = ) = b

and we define the fuzzy function ()™ as (f)™ (B) for any fuzzy subset B of
Y by:

()" (B) (x) = B (f(x)).
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Now, we consider examples that clarify the above definition

Example 1.4.2 (1):

Take X={a, b, c, d}, Y={u, v, w}

and f: X > Yby:a—ub—v,c— vandd — v. Let A be the fuzzy
subset of X such that A={ag2,b05,C06,do }, then f(A) is the fuzzy subset
of Y defined as:

f(A):Y —[0,1]:

u— 0.2, v— max{0.5,0.6,0} =0.6,and w — 0

Example 1.4.2 (2)

Let X ={a, b, ¢, d}, Y={u, v, w}and f: X — Y be the function that
mapsatouand b,canddtov,andlet B: Y — [0,1] to be the fuzzy subset
of Y that maps u to 0.3, v to 0.5, and w to 0.8.

Then (/)™ (B): X — [0,1]

a—>03,b—>05c—05andd— 0.5

The following definition concerns the product of two fuzzy sets
Definition [35]:

Let A be a fuzzy subset of X and B be a fuzzy subset of Y. Then we
consider AxB to be the fuzzy subset of XxY defined by:

(AXB) (x,y)= min{ A(x),B(y) } for (x,y)eXxY
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Following this definition we have the following remark:
Remark 1.4.3:

For any fuzzy subset A of X and fuzzy subset B of Y, we have: (AxB)° =
(A°x 1)) V (1, x B°) where 1, is the fuzzy set that maps all element of X

to 1 while 1_y IS the fuzzy set that maps all elements of Y to 1.
Proof:
(1 - AxB)(x,y) =max {1-A(x), 1-B(y) }

= max { (A°x1)(xy), (1x B)(x,y) }

=[(A°x 1,) V (I,x BY)](x.y) for every (x,y)eXxY
Also we can define the product of two fuzzy functions as follows:
Definition 1.4.4 [37]:
let 12 Xi— Y4, f1:F(X1) — F(Y1) and f,: Xo— Y5, f5:F(X;) — F(Y))
Then: fyx f,: Xy x Xo— Y1 X Y, is defined by:
(Fu x ) (X1 X2) = (f1(Xy), f2(X2)) for every (X3 X2)€ Xy X X,
And therefore for any fuzzy subsets A;,A, of X; and X, respectively

(fi X f2) (Ac X A)(YrY2) =

{Sup{(/h X A)(x1,%2): (%1, %2) € (i X L) 0, ¥2) if (i X )7 (v, y2) # @
0 if (ixf) ' uy2) =0
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and: (f; X f2)" (BiX Ba)(xuX2)= (BxBp)((fixfy) (Xu.Xz)), for any fuzzy

subsets B, and B, of Y, and Y, respectively.
Theorem: 1.4.5 [37]
Under the assumption of the previous definition, we have

(i X f2)" (BixBy)= (f)™" (By) X (f)™ (B2)

Proof:
for every (X; X;)e X1 X X, we have:
(fi X f2)™" (Bix By) (X1, X2) = (Bix By)(fi(Xy), fa(X2))
So (fy X f2)" (BiX By) (X1, X2) = min (By(fi(x1), Bo(fa(x2))
= min (f,*(B1)(x1), f2(B2)(X2))
= ((f) " (B) X (f2)™ (B2)) (X1, X2)
We cosider the fuzzy graph of a fuzzy function.

In regular setting, for any function f: X—Y we define the graph of f, Gy,
to be the function g: X —»XxY defined by: g(x) = (x, f(x)) for every
xeX. So Gs={ (X, f(x)): xeX }

Definition: 1.4.6

Let f X—>Y be any function and f:F(X) — F(Y) be the
corresponding fuzzy function. The fuzzy graph of f is the fuzzy function g

where, g: F(X) — F(X) x F(Y)
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defined by:for a fny fuzzy subset A of X, g(A) = AxB, for any fuzzy
subset B of Y

Remark 1.4.7 [37]
Under fuzzy setting we have (g )*(AxB) = A » (f ) *(B)
proof:
(@) (AxB)(x) = A x B(g(x))
= A x B(x,f(x))
=min { A(X), B(f(x)) }
=Ax f(B)X)

The following theorem shows that the image of a fuzzy point
in Xis a fuzzy point in Y, but the inverse image of a fuzzy point in Y may

not be a fuzzy point in X
Theorem 1.4.8 [35]:

(1) If p = @, is a fuzzy point in X,with support a, and with
value =), then f (p) is a fuzzy point in Y, call it g,where
f (p) = f(a), = q such that f(a) is the support of q and X is the
value of g

Proof:

If £(y) = 8,a(y) =0
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If £1(y) # ,q(y) =sup { p(X): xe f*(y) } here, there are two cases:
case one: if a e f(y)
q(y) =sup { p(x): xe f*(f(@)) } = {1, 0,0, ... } =X
case two a & f(y)
qly) =sup{0,0,...} =0
(2) If g = b, fuzzy point in Y then f(q) may not be fuzzy
point in X
The following examples explain this result.
Example (1):
Suppose f*(b) is not a singleton,say f'(b) = { o, p }
then f1(q) = { ar, Br, 0, 0, ... } which is not a fuzzy point
Example (2):

If £'(b) = @, then f'(q) = # which in not a fuzzy point. According to the
previous two examples if f'(b); where q = b;; is a singleton then if £'(q) is

a fuzzy point in X.

The following theorem shows the effect of fuzzy functions on the

quasi-coincident relation between a fuzzy point and a fuzzy set,
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Theorem 1.4.9[37]:

Let £:X—Y be a function, then for any fuzzy point p= a, and for any

fuzzy subset A of X, we have:if p Q A then f(p) Q f(A)

proof:

Let p = a, and f(p) = f(a),

sincep Q Athen: A+ A(a)>1

Consider A +f(A)(f(a))

A +H(A)(f(@)) = A + sup { A(x): X € F((f(a)) }
>A+A(a) >1

Theorem 1.4.10 [37]:

If g=b, and f*(b) is a singleton (f*(b) ={a}) then f*(q) is the fuzzy
point =a, and in this case: if q Q B then f!(q) Q f!(B)

proof:
We have qQB which means A+ B(b) > 1
Now
A+ f (B)(a) = A + B(f(a))
=\ + B(b)
>1

That is,F(q)Qf (B)
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Chapter Two
Fuzzy Topological Spaces
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Chapter Two

Fuzzy Topological Spaces

Introduction

General topology was one of the first branches of pure mathematics
that have been applied to the fuzzy settings. After three years of the
introduction of fuzzy sets by Zadeh in 1965,Chang, in [6] in 1968,gave the
concept of “fuzzy topology”. He did the fuzzification of topology by
replacing (subsets) in the definition of topology by (fuzzy sets) and
introduced what we call Chang’s fuzzy topological space. After that in
1976, Lowen [17 ] gave a modified definition of fuzzy topology by adding
one simple condition, and made what we call Lowen’s fuzzy topological

space.

In this chapter we will introduce the basics of fuzzy topology,and
then with some development starting with Chang’s and Lowen’s definitions
and ending with another type of topological spaces called the intuitionistic
fuzzy topological space [8]. Also in this chapter we will consider the
openness and Closedness of fuzzy sets, besides, closure,interior,
neighborhoods and those concepts over the product fuzzy topological

spaces.
2.1 Definitions of Fuzzy Topological Spaces
Definition 2.1.1 (Chang):[6]:

Let I denote the unit interval [0, 1],and let X be a non-empty set,the

set I of all fuzzy functions from X to | are the fuzzy subsets of X denoted
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by F(X). A fuzzy topology on a set X is a family 7 < F(x) satisfying the

following conditions:

(Y1,0et

(i ifABetthenAABert

(i) iIf { A, a e index set A } is a family of fuzzy sets in t then
VA, € 17, where o €eA.

The pair (X, t) is called a C-fuzzy topological space and the
members of 7 are called the C-open fuzzy sets and their complements are

called the C-closed fuzzy sets.

Later on, Lowen[17] defined the fuzzy topology on X as Chang
did,but replaced the first condition (namely 1,0 e 7) by all constant Fuzzy

subsets ¢ where ¢(x) = c¢ for all c€[0,1]. Which is finer than Chang’s

topology.
Definition 2.1.2 (Lowen) [17]

Let I denote the unit interval [0,1],and let X be a non-empty set,the
set I of all fuzzy functions from X to | are the fuzzy subsets of X denoted
by F(X). A fuzzy topology on a set X is a family t of fuzzy subsets of X

satisfying the following conditions:
(i) all constant functions ¢ from X to [0,1] € .

(i)ifABetthenAABerT.
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(iii) iIf { A,: o € index set A } is a family of fuzzy sets in T then
VA, € T, where a €eA.

Then the pair (X, 7) is called an L-fuzzy topological space and the
members of t are called the L-open fuzzy sets and their complements are

called the L-closed fuzzy sets.

In the coming material we will use Chang’s definition of fuzzy
topology and call it the fuzzy topology, and if we use Lowen’s definition

we will use the notation L-fuzzy topology.

Examples of fuzzy topological spaces are parallel to those in the

regular topological spaces:

for example,the indiscrete fuzzy topology {1,0} on X,

the discrete fuzzy topology on X, which consists of all fuzzy sets in X,
and the se of all crisp fuzzy sets in X is also a fuzzy topology.

Section (2):

2.2 Interior and Closure of Fuzzy Subsets

Definition:2.2.1:[6]

Let (X, t)be a fuzzy topological space and let A be any fuzzy subset
of X then:
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(i) The closure of A denoted by A or CI(A) is defined by:
CI(A)=A{F.FFet A<F}

(ii) The interior of A denoted by A° or int(A) is defined by:
A°=V{U: Uet:U<A}

We will consider some examples to compute the closure and the

interior of some fuzzy sets in a fuzzy topological space:
Example 2.2.2:

Given the following fuzzy sets A,B,C and D (fuzzy subsets of

X=[0,1])
A B
1- 14—
/ | xl"\,
T f T [ T I| T T
1 1 1 1
pi Z
c 1 1P
1 - ///_/ "'n,._l‘ /
- -\"‘-\ / ..
¢ | . — T i T —
1 1 1 1
2 i

Wheret={0,1,A,B,D}

To find CI(C) and C°
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First of all we find the fuzzy closed sets which are the

complements of the members of .

