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Abstract 

Fuzzy Fredholm integral equations of the second kind have received 

considerable attention due to the importance of these types of equations in 

studies associated with applications in mathematical physics and fuzzy 

financial and economic systems. 

After addressing the basic concepts of fuzzy integral equations, we have 

investigated the analytical and the numerical aspects of the fuzzy Fredholm 

integral equation of the second kind. The analytical methods include: Fuzzy 

Laplace transform method, Homotopy analysis method (HAM), Adomain 

decomposition method (ADM) and Fuzzy differential transformation 

method (FDTM). 

For the numerical treatment of the fuzzy integral equation of the second 

kind, we have employed the Taylor expansion method and the trapezoidal 

method. Some numerical test cases are included. A comparison between 

the analytical and the numerical methods has been presented. Numerical 

results have shown to be in a closed agreement with the analytical ones. 
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Introduction 

Fuzzy integral equations have attracted the attention of many scientists 

and researchers in recent years, due to their importance in applications, such 

as Fuzzy control, Fuzzy financial, approximate reasoning and economic 

system, etc. 

The concept of integration of fuzzy functions was first introduced by 

Dubois and Prade [29]. Then alternative approaches were later suggested by 

Goetschel and Voxman [40], Kaleva [48], Matloka [55], Nanda [59], and 

others. While Goetschel and Voxman [40], and later Matloka [55], preferred 

a Riemann integral type approach, Kaleva [48], choose to define the integral 

of fuzzy function using the Lebesgue type concept for integration. Park et 

al. [46], have considered the existence of solution of fuzzy integral equation 

in Banach space. 

Fuzzy Fredholm integral equation of the second kind is one of the main 

fuzzy equations addressed by many researchers. Wu and Ma [28] 

investigated the Fuzzy Fredholm integral equation of the second kind, which 

is one of the first applications of fuzzy integration. 

Since it is difficult to solve Fuzzy Fredholm integral equations 

analyticaly, numerical methods have been proposed. For instance, 

Maleknejad solved the first kind Fredholm integral equation by using the 

sinc function [9]. Parandin and Araghi established a method to approximate 

the solution using finite and divided differences methods [18]. 
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Jafarzadeh solved linear fuzzy Fredholm integral equation with Upper –

bound on error by Splinder’s Interpolation [64]. Altaie used Bernstein 

piecewise polynomial [16]. Parandin and Araghi proposed the approximate 

solution by using an iterative interpolation [19]. Lotfi and Mahdiani used 

Fuzzy Galerkin method with error analysis [54]. Attari and Yazdani studied 

the application of Homotopy perturbation method [17]. Mirzaee, Paripour 

and Yari presented direct method using Triangular Functions [57]. Gohary 

and Gohary found an approximate solution for a system of linear fuzzy 

Fredholm integral equation of the second kind with two variables which 

exploit hybrid Legendre and block-pulse functions, and Legendre wavelets 

[39]. Ziari, Ezzati and Abbasbandy used Fuzzy Haar Wavelet [4].  

Ghanbari, Toushmalni and Kamrani Presented a numerical method based on 

block-pulse functions (BPFs) [37]. 

In this thesis, some analytical and numerical methods for solving fuzzy 

Fredholm integral equation of the second kind will be investigated. Using 

the parametric form of fuzzy numbers, the fuzzy linear Fredholm integral 

equation of the second kind can be converted to a linear system of Fredholm 

integral equations of the second kind in the crisp case. 

In chapter one of this thesis, we introduce some basic concepts in fuzzy 

mathematics such as crisp sets, fuzzy sets and fuzzy numbers. In chapter 

two, we study the existence and uniqueness of the solution of fuzzy 

Fredholm integral equation of the second kind. Chapter three includes an 

investigation of some analytical methods used to solve fuzzy Fredholm 
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integral equations of the second kind. These include: Fuzzy Laplace 

transform method, Homotopy analysis method (HAM), Adomain 

decomposition method (ADM) and Fuzzy differential transformation 

method (FDTM). In chapter four, we use two well-known numerical 

methods, namely: Taylor expansion method and Trapezoidal method to 

solve fuzzy integral equations. Numerical examples with algorithms are 

presented in chapter five. Finally, we will draw a comparison between the 

exact and numerical solutions for some cases. 
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Chapter One 

Mathematical Preliminaries 

1.1 Crisp sets 

The concept of a set is fundamental in mathematics and it can be 

described as a collection of objects possibly linked through some properties. 

Definition (1.1): Let   be a set and   be a subset of   (   ). Then a 

crisp set   is defined as a mapping from element of   to elements of the set 

     . 

Definition (1.2) [25]: Let   be a set and   be a subset of   (   ). Then 

the characteristic function of the set   in   is defined by: 

      {
          
          

 

We represent the crisp sets and their operations using the characteristic 

function. Let us consider the union         |           . Its 

characteristic function is  
      

    {           }. 

For the intersection         |             the characteristic 

function is  
      

    {           }. 

If we consider the complement of   in  ,        |     it has the 

characteristic function:               . 
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1.2 Fuzzy Sets 

Definition (1.3) [65]: A fuzzy set   in   is characterized by a membership 

(characteristic) function      which associates with each point     a real 

number           , with the value of      at   representing the “grade of 

membership” of    in the fuzzy set  . 

Definition (1.4) [25]: Let   be a set,   is a fuzzy subset of   defined as a 

mapping           , where   is called the membership function and the 

value      is called the membership degree of   to the fuzzy subset  . 

The crisp sets represented by their characteristic functions           . 

Let           if the membership degree of   in the set   is        

then it’s called full membership, and if        then it’s called non-

membership. So fuzzy sets are generalizations of crisp sets since other 

membership degree are allowed. 

Definition (1.5) [25]: Let           be a fuzzy set. The level sets of   

are defined as the crisp sets: 

1)        |        , where        

2)                                 

3) The strong  -level is         |       . 

4) The core of the fuzzy set   is        |       . 

5) The support of the fuzzy set             |         
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Definition (1.6) [33]: A fuzzy set is convex if each of its  -level are convex 

set,            |        are convex         . 

An alternative definition of convexity: we call   convex if and only if 

                                            . 

Definition (1.7): A fuzzy set is normal if at least one of its elements attains 

full membership,       is normal if       such that         

We have basic connectives in fuzzy set theory (inclusion, union, 

intersection and complement) which are performed on the membership 

functions since they represent the fuzzy sets. 

Definition (1.8) [25]: Let   and   be two fuzzy sets, then: 

1) Inclusion: we say that the fuzzy set   included in   if 

                     . 

2) The intersection of   and   is the fuzzy set   with  

                                            . 

3) The union of   and   is the fuzzy set  , where 

                                                  

4) equilibrium points                

5) The complement of   is the fuzzy set  , where 
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6) Difference                                      

1.3 Fuzzy Numbers 

Fuzzy numbers generalize classical real numbers and we can say that a 

fuzzy number is a fuzzy subset of the real line which has some additional 

properties. The concept of fuzzy number is vital for fuzzy analysis, fuzzy 

differential equations and fuzzy integral equations, and a very useful tool in 

several applications of fuzzy sets. 

Definition (1.9) [49]: A fuzzy number is a fuzzy set of the real line 

           satisfying the following properties: 

1)   is normal,      there exist as      such that        .  

2)   is fuzzy convex                                     

                      . 

3)   is upper semi-continuous on   (               such that  

                   |    |   ). 

4)   is compactly supported, that is              is compact. 

The set of all fuzzy real numbers is denoted by   . This fuzzy number 

space as shown in [28], can be embedded into the Banach space. 

Definition (1.10) [44]: Let the membership function      of the fuzzy 

number                 has the form: 
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{
 
 

 
 

                                

                            

                             

                             

                                 

                         

where   is an increasing function and is called the left side, while   is a 

decreasing function and is called the right side. If   and   are continuous 

functions then (1.1) is called Trapezoidal fuzzy number. 

          called the outer borders,           are inner borders of the 

fuzzy number  . If       then       is called triangular fuzzy number. 