The closed sets are:

A B
1- : 1-

T T | = T

1 1 1 1

2 2
1 D¢
1- 1

L - T T T

1 1 1 1

2 2
The fuzzy closed sets containing C are
K | B
1_ . 1 -
= T 1 — =1 | — T | —
1 1 1 1
2 2
1 D*
1- 1-

L ’—;—'—'_ B I e m e —

1 1 1 1

2 2
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And therefore CI(C)=1 A B°= B".

For the interior consider the fuzzy open sets contained in C:

A B
1 1- §
- |—%—|—r— 1 .—1—7—|— 1 0
L 1 1 1 -
2 2
1 D _
1 10—
\ .
\._
B ’_;_'_:_ ——f —
- 1
2 7 1

And therefore C°=AV 0=A

Example 2.2.3:

Let 7 be the topology generated by A,B and C such that:
A={ag7 by 1 },B={ a7 bos Coz}and C={ags bos Cos}
To find CI(A) and B°®,

Now,7={1,0,A,B,C, {ag7 bos c1}, { a7 bos Cos},

{ a7, bo, Cos}{ a5 Do Cos}, {05 bos, Cost {@os Do Cos}}

The fuzzy closed sets are:
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{ @03, b1, Co}, { @03, Dos, Cor} {05, bos, Cos}i { @03 Dos, Co}
{ 203, Dos, Cos} { @03 b1, Coz}{ @05 b1 Cos} {a0s bos, Co7}
{aps b1 Co7} 1, 0.

Hence, CI(A)=1,and B°=B

Lemma 2.2.4: [37]

let T be a fuzzy topology on X, then for any A,B fuzzy subsets of X

the following are true:

1) AVB=AVB

2) (AVB)°>A°VB°
3) (A% =4A°

4) (4)° = (A%

Proof:

l) AV B =AFciosea F
F >2AVB

ButAV B = (AF closea F) V (Ak closea K)
F=A K=B

=N\ rza (FVK)
KjZB
F;iclosed
K]-closed

=ArLzave Ly = AV B

Lt closed
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2) A <AV B implies that A< A V B And B <A V B implies that B°
<AVB So, A°VB°<AV B,butA°V B°is open. Hence A° V
B°<(AVB)°.

3) 1-(A°)=1-V{B:Ber,B<A}
=a{1-B:Betr,B<A}
=2{1-B:Ber,1-B>1-A}
=a{F:Ffer, F>1-A}= A

4)1-(A)=1-r{D:1-Det,D>A}

=V{1-D:1-Der,D>A}
=V{E:EeT,E<1-A} =(1-A)’°=(A)°
Lemma 2.2.5 [37]

let { A, } be the family of fuzzy subsets of a fuzzy space X then:

G Vv A

>
=

IA
<

K

(i) V

4
Q
<

=V A, where a € finite indexing set
(i) V(A)’ <(VA)
Proof:

(I) VaA_azv{/\ﬁFaﬁ:FaﬁZAa’FcfﬁET}

=/\a {V,BFaB: VﬁFaBZVAa'FaCB ET}
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Na{ Vgl VK= VALVKS e 1 }

=Va(Ag)

IA

i) In case of a € {1, 2, 3,..., n }, then for (i) (VE, ) € 7 and
( ) { } O_’B

equality holds.
(iii) ToshowV (A)°<(VA,)°
V(A)’ =V {VpUp: U <Ay Ug et}
=V, {VgUp: VgUp<VyAy V gUp et}
<Vu{Vy 1V, <Ve4,,V, et}=(VAY
Theorem 2.2.6:

Let (X, 7) be any fuzzy topological space, a fuzzy subset A of X is

fuzzy closed ifand only if A= A

Proof:

Assume that A= A. Since A= A, F = Ais fuzzy closed, and

therefore A is fuzzy closed.
Conversely, Assume A is fuzzy closed.
A (X) = inf { F(X): F is fuzzy closed and A(x) <F (x) },

that is A (x) < F(x),consequently A (x) < A(x) for every x in X.
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Now, since A = A { F: F is fuzzy closed and F > A} then A(x) < F(x)
for every F > A, therefore A(x) is a lower bound for the set { F(x): F> A }
and A(x) <inf { F(x): F > A }, therefore A(x) < A (x) for every x in X.

Hence A (x) = A(x) for every x in X, which means A = A.
Definition 2.2.7:

Let (X,t) be a fuzzy topological space, and let A be a fuzzy subset of
X, we say a fuzzy point p is a fuzzy cluster point of A if for every nbd U of

p, UaA#d.

(13

We show in the following example, the property that *“ if every
neighborhood of a point intersects a set A implies that the point is in the
closure of A” is not valid in fuzzy setting. The following example explains

that:
Example 2.2.8:

let X =[0,1] and let U,V and W be defined as follows:

bl
-
Pl

now, take 7 ={0,1,U, V, W }.

Therefore the complements of the fuzzy open sets are
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1! 1- 1-

bl =

E 3
Eal

= 3
Eaal

= 5

. 1
Let p be the fuzzy point 1 and let A be a fuzzy subset of X, as

4

follows:

| -t

bl =
-

Then A = V¢, and the only neighborhoods of p are U, 1,

ItisclearthatUa A+ @and 1, AA#@butstilpg A

Other types of fuzzy open and fuzzy closed sets were studied

through research. Among them,

Definition 2.2.9 [37]:

a fuzzy set A in X is fuzzy regularly open if A= int (CI(A))
a fuzzy set B in X is fuzzy regularly closed if B= CI (int(B))

In the following we will define what is called a Q-neighborhood of a
fuzzy point, which is used very often to deal with fuzzy topological

concepts.
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Definition 2.2.10 [37]:

A is a Q-neighborhood of a fuzzy point p if there exists B € T such

that p Q Band B <A.

We also define a fuzzy open (closed) mapping as an extension of non

fuzzy setting as follows:
Definition: 2.2.11: [34]

Let £:(X, 7)— (Y,o) be a mapping between fuzzy topologies. Then f

is called:
(i) fuzzy open if and only if £(u) € o for each u € 7.
(i) fuzzy closed if and only if (f(u))° e o foreach u® et

Finally, we define a semiopen (semiclosed) fuzzy sets parallel to non

fuzzy setting as follows:
Definition 2.2.12:[37]

Let (X, 7) be a fuzzy topological space. For any fuzzy subset A of X,

we say A is fuzzy semiopen if there exist U € 7 such that: USA<U

And for any fuzzy subset B of X we say B is fuzzy semiclosed if

there exist F fuzzy closed such that: F° <B <F

It is obvious that if A is fuzzy open then it is also a fuzzy semiopen

set.
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2.3 Fuzzy Membership and Neighborhood System

In studying the fuzzy open subsets of X we deal with the so called
neighborhood system of fuzzy points. Also in studying separation axioms
we deal with fuzzy points and fuzzy neighborhood systems; where ¢ the
belonging ‘ between fuzzy points and fuzzy sets is greatly used. In 1974,
C.K Wong [34] started the “’belonging of fuzzy point to a fuzzy set
concept. later on, different definitions of the same concept were added by
Piu and Liu [22] M. Sarkar [27], Srivastava [32 ] and Wong [36]. These
definitions were given independently. At the first look the definitions seem
to be the same, but, after investigation they are found to be different in

many aspects.

For the notation of fuzzy points we may use p=x;, or p= (X,A).
Using the notation p=a; = { (X,t):where t=0 & x # a} it is clear that:

A=V { (x,1): 0 <A< A(x): xe supp(A) }
Also, we may write A=V p:p<A
That is A can be written as the union of its fuzzy points.

In the coming definition we classify the different definitions of the

relation ‘€’.
Definition 2.3.1:

Let A be a fuzzy subset of X, and let x, be a fuzzy point of X, we

define the membership between x, and A as follows:
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(i)  X,e€; Aifand only if A< A(Xx)
(i) X, e Aifand only if A< A(X)
(il) X, €3 A if and only if A= A(X)

These definitions are essentially distinct.The following remarks show

why:

Remark (1) 2.3.2:

X; € AVB if and only if x, €A or x; €B,

which is true for all the definitions of “the belonging”
For €;: X3 € AVB means A < max { A(x), B(x) }

So A<A(x) or A<B(X) © X; €;A 0or X, €,B

The same will be true if we replace €; by e;and €3
Remark (2) 2.3.3:

X; €A A Bifandonlyif x; eA and x, eB.

This is true for all the definitions of the belonging (e;, e;and e
The proof is similar to the that in remark (1).

Remark (1) and Remark (2) can be extended to any finite number of

fuzzy sets Ay, Ay, As,..., A,
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In the case of arbitrary families of fuzzy sets { A,, aeA}, we have

the following Lemma:
Lemma: 2.3.4:
Let { A,: aeA} be a family of fuzzy subsets then
(1) if x; €1 A A, then X, €; A, for all aeA
(2)x; €.V A, ifand only if x, €; A, for some aeA
proof:
(1) if X, €1 A A then A <inf { A, (X): o a€A
50 A < Ay(X) for all aeA
hence x; €1 A, for all aeA
(2)
Let X; €, A, for some aeA then A< A, (X) for some a€A
so A <sup { A, (X): a€A }then A <(V A,)(X) for aeA
hence, X, e,V A,
conversely; let x; €1V A,

then A <sup { A, (X): a€A },call this sup, S. so A<S

take € = %,as S is the sup, there exist one A, (X) say Amn(X)
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such that: L < An(X) < S, hence X, €; An(X).

the converse of (1) in lemma 2.3.4 may not be true, as the following

example shows:
Example 2.3.5:
Let X={a, b, c}
Ai={a ;p10-+0, b3iq0-+,C2 }
et Ar={a 1, b31,Co}
Az={a 301,b301,C2}

Az ={a 2001, bP3001 C2}

So A Ajoveri,isequalto{a ,, b3, Co}

Hence, b; €, A;forall i,but b &, A A;
Replacing, € by €,, we have the following Lemma:
Lemma 2.3.6:

(1) Xy €2 AA, S Xy 6 A, for all o.