An alternative definition of fuzzy number is as follows: 

Definition (1.11) [45]: A fuzzy number   in parametric form is a pair 

(         ) of functions         which satisfies the following: 

1)      is bounded monotonic increasing left continuous function on (0,1] 

and right continuous at 0. 

2)      is bounded monotonic decreasing left continuous function on (0,1] 

and right continuous at 0. 

3)                 . 

If                 then α is a crisp number. 

For arbitrary      (         ),   (         ), and     we 

define addition, subtraction and multiplication operations: 
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1)    
              

     
           

 
    

2)          {                                   }, 

                {                                   } 

3)        (    )         (    )        

4)        (    )         (    )        

Definition (1.12) [30]: For arbitrary fuzzy numbers       the quantity 

          
     

{   |         |     |         |} 

defines the distance between   and  . It is shown that       is a complete 

metric space [48]. 

Definition (1.13) [12]: Let   be the set of all fuzzy numbers. A function 

       is called a fuzzy-valued function. 

Definition (1.14) [11]: The fuzzy function           is said to be 

continuous if for arbitrary fixed          and     there exists     

such that 

|    |      (          )      

Definition (1.15) [8]: A fuzzy function           is differentiable at 

       , if there exist                        , and an element 

  f t E  such that: 

     for all     sufficiently small, the limits in metric    
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 .
           

 
  f t /     

    
 .

           

 
  f t /     

      for all     sufficiently small, the limits in metric    

   
    

 .
           

 
  f t /     

    
 .

           

 
  f t /     

Then  f t  is called the fuzzy derivative of         

Definition (1.16) [40]: Suppose that            is a fuzzy function. For 

each partition                of       and for arbitrary              

       , suppose 

   ∑              

 

   

 

Then the definite integral of fuzzy function      over       is defined by 

∫       
 

 

           |       |     

provided this limit exists. 

If the fuzzy function      is continuous, then its definite integral exists and  

∫         
 

 
 ∫         

 

 
 ∫         

 

 
 ∫         

 

 
   

Note: we can define the integral of fuzzy function using different 

approaches such as Lebesgue integral concept and Riemann integral concept 

like in definition (1.15), both approaches give the same value if the fuzzy 

function      is continuous.  
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Definition (1.17) [12]: Let      . If there exists     such that 

     , then   is called the  -difference of     and it is denoted by 

   . The notation  -difference is abbreviation for Hukuhara difference.  

1.4 Fuzzy linear systems 

We use system of linear equations to represent a lot of problems in 

various areas to be solvable. Now, if the parameters in the system are 

imprecise and not crisp, then we represent this uncertainty by fuzzy 

numbers, and the system of linear equations is called fuzzy linear system.   

Definition (1.18) [61]: If   (   ),          is an     crisp 

coefficient matrix and      ,         are fuzzy numbers are given, 

then the following     system of equations  

                       

                       

                                                                    

                       

is called a fuzzy linear system. 

Definition (1.19) [56]: The vector of fuzzy numbers                 

given by    (           )             , is said to be the 

solution of the fuzzy linear system (1.2) if 
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{
  
 

  
 ∑     

 

   

 ∑     

 

   

   

∑     

 

   

 ∑     

 

   

   

                                                                     

Replacing the fuzzy linear system (1.2) by an       crisp linear system 

using (1.3) and the operation of fuzzy numbers, yields: 

        *
  
  

+ [
 

  
]  [

 

  
]                                                                         

where                    and we determine      as follows: 

                                

                                   

and any other value of     is zero and   

  [
 

  
]  

[
 
 
 
 
 

  

 
  

   

 
   ]

 
 
 
 
 

   [
 

  
]  

[
 
 
 
 
 
 

  

 
  

   

 

   ]
 
 
 
 
 
 

  

The matrix   contains the positive entries of  , the matrix   contains the 

absolute of the negative entries of   and      . 

Then the solution of the crisp linear system (1.4) is the solution of the 

fuzzy linear system (1.2). 
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The crisp linear system (1.4) can be uniquely solved for   if and only if 

the coefficient matrix   is nonsingular. If matrix   is nonsingular then 

matrix   may be singular so the following theorem tells us when   is 

nonsingular. 

Theorem (1.1) [20]: The matrix   is nonsingular if and only if       

and     are both nonsingular. 

We will consider the following example to show that even if   is 

nonsingular the solution of crisp linear system (1.4) does not define a fuzzy 

solution of fuzzy linear system (1.2). 

Example (1.1): Consider the following fuzzy system 

          

          

where       (           ) and       (           ). We briefly 

write    (     ) and    (     ). 

  *
   
  

+    *
  
  

+    *
  
  

+ 

Then the extended matrix is   [

    
    
    
    

]    
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where       and     *
  
  

+ are both nonsingular. Then by 

Theorem (1.1)   is nonsingular matrix. Therefore the linear crisp system 

(1.4) has a unique solution. The solution of system (1.4) for the matrix  : 

     

[

    
    
    
    

] [

  

  

   

   

]  

[
 
 
 
 

  

  

   

   ]
 
 
 
 

 

   
 

 
(     )  

 

 
(     ) 

   
 

 
(     )  

 

 
(     ) 

      
 

 
(     )  

 

 
(     ) 

       
 

 
(     )  

 

 
(     ) 

Note that    (     ) and    (     ) are not necessarily fuzzy 

numbers. From the condition       we get  

       (     )                                                                                             

and from       we get  

 (     )                                                                                                   

Therefore    (     )        (     ) are fuzzy numbers if and only 

if the inequalities of (1.5) and (1.6) hold. 
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If the matrix   is nonsingular, then the solution vector   represent a 

solution fuzzy vector to the fuzzy linear system (1.2) if only if 

(           ) is a fuzzy number for all  .  

 Definition (1.20) [11]: Let   ,(           )        - denotes the 

unique solution of (1.4), then the fuzzy number vector 

  ,(           )       - defined by: 

                                   

                                   

is called the fuzzy solution of (1.4). 

If  (           )        are all fuzzy numbers, then: 

                              and   is called a strong fuzzy 

solution. Otherwise,   is called a weak fuzzy solution. 

Now a necessary and sufficient condition for the existence of a strong 

fuzzy solution can be described by the following theorem: 

Theorem (1.2) [20]: The system (1.4) has a strong fuzzy solution if and 

only if                , where   *
  
  

+ is a nonsingular matrix. 

By combining both theorems (1.1) and (1.2), then we get the following 

theorem: 
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Theorem (1.3) [20]: The fuzzy linear system (1.2) has a unique strong 

solution if and only if  

1) The matrices       and     are both nonsingular. 

2)                 

1.5 Fuzzy integral equations 

There are three major types of fuzzy integral equations: 

1.5.1 The Fuzzy Fredholm integral equations of the second kind 

A standard form of the Fredholm integral equation of the second kind is 

given by [24]: 

           ∫             
 

 

                                                                        

where   is a positive parameter,        is a function called the kernel of the 

integral equation defined over the square               and      is a 

given function of         . 

Now, if      is a crisp function then (1.7) possess crisp solution and the 

solution is fuzzy if      is a fuzzy function. 

With respect to definition (1.11) we introduce parametric form of a fuzzy 

Fredholm integral equation of the second kind. Let (             ) and 

(             )                    are parametric forms of      
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and      respectively, then parametric form of fuzzy Fredholm integral 

equation of the second kind is as follows:  

               ∫         
 

 

 

               ∫         
 

 

                                                                        

where 

       2
                          

                           
                                                             

and 

       2
                          

                                                                                      

for each                  . We can see that (1.8) is a crisp 

system of linear Fredholm integral equations for each       and 

     .  

Definition (1.21) [7]: The fuzzy Fredholm integral equations system of the 

second kind is of the form:  

            ∑.   ∫                
 

 

/

 

   

                             

where       are real constants and                 for          . 
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In system (1.11),                       is unknown function, the 

fuzzy function       and kernel          are known and we assume they are 

sufficiently differentiable with respect to all their arguments on the interval 

     . 

Now, consider the parametric form of                 to be 

           
       and            ̅                     respectively. 

We write the parametric form of the given fuzzy Fredholm integral 

equations system as follows: 

 

{
 
 

 
                 ∑.   ∫            

 

 

/

 

   

          

 
 
       

 
      ∑.   ∫            

 

 

/

 

   

         

                      

where 

          2
                                 

           
                       

                                               

and  

          2
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1.5.2  The Fuzzy Volterra integral equations of the second kind 

The Volterra integral equations of the second kind is the same as 

Fredholm integral equations of the second kind (1.7) with slight difference; 

the upper limit of integration is variable. 

Now, recall the Fredholm integral equation of the second kind (1.7). If the 

kernel function satisfies                then the Volterra integral 

equation has the general form:  

           ∫             
 

 

                                                                       

This equation has crisp solution if      is a crisp function. Equations 

(1.7) and (1.15) possess fuzzy solution if      is a fuzzy function. 

Definition (1.22) [36]: The second fuzzy linear Volterra integral equations 

system is of the form:  

            ∑.   ∫                
 

 

/

 

   

                                

where       are real constants and                 for          . In 

system (1.17),                       is the solution to be determined. 

The fuzzy function       and kernel           are given and assumed to be 

sufficiently differentiable with respect to all their arguments on the interval 

       .  

Now, let (          
     ) and (          

     )                  

be parametric form of       and       respectively. 
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We assume that     is positive constant for          , we write the 

parametric form of the given fuzzy Volterra integral equation system as 

follows: 

{
 
 

 
                 ∑.   ∫            

 

 

/

 

   

      

 
 
       

 
      ∑.   ∫            

 

 

/

 

   

     

                          

where 

          2
                                 

           
                       

                                            

and 

          2
                                 

           
                       

                                           

1.5.3  Fuzzy integro-differential equations 

The fuzzy linear integro-differential equation [58]: 

             0 0,    , 
t

a

g t f t k s t g s ds g t g                                              

where   is positive constant,        is a function called kernel defined over 

the square                and      is a given function of         . 
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If   is a fuzzy function,      is a given fuzzy function of         and 

g  is the fuzzy derivative according to definition (1.17) of  . This equation 

may only possess fuzzy solution. If   is a variable and          then 

(1.20) is fuzzy Volterra integro-differential equation of the second kind. If   

is constant then (1.20) is fuzzy Fredholm integro-differential equation of the 

second kind.  

Let      (             ) is a fuzzy solution of (1.20), therefore using 

definitions (1.10), (1.13), and (1.15) we have the equivalent system: 

       

       


   





   











0 0

00

,  , 

 

,  , 

t

a

t

a

g t f t U s r ds g t g

g t f t U s r ds g t g
                               

for each                      , where  

       2
                          

                           
                                                           

and 

       2
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Chapter Two 

Existence and Uniqueness of Solutions of Fuzzy 

Fredholm Integral Equations 

Let      denotes the family of all nonempty compact convex subsets of 

  and define the addition and scalar multiplication in      as usual [51]. 

Definition (2.1) [42]: Let   and   are two nonempty bounded subsets of  , 

then the distance in the Hausdorff metric between   and   is defined by: 

                       ‖   ‖              ‖   ‖   

where ||.|| denotes the Euclidean norm in  . Then          is a complete 

metric space [60]. 

Note: we use the notation  , where           and its closed bounded 

interval. 

We use Zadeh’s extension principle to extend the continuous function 

        to            as follow: 

 ̅            
        

               

We know that: 

  ̅                     for all              . 

We can embed the real numbers in   using the rule    ̅    where  

 ̅    ,
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We define the addition and scalar multiplication operations as follows: 

                 

            

where                    

Definition (2.2) [23]: Let                and      , then define 

  by: 

          
     

             

where   is the Hausdorff metric defined in      . 

Definition (2.3) [34]: A mapping           is bounded, if there exists a 

constant      such that 

        ̅           . 

For             and      we have the following properties on the 

metric   [41]: 

1)                         

2)     ̅     ̅         ̅      ̅  for every         where the fuzzy 

multiplication  ̅ is based on the extension principle. 

3)            | |       

4)                                 
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Definition (2.4) [22]: A mapping           is strongly measurable if for 

all         the set valued map            defined by: 

              is Lebesgue measurable when      has the topology 

induced by the Hausdorff metric  . 

Definition (2.5) [48]: Let          . If there is an integrable function   

such that            for all        , then   is called integrable 

bounded. 

Definition (2.6) [27]: Let         . We define the integral levelwise by 

*∫      

 

 

+

 

  ∫       

 

 

 

                        ,∫        
 

 
|                                       -  

for all        . 

Note: Consider a fuzzy mapping           that satisfy definitions (2.4) 

and (2.5) then   is integrable       ∫       
 

 
     

Theorem (2.1) [23]: A fuzzy mapping           is integrable if   is 

continuous.  

Theorem (2.2) [27]: Let              be integrable and    . Then 

(1) ∫             
 

 
 ∫       

 

 
 ∫       

 

 
 

(2) ∫        
 

 
  ∫       
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(3)        is integrable 

(4)   ∫       
 

 
 ∫       

 

 
  ∫  (         )  

 

 
 

Theorem (2.3) [47]: Let the kernel         and the fuzzy function 

         are continuous functions and    . Moreover, if 

     |      |        and 

| |  
 

      
                                                                                                         

then equation (1.7) has a unique continuous fuzzy solution on  . 

Proof : let us define the sequence of continuous functions on  : 

           

            ∫               

 

 

 

then we have: 

            ∫             
 

 
     ∫              

 

 
           

where                 and 

        ∫                  
 

 
                                                           

in the virtue of equation (2.3) we have: 

        ∫  ∫                                   
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we get: 

|       |                                                                              

equation (2.4) leads to the following formula: 

        ∫                   
 

 
                                              

Now equation (2.2) becomes: 

            ∫  ∑         
     

           
 

 
                                   

where the series 

∑         
    

                                                                                           

is uniformly convergent with respect to           for | |  
 

      
, 

equation (2.5) show that the series (2.8) is dominated by the general term 

   | |         . 

We set 

         ∑         
    

                                                                         

where          is a continuous function defined over     and  

| |  
 

      
. Now, substituting equation (2.9) into equation (2.7) yields:  

          ∫               
 

 
                                                     

From (2.2) and its analogue for   –   , gives: 
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 (             )

  (      ∫            

 

 

  

     ∫                

 

 

   ∫             

 

 

     

  ∫            

 

 

       ∫               

 

 

) 

  (  ∫              

 

 

  ̅)  | |  (∫             

 

 

  ̅) 

 | | ∫                ̅   
 

 

 | | ∫ |
 

 

       |        ̅    

 | |    
       

|       |    
     

        ̅ ∫     
 

 

 

Using theorem (2.2) and definition (2.3) yields: 

  | |           (| |      )
 
                                              

with (| |      )
 

  . 

Then the sequence         is uniformly convergent on      , where 

                 , so      is a solution of equation (1.7). 

To prove the uniqueness we assume that      is a solution of equation 

(1.7), that is,            ∫             
 

 
 

Using the recurrence formula for      , we obtain: 
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 (          )

  (      ∫            

 

 

     

  ∫               

 

 

) 

  ( ∫              ∫                

 

 

 

 

) 

 | | (∫             ∫                

 

 

 

 

) 

 | |∫  (                        )  

 

 

 

 | |∫|      | (            )  

 

 

 

 | |    
       

|      |    
     

 (            )∫     
 

 

 

Hence we get 

   
     

 (          )  | |         
     

 (            )              

If we denote             (          ), then (2.12) becomes 

   | |           

and finally 

    | |                         

Condition (2.1) shows that       as      , i.e.   
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Chapter Three 

Analytical Methods for Solving Fuzzy Fredholm 

Integral Equation of the Second Kind 

3.1  Fuzzy Laplace Transform Method 

In this section, we introduce some basic definitions for the fuzzy Laplace 

transform and fuzzy convolution. Then we apply fuzzy Laplace transforms 

to solve fuzzy convolution Fredholm integral equation of the second kind. 