(2) if x; e, A, for some o then X; €,V A,
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proof: straight forward.

The converse of (2) may not be true,we may have X; e,V A; but X,

&, A;for all i, as the following two examples show:
Example (1):
Let X ={a}, Ai={a: } i=123,.. ThenV A; ={ a; },We notice
i1
that a; e,V A but a; &, A;for all i.
Example(2):
Let X={a, b}
A1 ={ 249,003 }

Az = { ag.499,003 }

Az = { 89.4999,003 }

V Ai={asb03}
Now, ags €, VA but ags &, A, for every i.
Remark 2.3.7:

When replacing € by e, then neither of these two statements are true:

(:'.)X;L €3 /\Aaﬁ Xy €3 Aa for all a.

(2) X3 e3Afor some o < X; €3V A,
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the following counter examples explain:

(i)  Let X={a}, take the fuzzy subsets

A1 ={a0s1 } A = {0501 } As = {05001 > ---
AiAi = {aos }

Clearly ag5 €3 A Aj but ag5 €3 A; for all i.

(i)  Let X = {b}, take the fuzzy subsets

B1 = {bos9 }, B2={bo309 }, Bz ={bo.age0 }, ..
ViBi={Do4}

Clearly, b4 €5 Vi Bibut by 4 5 B; for any i
Also, by 39 €3 B; but by 39 €3 Vi Bi

In the case of crisp fuzzy subsets we could not use €, becausel could

not be smaller than A(x) for any x e X.But we may use €, and €;

We may look at a fuzzy point x, as a fuzzy subset B,therefore x,€ A
is equivalent to B < A, and € = €, satisfies this situation, so; it is

appropriate to use €, for €.
Definition 2.3.8 [22]:

let (X,7) be a fuzzy topological space, we say that a fuzzy set G is a
neighborhood (nbd in short) of a fuzzy point x, < there exist a fuzzy open

set U such that x, < U <G.
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The family of all neighborhoods of a fuzzy point x; is the

neighborhood system of x;.
Theorem 2.3.9:[23]
let A be a fuzzy set in a fuzzy topological space (X,7) then:

A is fuzzy open & for each fuzzy point p=x; € A, Ais a nbd of p.

Proof:
= Trivial
< For each x; € A, there exists U fuzzy open such that x, < U< A.
Therefore, V x, <V U< A.But, A=V { x.:X; € A }, therefore,
A =V{U: U is fuzzy open}. Hence, A is fuzzy open.

The characterization of the fuzzy open sets using the neighborhoods

of its fuzzy points, generates a topology.

Now, we consider a new neighborhood system, called the Q-

neighborhood system.
Definition 2.3.10 [22]:

Let (X,7) be a fuzzy topological space, let p= x, be a fuzzy point in
X, We say that the fuzzy set A is a Q-neighborhood of p if there exists B

eT,such thatp Q Band B <A.
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The family of all Q-neighborhoods of x, is called the system of Q-

neighborhoods of x;.
Remark 2.3.11:

(1) The fuzzy set A is a Q-neighborhood of x;;doesn’t mean that X, € A
In 1916 Fréchet studied the neighborhood structure of neighborhoods
(in non fuzzy settings) that doesn’t contain the point itself, and it seems
that the Q-neighborhood is an extension of that concept. In Fréchet

work, dealing with regular sets A and A°, we have A o A° = @ which is
not the case in the fuzzy setting. However, in fuzzy settings A and A°

are not quasi coincident to each other.

The following theorem characterizes the properties of Q-

neighborhood system:

Theorem 2.3.12: [22]

Let N(p) be the family of all Q-nbds of a fuzzy point p = x;

That is, N(p) = { U Q-nbd of p: peU }, we have the following:

1) if U € N(p), thenp Q U.

i) If Uy, U, eN(p) then Uy a U, EN(p).

iii) UEN(p),if U <V then VEN(p)

iv) If U € N(p), then there exists VEN(p) such that V < U and for

every g Q V, VEN(q).
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Definition 2.3.13:

If {A, } is a family of fuzzy sets in X, we say x; Q VA, if and only if there
existA,, such that x;, Q Ag,

Fuzzy base and fuzzy subbase:
Definition 2.3.14:

A subfamily B of 7 is called a fuzzy base or a fuzzy basis for (X, 7) if and

only if each member of T can be written as a union of members of f.
That is, for every A€ t, A=V b: for some be p.
Definition 2.3.15:

a subfamily S of t is called a subbase for 7 if the collection of all finite
intersections of members of S is a base for . That is, { AL, s: s€S } forms

a fuzzy base for 7.
2.4 Fuzzy Product Topology

We define the fuzzy product topology on X XY using the fuzzy

topologies on X and Y as follows:
Definition 2.4.1: [cf9,1]

Let 7 x and Ty be two fuzzy topologies on X and Y respectively, the
fuzzy product space is the cartesian product XxY with the fuzzy topology t

xxy generated by the subbasis

{ P (A) A p2(Bp): A, €Ty, By € 7,} where:
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p:1 is the projection function of XxY onto X, and

p.: is the projection function of XxY onto Y.

Since p; ™ (Ay= A, x 1, and p, " (Bg= 1, x By, then the intersection
P (A0) A P2 (Bp) = (Aux 1y) A (T, X Bp)= A, x By,

Therefore, B= { A, X Bg: A, € Tx, Bge Ty } forms a basis for txxy.

The above definition of the fuzzy product topology on XxY can be

extended to a finite family of fuzzy topological spaces X,X,..., X,

Let X=[[iL; X; be the fuzzy product space and P; be the projection from X

onto X;, for each 1=1,2,...,n.

If B; etithen p ;71(B;) is a fuzzy set in X and {4 p ;71(B;): Bj et; } is
a subbasis that is used to generate a topology on X

This topology is called the fuzzy product topology for X

In the following, we will show the relationship between the product

of the closure of fuzzy sets and the closure of the product.

First of all we will show that if A is a fuzzy closed set in X and B is

a fuzzy closed in Y, then A x B is a fuzzy closed in X x Y
Theorem 2.4.2 [37]:

Let A and B be fuzzy closed subsets of X and Y respectively then

A x B is a fuzzy closed subset of the fuzzy product space X xY
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Proof:

If A is fuzzy closed in 7, then A is fuzzy open in 7, SO(A° X Y) is
fuzzy open in XxY also since B is fuzzy closed in t, then B® is fuzzy open

in 7, and (X x B°) is fuzzy open in XxY.But, (AxB)" = 1- AXB
(1- AxB)(x,y) = 1 —min { A(x), B(y) }

= max { 1- A(x), 1- B(y) }

= max { A"(x), B*(y) }

= max { min { A%(x),1}, min {1, B(y) } }

= max { (A" X Y)(xy), (XX BY)(x.y)}

= (A°xY) V (X x BY

This is a union of two fuzzy open subsets in XXY so it is fuzzy open

in XxY.

Since 1- AxB is fuzzy open in XxY, then AxB is fuzzy closed in

XxY

Recall that in the usual set topology, it is true that the closure of the
product is equal to the product of the closures, but,this is not the case in

fuzzy setting.

The following example explains that: AX B#A X B
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Example: 2.4.3

Let A and B be as follows:

17 15

T
e |3

With

7,={0,1,A°}and 7,= {0, 1, B}
Now

A=land B=1soAxB =1

Now for A X B;
1-AxB=(A°x1)V (1xB°

Which is a union of two fuzzy open subsets of X X Y so it is fuzzy
open in X x Y implying that Ax B is fuzzy closed in Xx Y, which then
impliesthat A X B=A x B # Ixyy

butAxB=1henceA x B#AXB

In general the fuzzy closure of the products is a subset of the product
of fuzzy closures, also, the product of the fuzzy interiors is a subset of the

fuzzy interior of the products,the following theorem assures that:
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Theorem 2.4.4 [37]:

let A be a fuzzy subset of X, and B be a fuzzy subset of Y then:

(i) AxB>A X B
(i) A°xB°<(AxB)°
Proof:

(i) A is fuzzy closed and B is fuzzy closed,so A x B is fuzzy closed, also

A>Aand B>B,soAXxB>AxB

But A x B is fuzzy closed,hence AX B>A4 X B
Similarly

(i) int(A) is fuzzy open and Int(B) is fuzzy open, so  int(A) x int(B) is

fuzzy open,also Int(A) < A and Int(B) <B,
so, int(A) x int(B) <A x B
but, int(A) x int(B) is fuzzy open,
hence, int(A) x int(B) < int(A x B)

S. Saha [26 ] modified the definition of the product to be “product
related to” in such a way that makes: the product of the fuzzy closures
equals the fuzzy closure of the products, and as well the product of the

fuzzy interiors equals the fuzzy interior of the products.
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Definition 2.4.5: [ 26]

let X and Y be two fuzzy spaces, X is said to be “product related” to

Y if for any C fuzzy subset of X, D fuzzy subset of Ysuch that:

if U°<C and V<D = (U° x1) V (1x V°) > Cx D: Uer,,Ver,

Then there exist U;€ 7, and V; € 7, such that:

U:°>C or V> D and (U;° x1) V (Ix V%) = (U° x1) V (1x V°)
Finally, Saha proved the following theorem

Theorem 2.4.6:[26 ]

Let X and Y be two fuzzy spaces, A be a fuzzy subset of X and B be a

fuzzy subset of Y, if X is product related to Y ,then:

() AxB=A x B and
(i) A°xB’=(AxB)°
2.5 The Intuitionistic Fuzzy Topological Space
The definition of the intuitionistic fuzzy subset was given for the
first time by K. T. Atanassov [4], it generalizes Zadeh’s concept of fuzzy

subsets, then as an extension of the chang’s definition of the fuzzy

topological spaces,D. Coker in [8] gave the definition of intuitionistic fuzzy

topological spaces using the intuitionistic fuzzy sets.
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It was followed by Mondal and Samanta [24] who introduced in
2002 the concept of intuitionistic gradation of openness also as an
extension of gradation of openness given by Chattopadyay [7 ]. Min and
Park in [20, 21] studied an equivalent form of the intuitionistic fuzzy
topological space, where they defined the value of the components of the
intuitionistic fuzzy sets by defining two functions from the fuzzy subsets on

X to the unit interval [0,1].
Definition 2.5.1:[4]

Let X be a non empty set, an intuitionistic fuzzy set A (IFS) is

defined to be the ordered pair A = < A;, A,> where A;:X—[0,1] and
Ay:X—[0,1] such that: 0 < A;(X) + Ay(x) <1 forevery xin X.