Theorem (3.1) [62]: Let      be fuzzy-valued function on       

represented by (             ). For any fixed        , assume        

and        are Riemann-Integrable on       for every    , and assume 

there are two positive      and      such that ∫ |      |
 

 
        and 

∫ |      |
 

 
        for every    . Then      is improper fuzzy 

Riemann-integrable on       and it is a fuzzy number. Furthermore, we 

have: 

∫       

 

 

 (∫  

 

 

        ∫  

 

 

       ) 

Proof: see [62]. 

Proposition (3.1) [61]: If      and      are fuzzy-valued functions and 

fuzzy Riemann-integrable on        then           is also Riemann-

integrable on            
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∫(         )

 

 

   ∫     

 

 

   ∫     

 

 

   

Definition (3.1) [50]: Let      be fuzzy-valued function and   is real 

parameter. Then we define the fuzzy Laplace transforms as follows: 

      (    )  ∫         

 

 

      
   

∫        

 

 

                                   

using Theorem (3.1), we have 

     (   
   

∫        

 

 

      
   

∫        

 

 

  ) 

whenever the limits exists, and we denote the fuzzy Laplace transform by  , 

that generate a new fuzzy-valued function,       (    ). 

Now, consider the fuzzy-valued function   then  (      ) and 

 (      ) the lower and upper fuzzy Laplace transform respectively, we 

use the definition of Laplace transform       

 (      )  ∫           

 

 

      
   

∫          

 

 

   

 (      )  ∫           

 

 

      
   

∫          

 

 

   

then we get 

        (      )  * (      )   (      )+ 



35 

Theorem (3.2) [2]: Let   and   are continuous fuzzy-valued functions and 

      are constants. Then: 

 [(       )  (       )]                            

Proof:  [(       )  (       )]  ∫ ((       )  (       ))       

 
   

 ∫(       )

 

 

        ∫(       )

 

 

        

    ∫     

 

 

           ∫     

 

 

                                  

thus, 

 [(       )  (       )]                            

Lemma (3.1) [10]: Let   be continuous fuzzy valued function on       and 

   . Then: 

                    

Theorem (3.3) [10]: (First translation theorem) Let   be continuous fuzzy-

valued function and             , then: 

                   

where     is real valued function and      . 

Proof:             ∫     
 

 
            ∫        
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  ∫          

 

 

              

hence, 

                   

Definition (3.2) [15]: Let   be fuzzy-valued function. If        
     , 

       
      exist and     

       
   then   has a jump discontinuity at   . 

Definition (3.3): The fuzzy-valued function   is piecewise continuous on 

      if: 

1)                   exists. 

2)   is continuous on every finite interval       expect possibly at a finite 

number of points            in       at which   has jump 

discontinuity. 

Definition (3.4): Let   be fuzzy-valued function and   is positive constant, 

then   is bounded if |    |                        . 

Definition (3.5): Let   be fuzzy-valued function. If there exist constants 

    and   such that for some     , if |    |             , then   

has exponential order  . 

Theorem (3.4) [15]: If the fuzzy-valued function   is piecewise continuous 

on       and has exponential order  , then  

                       . 
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Proof: see [15]. 

Theorem (3.5) [15]: Let   be fuzzy-valued function. If    is bounded and 

piecewise continuous on       of exponential order  , then the fuzzy 

Laplace transform              exists for       and converges 

absolutely. 

Proof: see [15]. 

The inverse of fuzzy Laplace transform              maps the fuzzy 

Laplace transform of a fuzzy-valued function   back to original fuzzy-

valued function  , and we denote the inverse of fuzzy Laplace transform by 

   (    )            

The most important basic properties of the fuzzy Laplace transform and 

its inverse is linearity. 

3.1.1  Fuzzy Convolution 

It is important to introduce fuzzy convolution in order to solve fuzzy 

convolution Fredholm integral equation directly. 

Definition (3.6): If      and      are two piecewise continuous fuzzy-

valued functions, then their fuzzy convolution is defined by: 

         ∫      
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Some properties of the fuzzy convolution: 

1)                                        (commutative) 

2)                         ,   is constant  

3)                                   (associative) 

We will introduce Convolution Theorem which is very important, it 

connect fuzzy convolution with fuzzy Laplace transform as follows: 

Theorem (3.6) [50]: (Convolution Theorem) Let      and      be 

piecewise continuous fuzzy-valued functions on       of exponential order 

  with fuzzy Laplace transform      and      respectively,      

             and             . Then 

                                            

Proof: see [50]. 

Definition (3.7): The fuzzy convolution Fredholm integral equation of the 

second kind is defined as  

           ∫       
 

 
                                             (3.2) 

where      is a continuous fuzzy-valued function and        is an 

arbitrary real-valued function called real-valued convolution kernel 

function. 
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Now, take fuzzy Laplace transform on both sides of equation (3.2), we 

get 

         *      ∫       

 

 

      +                   

using Theorem (3.2), we have 

                 * ∫       

 

 

      +                 

Then, we use the definition of fuzzy Laplace transform: 

 *      +   *      +   * ∫             

 

 

  + 

           [      ]   * ∫             

 

 

  + 

we apply fuzzy convolution, we get 

 *      +   *      +             *      +           

           [      ]                                

we consider the following two cases for the changing sign of       : 

Case (1): If         , then we get 

 *      +   *      +             *      + 

           [      ]                      
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Case (2): If         , then we get 

 *      +   *      +                      

           [      ]             *      + 

For case (1) we find the explicit formulas that is 

 *      +  
 *      +

            
 

          
 [      ]

            
 

and the explicit formulas for case (2) as follow: 

 *      +  
 *      +             [      ]

                      
 

          
 [      ]             *      +

                      
 

Finally, we take the inverse of the fuzzy Laplace transform we get the 

following for the first case: 

          (
 *      +

            
) 

          .
 [      ]

            
/ 

and take the inverse of fuzzy Laplace transform for the second case, we get 

the following:  
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          (
 *      +             [      ]

                      
) 

          (
 [      ]             *      +

                      
) 

Example (3.1): Consider the following fuzzy convolution Fredholm integral 

equations 

       
 

 
        ∫

 

 
             

 

 

 

       
 

 
        ∫

 

 
             

 

 

 

we apply the fuzzy Laplace transform to both sides of the equations, we get 

 ,      -  
 

 
           

 

 
      ,      -          

          
 

 
           

 

 
                       

then, 

 ,      -  
      

     
 

          
      

     
 

finally, by applying the inverse of fuzzy Laplace transform on both sides, 

we have 

                 (
 

 
) 
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                 (
 

 
) 

3.2  Homotopy Analysis Method (HAM) 

The homotopy analysis method is considered as an analytical approach in 

order to obtain solutions in series form and use it to solve various types of 

integral equations. Then will ensure the convergence of the solution series 

using an auxiliary parameter. Moreover, homotopy analysis method 

provides a kind of freedom for choosing initial approximations and an 

auxiliary linear operator which helps us to simplify any problem. 

Definition (3.8) [52]: Let   be a function of the homotopy parameter   

from homotopy theory. Then the    -order homotopy-derivative of   is 

defined by  

      
 

  

   

   
|
   

                                                                                               

where     is an integer. 

Lemma (3.2) [53]: suppose   ∑         
      denote a homotopy 

series, where         is the embedding homotopy parameter in the theory 

of topology,    is an unknown function, where   and   denote a spatial and 

temporal independent variables respectively. Let   denote an auxiliary 

linear operator, and    an initial guess solution. It holds that 

                                                                         

where      is defined by equation (3.3) and    defined by 
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   ,
     
     

                                                                                      

Theorem (3.7) [52]: Let   be a linear operator independent of the 

homotopy-parameter  . For homotopy series 

  ∑    
 

 

   

 

it holds  

                  

Proof: see [52]. 