A (X) denotes the degree of Membership of each element x €X,

and A,(x) denotes the degree of nonmembership for each x €X.

The intuitionistic fuzzy set 0=<0, 1,> is the empty intuitionistic

fuzzy set, and 1=<1, 0,> is the whole intuitionistic fuzzy set.

The ordinary fuzzy set A can be written as <A,A> as an IFS.
Let A=<A;A,>, B =<B,,B, > be two intuitionistic fuzzy sets
we say AC B to mean A; <B; and A, > B, for each x eX.

We define the complement of A (i.e A°) to be A=< A, A; >,
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The intersection and the union of A and B is defined by:
ANB=<A;AB;, A2V B,>and AUB=<A; VB, A, AB,>.
Of course; the intersection and the union could be extended

to any family of intuitionistic fuzzy sets

l.e.if Aj=<A,; , A;, > then N; A=< 4; ,VA;,>and

Ui A=< VAil,A Ai,>.

We say A= <A,A,> and B = <By,B, > are intuitionistic Q-coincident
(1Q-coincident) if and only if there exists x € X such that: A;(x) > Bx(x) or
Aa(X) < Ba(X).

Definition 2.5.2:

Let F(X) be the family of fuzzy subset of a non empty set X then

IF(X) is the family of intuitionistic fuzzy subset of X.
Consider f: X—Y and f: F(X) — F(Y) then:

f* IF(X) — IF(Y) is the intuitionistic fuzzy function
defined by f*(<ALA>) = < f(A1), (f (49))° >

and (f*)*(<B1,B>>) = < (f)(By), (f)'(B2) >

Coker in 1997 in [8] proved the following properties of images and
preimages between intuitionistic fuzzy functions and intuitionistic fuzzy

sets.
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Theorem 2.5.3 [8]:

Let f: X — Y be a function, and f: F(X) — F(Y) be a fuzzy function, and

f*: IF(X) — IF(Y) is the intuitionistic fuzzy function

Then for any A,B € IF(X), C,D € IF(Y), we have:
1) A<B= f*(A) € f*(B),and C<D = (f*)(C) € (f)*(D)
2) (f)'(1y) =T, (f)'(0,) = 0
3) f*(AVB) = f*(A) U f*(B).and f*(A A B) = f*(A) N f*(B)
4) (fCVD) = (f)*C) v (f) D),
and, (f) (C A D) = (f)" (C) N ()" (D).

Now, we come to the definition of the intuitionistic fuzzy topological

spaces, as an extension of Chang’s fuzzy topological spaces.
Definition 2.5.4 [8]:

Let T be a family of intuitionistic fuzzy sets on X satisfying the

following properties:
1) Oy et Icet
2) fABetthenANBet

3) Let { A, aeA } be a family of intuitionistic fuzzy sets then Uq
(A €.
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Then (X, 7) is called an intuitionistic fuzzy topological space denoted

by IFTS.

Any member of 7 is called an intuitionistic fuzzy open set, and its

complement is called an intuitionistic fuzzy closed set.

Also for any intuitionistic fuzzy set A we define:

lint(A) = A° = U { U: U is intuitionistic fuzzy open set: USA }
and Icl(A) = A =N { F: Fis intuitionistic fuzzy closed set: F2A }
Coker also defined the fuzzy intuitionistic point as follows
Definition 2.5.5 [8]:

Let a € X be a fixed element and a€(0,1] and B€[0,1), where o+p < 1,then

A = < Ay, aj_g > is called an intuitionistic fuzzy point.
For any intuitionistic fuzzy set A = < A;, A, > define

aup € Aiff a < Aj(a) and B > Ay(a).

Also we define a vanishing intuitionistic fuzzy point ag= <0, aj_g> and

a(ﬁ) e Aiff0 < Al(a) and B > Az(a).

Any topological space can be considered as an intuitionistic fuzzy

topological space. Because if (X,F) is a topological space,
let t={<A, A°>: Ae F }then tisan IFTS.

To show that 7 is a topology:
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e PeF =<, 0°>=<@, X>=<0, 1,>=0.and X e F implies that

<X, X>=<X,¢p>=<1, 0,>=1,,
so 0, and 1, 7.
e IfABeFthen<A A°>N<B,B°>=<AAB,A°VB*>
So <A, A°>N<B,B°>=<AAB, (AAB)°>e1,since AAB e F.
o {A,0€A} afamily of intuitionistic fuzzy sets € F
U, <A, A5>=< U, A,NA>=< U, A, (U A) > €T,

Since U, A, € F.
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Chapter Three

Extending Separation Axioms
for The Fuzzy Topology
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Chapter Three

Extending Separation Axioms for The Fuzzy Topology

3.1 Fuzzy Hausdorff Spaces
Introduction

Fuzzy separation axioms including fuzzy Hausdorffness are basic
concepts that have been studied by several authors and in different
approaches: cf [21, 28, 30, 2, 31, 5, 3]Lowen [17] approach was by using
his fuzzy convergence theory, while Pu and Liu [22] approach used Q-
relation concept, and Srivastava [32] approach used fuzzy points. Those
different approaches of Hausdorffness mainly look completely different but

they turn out to be equivalent.

The following definition of fuzzy Hausdorff is the one used fuzzy
points, which is parallel to the definition of Hausdorffness in regular setting

of topological spaces.
Definition 3.1.1 [32]:

A fuzzy topological space (X,7) is said to be Hausdorff if and only if
for every distinct fuzzy points x, and y,there exist U,V € tsuch that  x;

eV, y; eV and UaV =0.

The following two lemmas will be used to present the relationship
between Quasi-coincident and membership for a fuzzy point and a fuzzy

set



60

Lemma 3.1.2:

Xi+EASX, QA

Proof:

XX QA ©r+AKX) >l o AX) >1-r
S lr<AX) e xi,EA.

Lemma 3.1.3:[31]

If for any two distinct fuzzy points X, ys in X, there exists U,V € 1
such that x; €U, y; €V and UaV =®,then for every x,y € X with x #y, there
exists U,V € t such that U(x)>0,V(y)>0 and UAV =®.

Proof:

For any x, y €X with x #y, take any r € (0,1), s= 1- r then by
assumption there exist U,V € t such that: x, €U, y;., €V,UaV=®. Now,

X, €U implies that U(X) >r >0 and y,, €V implies that  V(y)> 1-r >0.

There is an equivalent definition of Hausdorff fuzzy topological

spaces using the concept of Q-neighborhoods.

Theorem 3.1.4 [31]:

Let (X,t) be a fuzzy topological space, then the following are equivalent:
(i) (X, 1) is hausdorff

(if) for any distinct fuzzy singletons x; ys in X, there exist U Q-nbd of
Xr, V Q-nbd of yssuch that UnV= @
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Proof:

(i) = (i) Let x; ys be fuzzy singletons in X, with x #y. So, there exist U,V

€ T such that x, €U, y;€V and UaV =@

Then we have one of the following four cases

Case (1): r<land s<1

This implies that X, y;sare fuzzy points since 1-r #£0, 1-s #0.

Then by the assumption, for x,..and y;.qthere exists U,Ve t such that:x;.

€U, y1EV and UaV =0.

Therefore, 1-r < U(x) and 1-s < V(y) which implies that U(x) + r > 1 and
V(y) + s > 1. Therefore by lemma(3.1.2), we get that x, Q U and y;Q V
and UaV =0.

Case (2): r=1,s<1

For any fixed k € (0,1), consider the fuzzy points Xy Yi.s,

By assumption there exist U,V €T such that x¢ €U, y; €V, and  UaV
=®,but then 0<k<U(x) and 1-s<V/(y), this implies U(x)>1-r where r =1 and
V(y)+s >1 Which means, x, Q U and, y;Q V

case (3): r<l, s=1. The prove is similar to that of case 2.

case (4):r=s=1
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using lemma(3.1.3), there exists U,V €T with U(xX)>0 and V(y)>0 that is
U(x) > 1-r,where r=1 and V(y) > 1-s,where s =1, or U(x) + r> 1 and V(y) +

s >1whichmeans x, QU and y; Q V.
(i)=> (i) given any pair of distinct fuzzy points X, and ys in X, take the

fuzzy singletons Xy, Y15 in X then by the condition, there exist U,V € T,
UaV =®, such that x;, Q U and y;s Q V which implies x, €U,y; €V and
UaV =o.

As long as we deal with fuzzy topological spaces on a fuzzy set X,
which has a-levels, it is natural to define Hausdorffness using the a-levels,

and it is called a-Hausdorff.
Definition 3.1.5 [31]:

A fuzzy topological space (X, 7) is said to be a-Hausdorff for
a€[0,1) if and only if for each x,y € X with x #y, there are U,V € 7 such

that: U(x)>a, V(y)>a and UaV =O.

In the following theorem we introduce the relationship between

Hausdorffness and o- Hausdorffness.
Theorem 3.1.6:[31]

A fuzzy topological space (X,7) is Hausdorff if and only if it is

a-hausdorff for every a€[0,1)
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proof:
case(1): a€(0,1)

take x#y, SO X, and y, are distinct fuzzy points then there exist U,V
€t,such that x, €U and y, eV,with UaV= @, which means there exist U,V

€ 1, such that U(x)>a, V(y)>a. Hence, X is a-Hausdorff.
case(2): 0=0
Take x#y.

Fix r,s € (0,1) and consider the fuzzy points x; and ys, there exist U,V
€ 7 such that x,eU and y;eV,with UaV= ®. That is, 0<r<U(x), 0<s<V/(y),
and so U(x)>a, V(y)>a and UAV= O.

conversely,

Assume that (X,7) is a-Hausdorff for every a€[0,1). Let x, and y; be

fuzzy points with x#£y. If r <s then since X is s-Hausdorff,
there exist U,V € 1 such that U(x)>s, V(y)>s and UrV= ®.

So Ux)>s >r, V(y) > s, and UaV= ®. Hence, x,€U and y,eV,and UaV=
D.

A similar argument can be used if r>s.
Thus(X, 7)is Hausdorff.

Now,we summarize the different definitions involving Hausdorffness in the

following main theorem:
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Theorem 3.1.7:

Let (X,7) be a fuzzy topological space then the following definitions

of Hausdorffness are equivalent:

(i) For every distinct fuzzy points x; and y,there exist UV €1

such that x; €U,y, €V and UAV =0.

(i1) For every distinct fuzzy singletons x, and y,,there exist U,V € t such

that x, Q U and y, Q V and UaV =®.

(iii) For every x,y € X, with x #y and for every a€[0,1) there exist U,V €
such that U(x) >a and V(y) >a and UaV =0 .

3.2 Other Fuzzy Separation Axioms
Definition 3.2.1[13]:

A fuzzy topological space is said to be fuzzy-T, if and only if for any
X, Vs two fuzzy singletons with x#£y, there exists a fuzzy open set U, such

that X, <U <y or y,<U<x,".
Definition 3.2.2[13]:

A fuzzy topological space is said to be fuzzy-T, if and only if for x,,
Vs, two fuzzy singletons with x#y, there exist two fuzzy open sets U, V

such that x, < U <y and y,<V <x,".

It is obvious that (X,7) is fuzzy T, = (X, 1) is fuzzy T,.
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The following example shows a T, space may not be Tj.

Let X ={ab}, 7={0, 1, {a0e.bo2 }, {200,002 }{a0900,002 }.... }.
For any a,, by, there exist U: neighborhood of a, such that

a, € U< bt ={ay, bog }. Therefore, T is Ty.

But it is not T, by taking a;, bos. There is no Vet such that

bose V<aj={ay, b}

In standard topological spaces the T, space was identified by the
property that every singleton is closed. In fuzzy setting this property is not
extended but a weaker condition could be used as the following theorem

states.
Theorem 3.2.3 [13]:

A fuzzy topological space (X, t) is Ty if and only if every crisp

singleton is closed (i.e. X, is closed for every x €X)
proof:

For the first direction let X be a non empty set and a €X,take a; to be
any crisp singleton, now for any y,:where y eX,y #a, re(0,1],consider the

fuzzy singletons a; and y;, since X is T,

There exist two fuzzy open sets U,V in T such that.a,e U<yf and vy, e

c
V<a;g.
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And since it is true for any r € (0,1],then V(y) =sup {r: re(0,1] } =1
for y #a.
Also since V < af then V(a) =a{(a) =1-1=0

0 ifx=a

that is V(x) = { 1 ifx+a which means V=a§

but V is open, hence a, is closed.

For the other direction let x,, y, with x #y be two distinct singletons,

since every crisp singleton is closed then x,, y; are closed sets.

Let U= y; and V=x5, then U and V are open, x, e U<y;f and  y, eV <

xy.Hence Xis T;.

We will modify the definition of T, space (namely strong T, space)
to insure the validity of the property that every fuzzy singleton is closed as

an extension of standard topological spaces.
Definition 3.2.4 [13]:

A fuzzy topological space is said to be fuzzy strong-T; (in short T) if and

only if every fuzzy singleton is a closed fuzzy set.

An example of a T, space:

Let X ={a, b}

andt={0,1,{a, b} {an, b} {a b}: foreveryrre(0,1)}

then every fuzzy singleton is closed.
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It is clear that if (X, 7) is fuzzy T, then (X, ) is fuzzy T,

Following the previous definitions of T, and T, spaces, a fuzzy T,

space is defined as follows:
Definition 3.2.5 [13]:

A fuzzy topological space is said to be fuzzy-T, if and only if for any
two fuzzy singletons Xx;, ys with x#y, there exist two fuzzy open sets U, V

such that x, < U <y and ys< V <x,°and U < V°,
An example of a T, space is the following:
Example 3.2.6:

let X={x,y }

N |-
-

and 7= {0, T, { %5, Yo}, { Xo, Ysh, { X0, yo}: A 25, 5=

for any two distinct singletons x; and y,

case (1):t< 1, r<=
2 2

Take U = { X1, Yo} and V= { Xo, Y1}

Now, t < % — 1-t >§ so t < 1-t which implies that t < U(x)

hence x; € U,and, y£= {X3,y1.r },s0 U<yf.

Similarly, r < % — 1-r> % which means r<1-r thatis y, € V,

since xf = {X1.,y1 } so V<xf and U= { X1.,Yo } < { xp,y1.} = V©.
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1 1
case(2): X and y, where t > ST 25

Take U={ X, Yo} and V={ X, Y;}, then x; € U and U<{ x4, Y1+ } = y¥
also, y, €V and V< { xy4, Y1 } =xf and U={ X, Yo} <{ Xy, Y1r } = V*
case(3): x;and y, where t < % r 2%

Take U = { X1, Yo} and V={ Xq, V+}.

Since t<1-t, then x; €U and U < y¢ = { X4, Y11}

alsoy,e Vand V <{ xyq, Yi} =xf and U = { Xy, Yo} < { x1 ¥, } = V°
and therefore, this topological space is fuzzy T,

Definition 3.2.7 [13]:

A fuzzy topological space (X, 1) is said to be fuzzy Urysohn (fuzzy -
T,1) if and only if for every, two fuzzy singletons x;, ys with x# y,there

exist two fuzzy open sets U,V such that: x, < U <y, ys< V <x,° and
cl(U)< (cl(V))".

It is easy to show that if (X, 7) is fuzzy T, topological space then
2

(X, 7) is fuzzy T, [13].
Definition 3.2.8 [13]:

A fuzzy topological space (X, ) is called fuzzy regular space if and
only if for every fuzzy singleton p=x, and fuzzy closed subset F of X

such that p eF°, there exist U,V € 7 such that p eU, F<V and U < V°
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There is also an other equivalent definition for (X, t) to be a regular
space if and only if for every fuzzy singleton p=x, and fuzzy open subset U

of X with x, €U, there exist VV € 7 such that:;p e V<V <U.
Theorem 3.2.9 [13]:

Let (X, 1) be a fuzzy regular topological space, then for a fuzzy
closed subset F of X and a fuzzy singleton p= x, where x; € F° there exist

U, V € 7 such that x, €U, F< V and U< (V)"
proof:

F is a fuzzy closed subset of X so F° is open where p= x,e F°. Then
by the definition of the fuzzy regular space, there exist Ve t such that

PEVSV<U=F

Take V = (F°)° then V < (U)° where U= F°.

Now, we define a T space.

Definition 3.2.10:

A fuzzy regular T, topological space is called T; space.

Back to the classical topological spaces, if we have a T, space (X, t)
which is also regular, then (X, 7) is a T3 space, but it is not the case of the

fuzzy topological spaces, as shown in the next theorem:
Theorem 3.2.11[13]:

If (X, 7) Is a Ty and a regular space then it is a fuzzy Urysohn’s space
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Proof:

Let (X,7) be a regular T, space and let p=x, and g=y, be two fuzzy
singletons with x #y, since (X, t) is To then thereexistUV etst x,e U

<y<. Take F =U°, that is U =F° is open and x, € F".

But by theorem [3.2.9] since F is closed subset of a regular space,

there exist V,We 7 such that x, € V, F< Wand V < (W) buty, e U°=F <
W. Hence x, € V,y, eW and V < (W)%,s0 (X, 1) is T 1 space (Urysohn).
2

Definition 3.2.12:

A fuzzy topological space (X, 7) is called normal space, if and only
if for every fuzzy closed subsets Fy,F, of X such that F;, < (F,)° there exist

U,V € 7 such that F,<U, F,<V and U < V°.
Definition 3.2.13:

A fuzzy normal T space (X, 1) is called T, space.
Theorem 3.2.14 [13]:

A closed subset of a normal space is normal.
Proof:

Let (X, ) be a fuzzy normal topological space and let A be a closed

subset of X,then (A, 7 ») is a subspace.
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Take Fy, F, any two fuzzy closed subsets of A with F; < A-F,, since
A is fuzzy closed subset of X = F; < X — F,, and since (X, t) is normal

then there exist U, V € 7, such that F;< U, F, <V and U< V.

Now, A A U and A A V are two fuzzy open subsets of T 5 such that

FISAAU F,<AaVand AaU<A AV =(AA V).
3.3 Intuitionistic Fuzzy Separation Axioms

Recall that, if o € (0,1] and B € [0,1) such that a +f < 1 then for any

ain X, ap is an intuitionistic fuzzy point defined by:
a(a‘B) =< aa,af_ﬁ >,
This means that a, takes a to o and all other elements of X to 0 and

a;_p takes a to B and all other elements of X to 1.
Also, recall the intuitionistic vanishing fuzzy point a, where
ap =<0, aj_g>.

we will now define the intuitionistic fuzzy T, space (IF T, space in short)

as follows:
Definition 3.3.1 [27]:

Let (X, T) be an intuitionistic fuzzy topological space, then we say ©
is IF T, space if and only if for any X, y two distinct elements in X, there

exists U,V € 7 such that U(x) =V(y) = 1 = <1,0>, and
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U(y) =V(x) =0 =<0,1>.

Another form of the IF T, space using intuitionistic fuzzy points and

vanishing intuitionistic fuzzy points comes in the following theorem:
Theorem 3.3.2 [27]:
For an intuitionistic fuzzy topological space (X, t), the following
are equivalent:
(1) (X, 7)isIF T,

(2) (i) for any two distinct intuitionistic fuzzy points a g, by in X

there exists U,V e 7 such that a5 €U < b, and bonE V E
c
A(ap)

(i) for any two distinct vanishing intuitionistic fuzzy points

a @, by in X there exists U,V et such that a 3 SU S bg,

and bp< V < agg.
proof:
(1) = (2) suppose that (X,7) is a IF T, space,
For (i): let a ), b be two distinct intuitionistic fuzzy points
Since a #b, then by (1) there exists U,V € t such that
U(a) =V(b) =1 =<1,0>, and U(b) =V(a) = 0 = <0,1>.