Theorem (3.8) [53]: Let   ∑           
   , where         is the 

homotopy parameter. Let   denote an auxiliary linear operator,   is a 

nonlinear operator,         an initial guess solution,   the convergence-

control parameter, and        an auxiliary function, both   and         are 

independent of  . Then we define the     -order deformation equation as 

follows: 

                         , 

the corresponding    -order deformation equation       

                                                                             

where      and    are defined by equations (3.3) and (3.5) respectively. 

Finding the solution as a series form we need to investigate its 

convergence in any region, so we have the following theorem: 
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Theorem (3.9) [5]: (Convergence Theorem) If the series         

∑         
    converges to function       , then        must be the exact 

solution, where         is governed by the    -order deformation equation 

(3.6) under the definition (3.3) and equation (3.5). 

Proof: see [53]. 

To ensure convergence of the series we have to concentrate on choosing  

        the initial guess, the linear operator  , the embedding parameter  , 

the auxiliary parameter  , and finally the auxiliary function       . 

In this part, we rewrite the fuzzy Fredholm integral equations of the 

second kind, and then solve them by homotopy analysis method. Also, we 

get the solution in series form. 

Now, we partition the interval       into two parts according to the sign 

of the kernel      ),               on       and          on      . 

Therefore, we rewrite equation (1.8) as follow: 

               ∫               
 

 

  ∫               
 

 

 

               ∫               
 

 

  ∫               
 

 

                

From system (3.7) we define the nonlinear operator          as follows 

[38]: 
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                          ∫                 
 

 

  ∫                 
 

 

 

                          ∫                 
 

 

  ∫                 
 

 

                                                               

We choose the auxiliary linear operator   with the following assumption: 

                                                                                                             

Applying homotopy analysis method to solve system (3.7), we consider 

the     -order deformation equation 

      [                ]                 

      [                ]                                                      

where         is an embedding parameter called the homotopy parameter, 

  is an auxiliary linear parameter,         and        are the initial guess 

of        and        respectively,          and          are 

auxiliary functions,          and          are the unknown functions on 

independent variable  , and     denote convergence-controller 

parameter. 

Now, applying equation (3.9) on equation (3.10), yields 

     [                ]                 

     [                ]                 
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then substitute equation (3.8) with the assumption that         , we get 

[35] 

     [                ]

   0                 ∫                 
 

 

  ∫                 
 

 

1 

     [                ]

   0                 ∫                 
 

 

  ∫                 
 

 

1                                                           

when      the     -order deformation (3.11) becomes 

                 

                                                                                              

when    , the     -order deformation (3.11) becomes 

                 ∫                 
 

 

  ∫                 
 

 

 

                 ∫                 
 

 

  ∫                 
 

 

 

              

Notice that equation (3.13) is exactly the same as equation (3.7). 
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Now as the value of   increases from 0 to 1 the analytical solution 

(                 ) changes from the initial approximation guess 

(               ) to the exact solution (             ). 

We expand the functions          and          in a Taylor series with 

respect to the embedding parameter  .This expansion can be written as 

follows [52]: 

                 ∑        

 

   

   

                 ∑        

 

   

                                                                 

where  

        
 

  

          

   
|
   

 

        
 

  

          

   
|
   

                                                                              

We differentiate the     -order deformation equation (3.11)  -times with 

respect to  , we get: 

          

   
 

            

     

  0
            

     
         ∫       

            

     
  

 

 

  ∫       
            

     
  

 

 

1 
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  0
            

     
         ∫       

            

     
  

 

 

  ∫       
            

     
  

 

 

1                                                                        

Dividing (3.16) by   , then set    , we get the    -order deformation 

equation [38]: 

                   

  0                    ∫                    
 

 

  ∫                    
 

 

1 

                   

  0                    ∫                    
 

 

  ∫                    
 

 

1                                                      

where     and                                                                    

   ,
     
     

  ,             ,
     
     

 

If we let                  ̅, then for     we have: 

                      

   0∫                    
 

 

 ∫                    
 

 

1 
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   0∫                    
 

 

  ∫                    
 

 

  1 

       

The solution of equation (3.7) in series form can be obtained as follows: 

          
   

         ∑        

 

   

 

          
   

         ∑        

 

   

                                                              

Now, we denote the    -order approximation to solution        with 

        ∑        

 

   

 

and        with 

 
 

      ∑        

 

   

                                                                                         

Example (3.2): Consider the fuzzy Fredholm integral equation (1.8) with 

       
 

 
        

       
 

 
        

and 
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on the interval            The first terms of homotopy series are: 

         ̅ 

                  
 

 
        

                      ∫
 

 
        

 

 

    
 

 
             

                      ∫
 

 
        

 

 

    
 

 
              

                      ∫
 

 
        

 

 

    
 

  
              

                      ∫
 

 
        

 

 

    
 

  
               

                      ∫
 

 
        

 

 

    
 

  
               

and 

         ̅ 

                  
 

 
        

                      ∫
 

 
         

 

 

    
 

 
             

                      ∫
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                      ∫
 

 
        

 

 

    
 

  
               

                      ∫
 

 
        

 

 

    
 

  
              

                      ∫
 

 
        

 

 

    
 

  
              

Then we approximate        with 

        ∑        

 

   

         [
 

 
 

 

 
      

 

 
       

 

  
      

 
 

  
       

 

  
      ]

          ∑
 

  
         

 

   

 

and        with 

 
 
      ∑        

 

   

         [
 

 
 

 

 
      

 

 
       

 

  
      

 
 

  
       

 

  
      ]

          ∑
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3.3 Adomain Decomposition Method (ADM) 

Since the beginning of 1980s the scientists and engineers did apply the 

Adomain decomposition method to functional equations in order to 

calculate the solutions as an infinite series which usually converges to the 

exact solution. However, the Adomain decomposition method is a special 

case of homotopy analysis method so we present the following theorem. 

Theorem (3.10) [52]: If we set the convergence-controller parameter 

     in the frame of homotopy analysis method when it is applied on 

integral equations, the method will be converted to Adomain decomposition 

method. 

Proof: see [52]. 

We will solve linear system (1.12). It can be written as follows [1]: 

                  (       )       

 
 
       

 
        (  

    
 
)                                                                

where  

  (       )       ∫ ∑               

 

   

 

 

                                                    

  (  
    

 
)      ∫ ∑          

     

 

   

 

 

                                                

In order to use the Adomain decomposition method we need to represent 
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        (          
     ) in a series form: 

        ∑         

 

   

 

 
 
      ∑  

  
     

 

   

                                                                                        

and letting  

  (       )       ∑    

 

   

 

  (  
    

 
)      ∑    

 

   

                                                             

where     (       ) are Adomain polynomials. 

Now, using equation (3.23) and (3.24), then equation (3.21) can be 

written as follows: 

 

∑    

 

   

    ∑    

 

   

(                     ) 

∑  
  

 

   

  
 
 ∑    

 

   

( 
  

    
  

    
  

    
  

)                               

To obtain the Adomain’s polynomial we introduce a parameter   for 

convenience, so we have: 

         ∑         
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      ∑  
  

     

 

   

                                                                                   

and  

   (         )  ∑    

 

   

   

   (   
    

  
)  ∑    

 

   

                                                             

then, we obtain the Adomain’s polynomial     (       ) as [26]: 

    
 

  
[
  

   
   (         )]

   
 

    
 

  
[
  

   
   (   

    
  

)]
   

                                                               

from equations (3.26) and (3.27) , we get 

   (                     )

 ∫ ∑        
 

  

  

   

 

   

 

 

∑   

 

   

  |

   

  

 ∫ ∑                

 

   

 

 

                                                                

   ( 
  

    
  

    
  

    
  

)

 ∫ ∑        
 

  

  

   

 

   

 

 

∑ 
  

 

   

  |

   

  

 ∫ ∑           
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Now, from equation (3.25) the solution of equation (1.12) will be as 

follows: 

       

       ∫∑                

 

   

 

 

                                                                    

and 

 
  

  
 
 