That is, Us(a) = Uy(b) = Vy(b) = V(a) = 1 and U,(a) = Uy(b) = V,(b) =
Vl(a) =0
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Since Uj(a)=1 then o < Uj(a) and since U,(a)=0 then p > U,(a)
Therefore a . € U.

Also since U,(b)=1 then a < U,(b) and since U;(b)=0 then r > Uy(b)
Therefore, by, € < Uy Uy >= US, that is to say U gb(cM), therefore
ap EU S b&,,‘).

Similarly, we prove b, ,S V © afa,B)'

For (ii), let let a g, by be two distinct vanishing intuitionistic fuzzy
points,since a #b, then by (1) there exists U,V € t such that

U(@) =V(b) = 1 = <1,0>, and U(b) =V(a) = 0 = <0,1>.

That is, Uy(a) = U,(b) = Vi(b) = V(@) = 1 and Uy(a) = Uy(b) = V,(b) =
Vi(a)=0

Since for t=a; (a7_g)(t) = B = Uz(a) = 0, and for t* &;

(ai_p)(®) =B =Us(a) = 1= Us().

Hence,for all tin X, (aj_g)(t) = Uy(t).But also, 0<U,(t) for all t in X
Therefore, a3 S U.

Now, since for t=b; (b{_,)(t) =r>U(b) =0, and

for t £b; (by_,)(t) = 1 > Uy(t), so for all t in X, (bg)(t) > Uy(t).
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But also, 0 < U,(t) for all t in X therefore U < by hence,

ap< U < by, similarly by € V € ag,

(2)= (1) Suppose (i) and (ii) hold,

Let x and y be any two distinct elements in X,consider a1 0),0(1,0).
By(2) there exist U,V € T such that a o< U € b(; oy and

baoS V < afy .

Now, a1 € U = <U,,U; > implies that U;(a) > 1 i.e. Uy(a) = 1
also, 0 > U,(a) which means U,(a) = 0, therefore U(a)= 1.
Similarly b 1,0 € V implies that V(b) = 1.

Now, U € b(; gy = b1y € U=<U,U; >.

1 <Ujy(b) = U,y(b)=1 and 0 > U;(b) = U;(b)=0 and hence, U(b) = 0.

Similarly V € afl,O) = V(a) = 0, this completes the proof of the theorem.

The definition of intuitionistic fuzzy T, space (IF T, in short) is by
adding a new condition to the IF T; definition, namely U € V° as in the

following definition:
Definition 3.3.3 [27]:

Let (X,7) be an intuitionistic fuzzy topological space, we say the
topology t is IF T, space if and only if for any two distinct elements X,y in

X there exists U,V € t such that U(x) =V(y) = 1 = <1,0>,
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U(y) =V(x) =0 =<0,1>and U c V-,
Theorem 3.3.4[27]:

Let (X, 7) be an intuitionistic fuzzy topological space. If the topology

is IF T, then the topology is IF T,

Proof: obvious.

The following theorem is parallel to theorem [3.3.2]
Theorem 3.3.5[27]:

For an intuitionistic fuzzy topological space (X, 1), the following are

equivalent:
(1) (X,7)isIF T,

(2) (i) for any two distinct intuitionistic fuzzy points aggp, Do

in X there exists UV et such that a 5 SU S bgy,

b()\,r)g VC a((:als) and U € VC.

(i) for any two distinct vanishing intuitionistic fuzzy points

a (), b in X there exists U,V € 7 such that a g CU < b,

proof: similar to the proof of theorem 3.3.2
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Chapter Four

Fuzzy Connectedness and Fuzzy
Compactness
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Chapter Four

Fuzzy Connectedness and Fuzzy Compactness

4.1 Fuzzy Connected Spaces

Looking back to different equivalent definitions of connectedness in
classical topological spaces, one of them was chosen by most of researches

to be the extended definition of connectedness in the fuzzy setting.
Definition 4.1.1:

(X, 1) is fuzzy connected if it has no proper fuzzy clopen subset, that
is there exist no A fuzzy subset of X such that A # X, A # @, and A is both

open and closed

The following are two examples of two fuzzy topological spaces on

a set X where one of them is connected, while the other one is not.
Example 4.1.2:

consider X= {a, b, c},

let 7, ={ 0,1, {ao3,b08, Co1}}-

and let 7, ={ 0,1, {804,003, Co6}: {80.6:00.7, Co.a}, {@0.6:00.7, Coss},
{204, bo3, Cos} }-

Then it is clear that 7, is connected, but 7, is not connected.

Concerning the other definition of connectedness in regular

topological spaces which defines a space X to be connected if it can not be
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written as a union of two non-empty disjoint open sets, the extended
definition in fuzzy setting will not be equivalent to the one we adopted,this

Is explained in the following:
Lemma 4.1.3[11]:

Let A, B be two proper fuzzy subsets of X such that AV B = 1 and
A A B =0, then A and B are crisp subsets of X, A=B® and B=A".

Proof:

For every x € X, Since AV B = 1 then max { A(x), B(x) } = 1 also,
since A o B =0 then min { A(x), B(x) } = 0. Therefore, either A(xX) =0 or 1
, and B(x) = 0 or 1 which means A and B are crisp subsets of X, Moreover,
iIf A(x)=1 then B(x) must be 0 and if A(x)=0 then B(x) must be 1,therefore
A=B°and B=A".

Theorem 4.1.4[11]:

Let (X,7) be a fuzzy topological space, if X is connected then X can
not be written as a union of two non-empty disjoint fuzzy open subsets of

X.
proof:

Assume X is connected. By a contradiction; assume X can be written
as a 1 =AVB where A and B are non-empty disjoint fuzzy open subsets of
X. Since A VB =1 and A A B = 0 then (by lemma 4.1.3) A= B°. Now, since

B is open, A is closed. But A is fuzzy open,therefore, A is a non-empty
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fuzzy clopen proper subset of X which means X is not connected (a

contradiction), this completes the proof.
For the other way around, the last theorem is not true.

That is, if X cannot be written as a union of two non-empty disjoint
fuzzy open subsets of X with union equal to 1,doesn’t imply that X is

connected, as the following example shows:
Example 4.1.5:
let X={a, b} and 7 ={0, 1, { ap2,003 }, {208,007 } }.

Here, X could not be written as AVB, where A and B are non-empty

disjoint fuzzy open subsets of X,but,still X is disconnected since
A ={ a9,,by3 } is both open and closed in .

In [11] Fatteh and Bassan, modified the condition of connectedness

as in the following theorem:
Theorem 4.1.6 [11]:

X is fuzzy connected if and only if there doesn’t exist non-empty fuzzy

open subsets A and B of X such that: A(x) + B(x) = 1 for every x in X,
proof:

Assume X is fuzzy connected. By contradiction, let A, B be two non-

empty fuzzy open subsets of X such that: A(x) + B(x) =1 for every x in X,
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then A(x) = 1 — B(x) = B°(x) therefore, A = B, but B is fuzzy open then A
is fuzzy closed, but A is also fuzzy open which means A is fuzzy clopen
non-empty subset of X.Hence, X in disconnected (which is a

contradiction).

Conversely, by contradiction, assume X is not fuzzy connected then
there exist A non empty fuzzy subset of X which is both fuzzy open and
fuzzy closed. Take B = A° then B is fuzzy open and A(x) + B(x) = A(X)+
A° (xX) = AX) + (1 — A(X)) = 1 (which contradicts the assumption).

One of the important differences between connectedness in the
regular and fuzzy topological spaces is the property involving product
spaces. In the regular topological space, the product of connected spaces is
connected,but it is not the case in the fuzzy topological spaces. The

following example explains that:
Example 4.1.7:

Let X,Y be connected fuzzy topological spaces,then their product

may not be fuzzy connected.

LetX=Y={ab,c},

A={a3,b0.9, Cos}, B={a0.7,b0.1, Co2}-

Letz,={0,1A} 7,={0,1,B}, then t =7, X 7 is not connected

Since (Ax1)°=1 x A°, and Ax1 is a proper clopen subset of 7.
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Remark:
Let X be a fuzzy topological space, a subset A of X is a fuzzy

connected subset if it is fuzzy connected as a fuzzy subspace of X. The

same for
A<Y<X, that is, A is a subset of a subspace Y of X,

A is a fuzzy connected subset of X if it is fuzzy connected subset of the

fuzzy subspace Y.
Definition 4.1.8 [11]:

Let (X,7) be a fuzzy topological space,and let A,B be two fuzzy sets, then
A,B are said to be separated if and only if CI(A) VB <l and AV CI(B)

<l

The following theorem characterizes connectedness using a

condition that is not an extension to any condition in non fuzzy settings:
Theorem 4.1.9 [11]:

Let (X,7) be a fuzzy topological space. X is connected if and only if
there are no non-empty fuzzy subsets A, B of X such that for every x in X:

A(x)+ B(x) =1
A(x)+ B(x) =1} (1)
A(x)+ B(x) =1

Proof:

Assume X is connected. By contradiction, let A and B be non-empty

fuzzy subsets of X satisfying (1) then:
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B(x)=1-A(X)=A(X)>B=A°

B(X)=1-AX)=A‘X)=>B=4°
B(X)=1-A(X)=>B=A°

Since B = A “ then B is open, and since A° = B then A° is closed, but
B = AStherefore B is closed. Hence B is clopen in X (which is a

contradiction).

Conversely, by contradiction; assume X is not connected so there

exist a non-empty fuzzy clopen proper subset of X, call it D.
Let C = D°, and hence C is clopen.

Now, D(x) + C(x) =D(x) + (1 -D(x)) =1

D(x) + C(x) = D(x) + C(x) =1 and D(x) + C(x) = D(x) + C(x) =1
Which is a contradiction.

4.2 Fuzzy Compact Spaces

The concept of compactness is one of the most important concepts in
general topology, the notion of fuzzy compactness was first introduced by
Chang in terms of open cover.But unfortunately this definition failed to
conclude that the product of fuzzy compact sets is fuzzy compact. Many
authors were motivated to define new forms of compactness. [see 12, 16,

18].
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Definition 4.2.1:

A cover for a fuzzy topological space (X, ) is a family of members
{B,.:a €A} such that: VB, = 1,,that is, Sup { B, (x):x €X } = 1, and for any

fuzzy subset A of X, {B,:a €a} is a cover means: VB,> A.

A cover is called a fuzzy open cover if each member is a fuzzy open
set. A is a subcover of {B,: aea} is a subfamily of {B,:a €a} which is also

a cover of A.

Now, we define fuzzy compactness parallel to the definition we use

in non-fuzzy topological spaces.
Definition 4.2.2:[6]

Let (X,7) be a fuzzy topological space and let A be a fuzzy subset of
X, we say A is a fuzzy compact set if every fuzzy open cover of A has a

finite subcover.
Under this definition:

The indiscrete fuzzy topological space is fuzzy compact. Because the

only cover for X is { 1, 0} which is itself a finite subcover.

Also, in the case of the fuzzy topology 7, where 7 is finite, the

topological space (X, ) is compact.

Compactness can be identified using the finite intersection property

of fuzzy closed sets as follows:
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A family of fuzzy subsets of X { Fa:aea } has the finite intersection
property; as Chang defined,if the intersection of any finite subfamily is not

empty.
Theorem 4.2.3 [6]:

A fuzzy topological space (X, 7) is a fuzzy compact if and only if for
every collection {A;: ie | } of fuzzy closed sets of X having the finite

intersection property, A A; #0.
Proof:

Let { Ai: i€l } be a collection of fuzzy closed sets of X with the finite

intersection property,suppose that A A;=0then V A;“ = 1.

Since X is fuzzy compact, then there exists iy, Iy, ..., i, such that  V

A" =1, then A A;; = 0,which gives a contradiction, therefore A A;; # 0
Conversely;

Let {A;i: i €l } be a fuzzy open cover of X. Suppose that for every
finite iy, iz, ..., 1n, we have V 4; # 1 then A 4;, °£0.

Hence { A; “ # 0 } satisfies the finite intersection property then from
the hypothesis we have A A; © # 0.which implies NA;; C£1.

But this contradicts that { A;: i € I} is a fuzzy open cover of X. Thus

X is a fuzzy compact.
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We know in non-fuzzy topological spaces that any closed subset of
compact space is compact. This property is also valid throughout the fuzzy

topological spaces. The following theorem shows that:
Theorem 4.2.4 [6]:

A fuzzy closed subset of a fuzzy compact space is fuzzy compact.
Proof:

Let A be a fuzzy closed subset of a fuzzy compact space X, and let
{ B, i € I} be any family of fuzzy closed in A with finite intersection
property, since A is fuzzy closed in X, then B; are also fuzzy closed in X,

Since X is fuzzy compact, then by previous theorem AB; #0.
Therefore, A is fuzzy compact.

The fuzzy continuous image of a fuzzy compact set is fuzzy

compact, as the following theorem shows:

Theorem 4.2.5[6]:

Let (X,t,) and (,t,) be two fuzzy topological spaces, and let
f:X—Y be an onto fuzzy continuous function. Then

X is fuzzy compact = Y is fuzzy compact.

Proof:

Let { B, } be a family of open sets in Y that covers Y, i.e. V,B,=1.



86

For each x € X, V, f1(B,)(X) = V, B, (f(x))= 1,therefore { f*(B,) } forms an

open cover for X,
But, since X is fuzzy compact, X has a finite sub-cover
f'l(Bal),f '1(Ba1),..., f‘l(Ban) for Xie. V2, (f '1(Bal.)(x)) =1.

Now, since f is onto, f (f '1(Bal.)) = B,and foreveryy e, (V{21 B )(Y)
= Vi, f(F(Ba,)) (y) s0

(V41 Ba)(y) = f (V2 (F(Ba)) (V) =F (1) = 1.
Therefore, Y is fuzzy compact.

Alexander subbase theorem characterized fuzzy compactness using

subbases as in the following:

For any fuzzy topological space (X, ) and for any subbase S of t,
X is fuzzy compact if and only if every cover of X by members of S has a

finite subcover.

We will now prove the Tychonoff property, called Goguen theorem
which states that the product of a finite number of fuzzy compact

topological spaces is fuzzy compact.
Goguen theorem 4.2.6 [14]:
Let (X;,7;) be a family of fuzzy compact topological spaces

wherei=1,2, ..., n, then ([T, X;, [1}- 7;) is fuzzy compact,
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where []iL, 7; is the topology generated by the subbase S, where
S={P '(B):Biet;,i=1,2,...,n}and P;is the projection

from []X, X; to X,

proof:

let X =[[iL; X;and 7 =[]}, 7;

LetS={P ' (B):Biet;i=12,...,n}be asubbase for r and

let C be a family of members of S,

Let C; = {B; € 7;: such that P! (B;)e C }. Then C; is a family of open

fuzzy sets in t; that is a cover. But, 7; is compact, then there exists a finite

subcover B4, Biy, ..., Bix such that: szlBij = 1y, and therefore;
Vs (VL P (Bip) = ViR, (P (VS (Bij))) = Vit (P (1x)
Hence V?:1(V5'c:1 P (Bip) = Vi, (1x) = 1.

In the following example, we will show that the infinite product of

fuzzy compact topological spaces may not be compact.
Example 4.2.7:
let X;i=N=1{1,2,3,... },foreachi=1, 2, 3, ... we define the

fuzzy topological space as follows:

T1:{67T}
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5={0,1,5 {123, {12, 2: 1. {11,21,3: }, ... }
2 2 2 2 2

2 2

70={0, 1,5 {1} { 1n2, 202 1, { 1wt 202, B ), . )

Then each t,, n =1, 2, 3,... is compact, because for any open cover

for T, should contain 1 and therefore has a finite subcover; 1 itself.

To show: ([T X;, [] t;) is not compact,

call Bin =P ({1 n-1, 2n-1,...,nn=1 }), { Bin }is openin [] X;

n

we show V B;, (x) = 1.

i-1

Bin(X) = {T frisn

0 ifx;>n

therefore, for any € > 0, there exists m €N such that 1- € < mT_l

If n > x,,, then Bj,(Xj)) > 1- € which means Sup { Bij,(Xj) } = 1, that is
Vinen Bin(X) = L,hence { Bi, }:’:1 Is an open cover for X.
i=1

For any finite subfamily B; .., Bi, n,, ..., Bi,n,; We can find k such

that: for n; > k, B; (x) = 0 where x= (k, k, ..., k) and therefore VBin0< 1,

hence, any finite subfamily is not a cover, and X is not compact
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Chapter Five
Fuzzy Continuous Functions
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Chapter Five

Fuzzy Continuous Functions

5.1 Fuzzy Functions

In chapter one we have defined a fuzzy function f from F(X) to
F(Y) as an extension to a function f from a set X to a set Y. The following
theorem explores the properties of the fuzzy functions over fuzzy subsets of

XandY
Theorem 5.1.1 [35]:

let f:X — Y be a function and f :F(X) — F(Y) be the corresponding
fuzzy function, then for any fuzzy subsets A and B of X and any fuzzy

subsets L and M of Y, we have the following:
1) f(AVB)=f(A)Vf (B)
2) f (AAB)<f (A)Af (B)
3) (A" (LVM)=(F)' L) VE) M)
4) (FYLAM) = () (L) AF) (M)
proof:

1) Let K=AV B then

sup{ (K)(x):xef~1(y)} if f"1(y) # &

foo o)=Y 10y = g

now,
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if f'(y) = o then f (A)(y) =0and f (B)(y) = 0 and therefore,
(F(AVF(B))(y) =0, also f (K)(y) = 0 hence (F(A)VF(B))(Y)=f (K)(Y)
and, if f(y) # o
f (K)(y) = sup { (K)(X): xe F(y) }

= sup { max { A(x),B(x): xe f(y) }

= max{ sup { A(X) }, sup { B(x)}: xe f*(y) }

= max { fAY, fFB } = FA V FE)Y
hence f (A V B) = (F(A)VF(B))

2) if f(y)= o (easy)

if f'(y) # o then:

f (A AB)(y) =sup { (A A B)(x): xe F(y) }
= sup { min { A(x), B(x) }: xe f'(y) }
<min { sup { A(x) },sup {B(x) } }
=(f (A A f(B)Y)

hence f (A 4 B) < (f(A) 2 f(B))
3) (FY(LVM)(X)=LV M (f(x)
= max { L(f(x)), M(f(x)) }
=max { (f ) (L)), (F) " (M)(x) }
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=((F)"L) V (F) (M)
Hence, (f)™(L V M) = ((F)"(L) V (f ) (M)
4) (F ) (LAM)(X) =L AM (f(x))
= min { L(f(x)), M(f(x)) }
=min { (f ) (LX), (F ) (M)(X) }
= ((F)" (L) A (F ) (M)X).
Therefore, (f)*(L a M) = ((F ) (L) 2 (f) (M)
And in general let {B,} be a family of fuzzy subsets of Y, then:
(i)  (F)VBy=V(f)'(Bd), and
(i)  (F)'(aBy)=a(f)"(By)
5.2 Fuzzy Continuity

In the following, we will define the continuous fuzzy functions
between two fuzzy topological spaces. Also, we will study their properties

in both weaker and stronger forms of fuzzy continuity.
Definition 5.2.1:[6]

f: (X, %) = (Y, tv) is said to be fuzzy continuous if and only if the inverse
image of any fuzzy open set in Y is a fuzzy open set in X, where 7y IS a

fuzzy topology on X and v is a fuzzy topology on Y.
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Considering a fuzzy continuity as a local property, we have the

following definition:
Definition 5.2.2:

f: (X, y) = (Y, Tvy) is fuzzy continuous at any fuzzy point p =x, if and only
if for every nbd V of f(p)=f(x),, there exist U € tx such that p e U and
f(U)<V.