 
     

 ∫∑           
     

 

   

 

 

                                                                    

we usually approximate        (             ) by [3]: 

    ∑         

   

   

 

 
  

 ∑  
  

     

   

   

                                                                                                

where 
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Example (3.3): Consider the fuzzy Fredholm integral equation (1.8) with 

       
 

 
        

       
 

 
        

and kernel 

       
 

 
                

on the interval      . Some of first terms of Adomian decomposition series 

are 

        
 

 
        

        ∫
 

 
           

 

 

 
 

 
        

        ∫
 

 
           

 

 

 
 

 
        

        ∫
 

 
           

 

 

 
 

  
        

        ∫
 

 
           

 

 

 
 

  
        

        ∫
 

 
           

 

 

 
 

  
        

        ∫
 

 
           

 

 

 
 

   
        

and 
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        ∫
 

 
         

 

 

   
 

 
        

        ∫
 

 
         

 

 

   
 

 
        

        ∫
 

 
         

 

 

   
 

  
        

        ∫
 

 
         

 

 

   
 

  
        

        ∫
 

 
         

 

 

   
 

  
        

        ∫
 

 
         

 

 

   
 

   
        

then we approximate        with 

        
   

   
                     

and  

 
 
      

   

   
                     

where  
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3.4 Fuzzy Differential Transformation Method (FDTM) 

In this section, we are going to use fuzzy differential transformation 

method for solving fuzzy Fredholm integral equation of the second kind to 

obtain a series solutions. 

Theorem (3.11) [6]: Consider the fuzzy-valued function  

       (             ), for        , Then: 

1) If   is    -differentiable, then        and        are differentiable 

functions and   ,g t r  .     , , ,g t r g t r / 

2) If   is     -differentiable, then        and        are differentiable 

functions and   ,g t r  .     , , ,g t r g t r /. 

Definition (3.9) [12]: Let      be differentiable of order   in the time 

domain  , then: 

If   is    -differentiable,              
  (      )

   
          

  (      )

   
 

then  

                   
  (      )

   
]

    

  

                  
  (      )

   
1
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and 

                     , and if   is     -differentiable, 

             
  (      )

   
      

{
  
 

  
                   

  (      )

   
1
    

                  
  (      )

   
]

    

                    

{
  
 

  
 
                  

  (      )

   
]

    

                  
  (      )

   
1
    

                      

       (             ) is called the spectrum at      in the domain  . 

If   is    -differentiable, then        can be represented as  

       ∑
      

 

  

 

   

       

       ∑
      

 

  

 

   

       

and if   is     -differentiable, then 

       ∑
      

 

  

 

       

       ∑
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       ∑
      

 

  

 

       

       ∑
      

 

  

 

        

       

The mentioned equations are known as the inverse transformation of 

      . If        is    -differentiable then it is defined as follows 

           [
  (          )

   
]

   

 

           0
  (          )

   
1
   

 

and if        is    -differentiable then it is defined as follows 

{
  
 

  
            0

  (          )

   
1
   

           [
  (          )

   
]

   

                  

{
  
 

  
 
           [

  (          )

   
]

   

           0
  (          )

   
1
   

                    

If   is (i)-differentiable, then        can be described as  

       
 

    
∑

      
 

  

 

   

      

    
 

       
 

    
∑
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and if   is     -differentiable, then 

       
 

    
( ∑

      
 

  

 

       

      

    
 ∑

      
 

  

 

        

      

    
) 

       
 

    
( ∑

      
 

  

 

       

      

    
 ∑

      
 

  

 

        

      

    
) 

where        and it is called the weighting factor, and        is 

regarded as kernel correspond to     . Now, the transformation that is 

applied in this section is      
  

  
 and       , where   is the time 

horizon of interest. 

If   is    -differentiable, then 

       
  

  

        

   
 

       
  

  

        

   
 

and if   is     -differentiable, then 

{
 

        
  

  

        

   

       
  

  

        

   

                                 

{
 

        
  

  

        

   

       
  

  

        

   

                                  

Using the differential transform, an integral equation in the domain of 

interest can be transformed to an algebraic equation in the   domain and 
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     can be obtained by finite-term Taylor series plus a reminder, so if      

is    -differentiable it is obtained as follows 

       
 

    
∑

      
 

  

 

   

      

    
         

 ∑ (
    

 
)
 

      

 

   

         

       
 

    
∑

      
 

  

 

   

      

    
         

 ∑ (
    

 
)
 

      

 

   

         

and if   is     -differentiable, then 

       
 

    
( ∑

      
 

  

 

       

      

    
 ∑

      
 

  

 

        

      

    
)

         

 ∑ (
    

 
)
 

      

 

       

 ∑ (
    

 
)
 

      

 

        

         

       
 

    
( ∑

      
 

  

 

       

      

    
 ∑

      
 

  

 

        

      

    
)

         

 ∑ (
    

 
)
 

      

 

       

 ∑ (
    

 
)
 

      

 

        

         

We want to find the solution of equation (1.8) at equally spaced points 

           ,        ,   
   

 
,         . 
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Now the domain of interest is divided to   sub-domains and the fuzzy 

approximation functions in each sub-domain are         for 

           respectively. 

Definition (3.10) [13]: Let        be differentiable fuzzy-valued function 

then the one-dimensional differential transform is defined as follows: 

       
 

  
0
        

   
1
   

 

       
 

  
0
        

   
1
   

 

where        is the original function and        is the transformed 

function. 

Definition (3.11): The differential inverse transform of        on the grid 

points        is defined by: 

                                               
  

 ∑        
 

 

   

 

           
 
                                   

  

 ∑        
 

 

   

  



64 

Theorem (3.12) [21]: Let               and        are fuzzy-valued 

functions and the differential transformations are               and 

       respectively. Then: 

1) If                     , then                      

2) If                     , then                      

3) If               , then               , where   is a constant. 

Theorem (3.13) [21]: If          , then              , where 

       {
     
     

 . 

Theorem (3.14) [14]: Let        and        are fuzzy-valued functions and 

the differential transformations are        and        respectively. If  

        ∫         
 

  
        , then      

      

 
    . 

Proof: Using definition of fuzzy differential transform method, we get 

       ∫         
 

  

 ∫ ∑             
   

 

   

 

  

 

 ∑
      

   
      

   

 

   

]

  

 

 ∑
      

   
      

   

 

   

 

and  

       ∫         
 

  

 ∫ ∑             
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 ∑
      

   
      

   

 

   

]

  

 

 ∑
      

   
      

   

 

   

 

we shift the index from     to    , then we obtain  

       ∑
        

 
      

 

 

   

 

and  

       ∑
        

 
      

 

 

   

 

Finally, using the definition of fuzzy differential transform method, we get 

       
        

 
              

Theorem (3.15) [21]: Let               and        be differential 

transformations of the positive real-valued function      and the fuzzy-

valued functions        and        respectively. If   

       ∫             
 

  
, then we have 

       
 

 
∑               

   

   

 

and  

       
 

 
∑               
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Proof: Using the definition of fuzzy differential transform method, we have 

       
 

  
0∫             

 

  

1
    

  ̅ 

       
 

  

 

  
0∫             

 

  

1
    

 

               0
 

  
∫             

 

  

 
 

  
∫             

 

  

1
    

 

               *                     +
    

            

       
 

  

  

   
0∫             

 

  

1
    

 
 

  
*  u t              ,g t r +

    

 
 

 
                           

 

       
 

  

  

   
0∫             

 

  

1
    

 
 

  
*  u t          u t   ,g t r        ,g t r +

    

 
 

  
                                       

 

In general, we get 

       
 

 
∑               

   

   

 

and  

       
 

 
∑               
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Theorem (3.16) [14]: Let               and        be 

differential transformations of the positive real-valued function      

and the fuzzy-valued functions        and        respectively. If  

           ∫         
 

  
, then we have 

       ∑
 

 
              

 

   

 

and  

       ∑
 

 
              

 

   

 

Proof: Using the definition of fuzzy differential transform method, we have 

       
 

  
0    ∫         

 

  

1
    

  ̅ 

       
 

  

 

  
0    ∫         

 

  

1
    

 

               0
 

  
(    ) ∫         

 

  

      
 

  
∫         

 

  

1
    

 

               *  u t                  +
    

            

       
 

  

  

   
0    ∫         

 

  

1

    

 
 

  
0  u t  ∫            u t       

 

  

       ,g t r 1
    

 [           
 

 
          ]
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In general, we get 

       ∑
 

 
              

 

   

 

and  

       ∑
 

 
              

 

   

 

Taking the fuzzy differential transformation of system (1.8), then we get 

              
 

 
∑               

   

   

 

              
 

 
∑               

   

   

 

where    , and               and      are fuzzy differential 

transformation of               which are fuzzy-valued functions and      

is positive real-valued function. And we have               and 

             . 