The above two definitions are related as the following theorem

states.
Theorem 5.2.3 [37]:

f: (X 1) = (Y, 1y) is fuzzy continuous if and only if fis fuzzy

continuous at each fuzzy point p in X.

proof:

let f: (X, 7x) = (Y, 7,) be fuzzy continuous, p= X, a fuzzy point

in X,V be a fuzzy nbd of f(p)=Ff(x), in Y.

There exist V; in 7, such that: f(p) € V, < V.

Since f is fuzzy continuous, U = (f) *(V,) is fuzzy open and contains x;
Sof(U)=f (f (V)< Vi<V,

Conversely,

let BE 7y, p= X, a fuzzy point in £1(B), f(p)=f(x),=y;
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Then f(p) € f (f ~1(B)) <B.

Now, f(p)(y) = sup B(a): a€ f ~*(v:) = f(B)(y.).

So there exist a fuzzy nbd U of p such that f(U) < B.

So pe U < f ~1(B), and there exist U, in 7, such that pe U, <U
i.e.pe U; < f ~1(B)

taking the union of all p implies that

f~1(B) = V{p: pis a fuzzy pointin f "1(B) } < V{U,} < f “1(B)
so f “1(B) =V { U} e 1. Thatis, f ~(B) is a fuzzy open set in X.
Hence, f is fuzzy continuous.

Remark 5.2.4:

We know that in regular topological spaces, any constant function is
a continuous function, whatever the topologies defined on X and Y. But,
this is not the case in fuzzy functions on fuzzy topological spaces as shown

in the following example.

Example:

Let X={ a, b} with 7,={0, 1,, { a0, bos} }
And let Y= { c, d} with 7,={0, 1,, { o4, dos} }

Let f: X— Y be the constant fuzzy function f(X)={ ¢ }.
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Looking at f :F(X) — F(Y), take V = { Co4, dos} then:
(F)HV) = (F ) { Coa, dos} ={ @04, bo.4} which is not open in X.

Therefore, this constant function is not continuous. Probably, that
was the reason Lowen has suggested another definition for fuzzy
topological spaces where he replaced the first condition of Chang’s
definition (namely 0, 1 € 1) by 7 € 7 for r €[0,1] where 7 ={ x,: for every X
in X } and named this fuzzy topology by L-fuzzy topology corresponding
to C-fuzzy topology of Chang. And therefore, in L-fuzzy topology, any

constant function is continuous.
Theorem 5.2.5:

In L-fuzzy topology, every constant function is a fuzzy continuous

function

proof:

Let f: X— Y be a constant function (i.e. f(x)=c for all x in X),

and let V be any fuzzy open setin Y.

if V(c) = 0 then (f )™ = 0 which is a fuzzy open in X,

and if V(c) =r # 0 then (f )*(V) = 7 which is again a fuzzy open in X.
Therefore, f is fuzzy continuous.

Theorem 5.2.6 [37]:

f is afuzzy continuous function if and only if the inverse image of
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any fuzzy closed set in Y is a fuzzy closed in X.

proof:

let F be any fuzzy closed set in Y then F® is fuzzy open set in X
but £ is fuzzy continuous so (f ) ™(F°) = ((f )™ (F))° is fuzzy open
setin Xi.e. (f)* (F) is fuzzy closed in X.

conversely, let V be fuzzy open in X then V¢ is fuzzy closed in Y
s0 (F)MVO) = ((F)™ (V) is fuzzy closed in X, (i.e. ()" (V) is
fuzzy open in X.

Therefore, f is fuzzy continuous function.

5.3 Other Types of Fuzzy Continuity

In standard topological spaces, the concepts of regular open sets,
regular closed sets and almost continuous functions were defined and

studied. In fuzzy setting, parallel definitions are presented as follows:
Fuzzy almost continuity
Definition 5.3.1 [cf 26]:

Let A be a fuzzy subset of X, we say A is fuzzy regular open set if int(Cl

(A)) = A,

and A is fuzzy regular closed set if cl(int (A)) = A.
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Definition 5.3.2:

Let f:X — Y be a function, we say f :F(X) — F(Y) is fuzzy almost
continuous if for every V is fuzzy regular open in Y; f (V) is fuzzy open

in X.

Concerning the above definition, we have some properties presented

in the following remark:
remark 5.3.3:

(1) if A is fuzzy regular open then A is fuzzy open in X. Because A is
fuzzy regular open, so A = int (cl (A)) which is the interior of some

fuzzy set, hence it is open.

(2) Similarly, if A is a fuzzy regular closed in X then A is fuzzy Closed

set in X.
(3) Ais regular fuzzy open if and only if A is regular fuzzy closed
Proof:
A is regular fuzzy open means A = int (CI(A)).
So, A° = (int (CI(A)))* =1 —int (CI(A)) = CI (1 - CI(A)),
hence, A° = Cl(int (1- A) = Cl(int (A°))

Therefore, A is a regular fuzzy closed.
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(4) Every fuzzy continuous is almost fuzzy continuous. Because for any
V fuzzy regular open in Y, V is fuzzy open in Y. But f is fuzzy
continuous then (f)*(V) is fuzzy open in X which concludes that f is

almost fuzzy continuous.
Theorem 5.3.4 [26]:

Let f:(X,7,) — (Y, 1) be a fuzzy function then the following are

equivalent:

1) f is a fuzzy almost continuous function

2) for every B regular fuzzy closed in Y; f*(V) is fuzzy closed in X.
proof:

using the facts: (£ 1)(B%) = ((f 1)(B))° for any B:fuzzy subset of X,
and that the complement of a regular fuzzy open is fuzzy regular closed,

the two statements are equivalent.

Example 5.3.5:(fuzzy almost continuity doesn’t imply fuzzy continuity)
Consider X =Y =[0,1],

let7,={0, 1,A A AVAS ArA°}

andzy ={0, 1, A, A, AV A°, Ar A°, B} where
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We have, A,, A5, AV A°, A A A° are both fuzzy open and fuzzy
closed in both 7, and 7y _and therefore, they are both regular fuzzy open
and regular fuzzy closed in both 7, and . But, B is fuzzy open in Y but it

IS not regular fuzzy open.

Let f: X— Y, be the identity function f(x) = x for all x € X It is clear
that £ is a fuzzy almost continuous function but it is not fuzzy continuous

function because (f *)(B)=B which is not fuzzy open in X.

Many authors defined different types of fuzzy open and fuzzy closed
sets and used them to define and study new types of fuzzy continuous

functions. Let us look at some of those types.

Fuzzy &§-continuous

Another type of continuity is called a fuzzy &§-continuity defined as

follows:
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Definition 5.3.6:

Let £ :be a fuzzy function between the topological spaces (X,t,) and
(Y,ty) then we say f is fuzzy &-continuous if and only if for each fuzzy
point p in X, and each fuzzy regular open set B containing f(p), there exist

a fuzzy regular open set A containing p such that: f(A) <B.

The following is an example of a fuzzy function that is fuzzy

continuous but not fuzzy &-continuous:
Example 5.3.7:

Let X =Y =1[0,1] and let 7, and t, be two fuzzy topological spaces

on X and Y respectively where:

x = {0, 1, A} and 7,= {0, 1,A, B,AVB} where the members of these

topologies are shown in the following graphs:

1= 1=

B
1

1 o
AC _\/

AVEB

—
—
1

Now, define the function f:X—Y by: f(x) = g forall x in X
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We can see that (f)*(0v) = 0xand (f)™(1y) = 1x

()" (A) = 0x, (f)'(B) =A°and (f) (A V B) = A"
Therefore, f is fuzzy continuous.

Now, let p be a fuzzy point in X such that f(p)eA or f(p)eB.
There is no fuzzy regular open U in X containing p such that
f(U)<Aor f(U)<B.

Hence, f is not §-continuous

Fuzzy Precontinuous:

another type of continuity(fuzzy pre-continuous)

Definition 5.3.8:

Let (X,7) be a fuzzy topological space, we say a fuzzy subset A of X

is fuzzy preopen if A <int(cl (A))

We say a fuzzy set B is fuzzy preclosed if and only of Bis fuzzy preopen.
Using preopen fuzzy sets we define the following;

Definition 5.3.9 [33]:

A function f: (X,ty) — (X,ty) is called fuzzy precontinuous if and only if

for each B fuzzy open in Y, (f ) (B) is fuzzy preopen in X.
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Definition 5.3.10 [33]:

A function f: (X,1,) — (X,ry) is called a fuzzy slightly
precontinuous function if and only if for every B fuzzy clopen set in Y,

(f )X(B) is fuzzy preopen in X

Ekici in his paper [10] proved a relationship between fuzzy
slightly precontinuity and fuzzy precontinuous:

Theorem 5.3.11 [10]:

Let Y have a base consisting of fuzzy clopen sets. If f: F(X) —

F(Y) is fuzzy slightly precontinuous, then f is fuzzy precontinuous.
Generalized Fuzzy Continuity:
Definition 5.3.12:[25]

A fuzzy set A is a generalized fuzzy closed (GFC) if for A < U then
cl(A) < U for any U fuzzy open and we say a set B is a generalized fuzzy

open (GFO) if 1 — B is GFC.
Definition 5.3.13 [25]

Also, f is a generalized fuzzy continuous if the inverse image of a

fuzzy open setin Y is GFO in X.

Also Ramish [19] defined a new class of open and closed fuzzy sets

on intuitionistic fuzzy topological spaces as follows:



103

Definition 5.3.14 [19]:

An intuitionistic fuzzy set A is intuitionistic fuzzy regular weakly
generalized closed set (IFRWGCS): if A < U then CI (int (A)) < U for

every U an intuitionistic open fuzzy set.
Definition 5.3.15 [19]:

An intuitionistic fuzzy function f : IF(X) — IF(Y) is intuitionistic
almost fuzzy continuous if the inverse image of an intuitionistic open fuzzy

subset of Y is IFRWGCS in X.
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Discussion and conclusion

Through this study it was found that many properties of topological
spaces in non fuzzy setting were extended to topological spaces in fuzzy
settings. However, some other properties were not extended, which
motivated the researchers to put down new definitions to conclude parallel

theorems.

Since there have been different definitions for the same property, this
causes researches and studies to be scattered, there have to be a unification
of definitions of different properties that will orient the research by all
interested people to be in one direction, and all efforts would be

strengthened.
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