Example (3.4): Let us consider the fuzzy Fredholm integral equation (1.8) 

with 

       
 

 
        

       
 

 
        

and kernel 
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on the interval      . Then applying fuzzy differential transform, we have 

       
 

 
            

 

 
∑

 

 
                

 

   

 

       
 

 
            

 

 
∑

 

 
                

 

   

 

where                 ̅. Consequently, we obtain, 

       
 

 
            

 

 
∑

 

 
                

 

   

 
 

 
      

       
 

 
            

 

 
∑

 

 
                

 

   

  ̅ 

       
 

 
            

 

 
∑

 

 
                

 

   

 
 

  
      

       
 

 
            

 

 
∑

 

 
                

 

   

  ̅ 

       
 

 
            

 

 
∑

 

 
                

 

   

 
 

  
      

       
 

 
            

 

 
∑

 

 
                

 

   

  ̅ 
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∑

 

 
                

 

   

 
 

     
      

       
 

 
            

 

 
∑

 

 
                

 

   

  ̅ 

       
 

 
            

 

 
∑

 

 
                

 

   

 
 

     
      

        
 

 
             

 

 
∑

 

 
                 

  

   

  ̅ 

        
 

 
             

 

 
∑

 

 
                 

  

   

 
 

       
      

and 

       
 

 
            

 

 
∑

 

 
                

 

   

 
 

 
      

       
 

 
            

 

 
∑

 

 
                

 

   

  ̅ 

       
 

 
            

 

 
∑

 

 
                

 

   

 
 

  
      

       
 

 
            

 

 
∑

 

 
                

 

   

  ̅ 
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∑

 

 
                

 

   

 
 

  
      

       
 

 
            

 

 
∑

 

 
                

 

   

  ̅ 

       
 

 
            

 

 
∑

 

 
                

 

   

 
 

     
      

       
 

 
            

 

 
∑

 

 
                

 

   

  ̅ 

       
 

 
            

 

 
∑

 

 
                

 

   

 
 

     
      

        
 

 
             

 

 
∑

 

 
                 

  

   

  ̅ 

        
 

 
             

 

 
∑

 

 
                 

  

   

 
 

       
      

Now, the approximate solution  

       ∑          
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and 

       ∑          

 

   

       (
 

 
 

 

  
   

 

  
   

 

     
   

 

     
  

 
 

       
     )  
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Chapter Four 

Numerical Methods for Solving Linear Fuzzy Fredholm 

Integral Equation of the Second Kind 

4.1 Taylor Expansion Method 

We will use Taylor expansion method to solve linear fuzzy Fredholm 

integral equation of the second kind. This method is based on differentiating 

  -times both sides of the linear fuzzy Fredholm integral equation of the 

second kind and then substitute the Taylor series expansion for the unknown 

function. As a result, we obtain a linear system for which the solution of this 

system yields the unknown Taylor coefficients of the solution functions. 

Now, we recall system (1.12) then we assume that 

2
                              

                             
 

The system (1.12) is transformed using the above assumption, that is, 

               

 ∑    .∫                   
 

 

 ∫            
       

 

 

/

 

   

 

 
 
       

 
     

 ∑    .∫            
       

 

 

 ∫                   
 

 

/
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We differentiate both sides of each equation of the system (4.1) with 

respect to  ,   times  

           

   
 

           

   

 ∑    .∫
             

   
         

 

 

 

   

 ∫
             

   
 

 
       

 

 

/                            

     
 
     

   
 

     
 
     

   

 ∑    .∫
             

   
 

 
       

 

 

 

   

 ∫
             

   
         

 

 

/                                       

Using the following notations for abbreviation: 

  
         

           

   
|

   

  
 

   
      

     
 
     

   
|
   

 

  
         

           

   
|

   

  
 

   
      

     
 
     

   
|

   

 

    
         

             

   
|
   

                                                                

Now, we expand the unknown functions         and  
 
      in Taylor 

series for multivariate variable at arbitrary point   and we neglect the 

truncation error:  
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          ∑
 

  

 

   

  
               

 
   

      ∑
 

  
 

 

   
     

 

   

                                         

Substituting equations (4.4) and (4.3) into equation (4.2), yields: 

  
           

        

 ∑(∑
    

  

 

   

∫     
                        

 

 

 

   

 ∑
    

  

 

   

∫     
         

 
              

 

 

) 

 
 

   
       

 

   
     

 ∑(∑
    

  

 

   

∫     
         

 
              

 

 

 

   

 ∑
    

  

 

   

∫     
                        

 

 

)                              

Using the notation: 

    
     

 
    

  
∫     

                 
    

 

                       

    
      

 
    

  
∫     

                 
 

    

                                                

the equation (4.5) can be written as: 
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         ∑(∑     
     

       

 

   

 ∑     
      

 
 
     

 

   

)

 

   

 

 
 

   
       

 

   
      ∑(∑     

     
 

 
     

 

   

 ∑     
      

       

 

   

)

 

   

      

We can rearrange (4.7) as follow: 

   
   

         
   

      ∑(∑     
     

       

 

   

 ∑     
      

 
 
     

 

   

)

 

   

 

  
 

   
        

 

   
      ∑(∑     

     
 

 
     

 

   

 ∑     
      

       

 

   

)

 

   

 

      

But when    , then we (4.8) becomes : 

   
   

      ∑ ∑ (    
     

  )       

 

   

 

   

 

  
 

   
      ∑ ∑ (    

     
  )

 

   

 
 
     

 

   

 

Equation (4.7) can then be written in the matrix form 

                                                                                                                           

where  
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       

 

  
        

 
 
     

 

 
 

   
     

 
       

 

  
        

 
 

     

 

 
 

   
     ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        

 

   
        

  
 
     

 

  
 

   
     

 
        

 

   
        

  
 

     

 

  
 

   
     ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    [
             

   
             

] 

Parochial matrices        are defined with the following elements [24]: 

       [
    

     
    

     

    
     

    
     

] 

where 

    
     

     
     

 

[
 
 
 
 
 
     

     
      

     
       

     
    

     

    
     

    
     

         
     

    
     

     

      
     

      
     

         
     

        
     

    
     

    
     

       
     

    
     

  ]
 
 
 
 
 
 

 

    
      

     
      

 

[
 
 
 
 
 
     

      
    

      
       

      
    

      

    
      

    
      

       
      

    
      

     

      
      

      
      

         
      

      
      

    
      

    
      

       
      

    
      

]
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The aim of this method is to determine the coefficients of         and 

 
 
      in system (4.2). 

Finally, we want to obtain the solution of system (4.9) as follow: 

       ∑
 

  

 

   

          

   
|

   

       

       ∑
 

  

 

   

          

   
|
   

                                   

4.1.1  Convergence Analysis 

In order to show the efficiency of the Taylor expansion method, we will 

prove that the approximate solution converges to the exact solution of 

system (1.12). 

Theorem (4.1) [24]: If           and  
   

      are Taylor polynomials of 

degree   and their coefficients have been found by solving the linear system 

(4.9), then they converges to the exact solution of system (1.12), when 

   . 

Proof: Consider the fuzzy system (1.12). The series (4.4) converges to 

        and  
 
      respectively,      

           
   

          

 
 
         

   
 

   
       

then we conclude that : 
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 ∑     ∫                    
    

 

 ∫             
       

 

    

 

 

   

 

 
  

       
 
     

 ∑     ∫             
       

    

 

 ∫                    
 

    

 

 

   

 

                                                                                                                      

Now, the error function         ∑           
    

where                              , then we define the error function 

as a difference between system (4.1) and (4.11) as follows: 

         (                )

 ∑    (∫          (                )   
    

 

 

   

 ∫          (                )   
 

    

) 

and 

          ( 
 
       

  
     )

 ∑    (∫          ( 
 
       

  
     )   

    

 

 

   

 ∫          ( 
 
       

  
     )   

 

    

) 

Now, 
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‖  ‖  ‖∑   

 

   

‖  ∑‖   ‖

 

   

 ∑‖       ‖

 

   

 ∑(‖   ‖  ‖   ‖)

 

   

 

            ∑*‖(                )

 

   

 ∑    (∫     (                )   
    

 

 

   

 ∫     (                )   
 

    

)‖

 ‖( 
 
       

  
     )

 ∑    (∫     ( 
 
       

  
     )   

    

 

 

   

 ∫     ( 
 
       

  
     )   

 

    

)‖+ 

 ∑‖(                )  ( 
 
       

  
     )‖

 

   

 ∑‖∑    (∫     (                )   
    

 

 

   

 

   

 ∫     (                )   
 

    

)

 ∑    (∫     ( 
 
       

  
     )   

    

 

 

   

 ∫     ( 
 
       

  
     )   

 

    

)‖ 
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 ∑‖(                )  ( 
 
       

  
     )‖

 

   

 ∑‖∑    (∫     *(                )
    

 

 

   

 

   

 ( 
 
       

  
     )+   

 ∫     *(                )
 

    

 ( 
 
       

  
     )+   )‖ 

 ∑‖(                )  ( 
 
       

  
     )‖

 

   

 ∑∑.‖    ‖ ‖∫     *(                )
 

 

 

   

 

   

 ( 
 
       

  
     )+   ‖/ 

 ∑‖(                )  ( 
 
       

  
     )‖

 

   

 ∑∑.‖    ‖ ∫ ‖    ‖ ‖(                )
 

 

 

   

 

   

 ( 
 
       

  
     )‖  / 

 ∑‖(                )  ( 
 
       

  
     )‖

 

   

 ∑∑.‖    ‖ ∫ ‖    ‖ *‖                ‖
 

 

 

   

 

   

 ‖ 
 
       

  
     ‖+   /  
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We know that the kernel           is a continuous function on       so 

‖    ‖ is bounded, ‖                ‖    and  

‖ 
 
       

  
     ‖    as         ‖  ‖   . 

That means that if   is large enough then the error function         

becomes zero. 

4.2 Trapezoidal Method 

We compute the Riemann Integral in definition (1.13) of        and 

       by applying the trapezoidal rule, so we consider        and        

over the interval      , then suppose the interval       is subdivided into   

subintervals of equal width    
   

 
  by using equally spaced nodes: 

                      

                                                                                         

We define [31] 

       [
             

 
 ∑        

   

   

] 

       [
             

 
 ∑        

   

   

]                                                    

Then, for arbitrary fixed  , we have 

   
   

           ∫       
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           ∫       
 

 

                                                                         

Theorem (4.2) [32]: If      is continuous in the metric  , then       and 

      converge uniformly in   to        and        respectively. 

Proof: The definite integral of      guaranteed its existence by the 

continuity of     . If  

   
   

    
     

                                                                                                 

then    of definition (1.13) converges to the definite integral of     . 

Now, for arbitrary       (           ) and      (         ), 

we have 

 (    )     
     

,   *|          |  |          |+-                        

and since 

   
   

 (    )       
     

                                                                        

we obtain that    converges uniformly to  . Knowing that    is particular 

case of   , consequently        and       converges uniformly to      and 

     respectively. 

Definition (4.1) [31]: A fuzzy number      (         ) belongs to    

is defined as 

   ,(         )                  - 

where    is a subclass of  . There is a necessary and sufficient condition 
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for a fuzzy number      to belong to    is given in [28]. 

Theorem (4.3) [32]: Let        (             ) be a fuzzy continuous 

function in   for fixed   and belong to   , then its approximate solutions  

      and       converges uniformly. 

The exact iterative process for finding the exact solution for equation 

(1.7) is given by 

           

            ∫              
 

 
                                                

However, the numerical process provide us approximate fuzzy function 

for      , denote it   
   

 at the     iteration using   integration nodes. We 

have 

  
                 ∫           

     
 

 

                                           

where         (  
           

        ) all components uniformly approach 

  as      . 

Now, let         (               ) and we neglect         in 

equation (4.19), then we have 

  
                

  
                 ∫           

     
 

 

    

and  
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              ∫           

     
 

 

                                                      

Theorem (4.4) [32]: Let   
   

    be an approximation to       using the 

trapezoidal rule with   equally spaced integration nodes, then   
   

    

converges uniformly to the unique solution      when      . 

Proof: see [31]. 
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Numerical Examples and Results 
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Chapter Five 

Numerical Examples and Results 

In this chapter we consider some numerical test cases to illustrate the 

numerical methods presented in chapter four. These include: Taylor 

expansion method and trapezoidal method. We will use algorithms and 

MAPLE software for our numerical computations then draw a comparison 

between approximate solutions and the exact ones. 

Numerical example (5.1):  (Taylor expansion method) The following 

fuzzy Fredholm integral equations: 

       
 

 
        ∫

 

 
  

 

 

         

       
 

 
        ∫

 

 
        

 

 

                                                             

have the exact solutions 

               

                                                                                                                

Here we expand the unknown functions in Taylor series at   
 

 
. 

The following algorithm implements the Taylor expansion method using 

MAPLE software. 
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Algorithm (5.1) 

1. input                                  
      

2. input the Taylor expansion degree   

3. calculate 
             

   
 
           

   
 
           

   
            

4. calculate     
     

 
    

  
∫

 
   

         

   
         

    

 
          

5. calculate     
      

 
    

  
∫

             

   
         

 

    
 

6. put      
     

     
     

  

[
 
 
 
 
 
     

     
      

     
       

     
    

     

    
     

    
     

         
     

    
     

     

      
     

      
     

         
     

        
     

    
     

    
     

       
     

    
     

  ]
 
 
 
 
 
 

 

7. put  

    
      

     
      

 

[
 
 
 
 
 
     

      
    

      
       

      
    

      

    
      

    
      

       
      

    
      

     

      
      

      
      

         
      

      
      

    
      

    
      

       
      

    
      

]
 
 
 
 
 
 

 

8. denote  

       [
    

     
    

     

    
     

    
     

] 
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9. put   

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        

 

 
           

   

  
 
     

 

 
           

   

 
        

 

 
           

   

  
 

     

 

 
           

   ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

10. solve the following linear system 

     

11. Estimate               by computing Taylor expansion for   

       ∑
 

  

 

   

          

   
|

   

       

       ∑
 

  

 

   

          

   
|
   

       

So we obtain the following results: 
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[
 
 
 
 
 
 
  

 

 

 

 
  

 

 
 

 

 
  

   
 

 

 

 

  
 

 
 

 

 ]
 
 
 
 
 
 
 

 

  

[
 
 
 
 
 
       

        

       

  
 
     ]

 
 
 
 
 

 

[
 
 
 
 
 
 
  

 

 
       

 
 

 
     

 
 

 
       

 
 

 
     ]

 
 
 
 
 
 
 

  
 

 

 

[
 
 
 
 
 
 
  

 

 
     

 
 

 
     

 
 

 
     

 
 

 
     ]

 
 
 
 
 
 
 

 

Solving the following linear system  

     

[
 
 
 
 
 
 
  

 

 

 

 
  

 

 
 

 

 
  

   
 

 

 

 

  
 

 
 

 

 ]
 
 
 
 
 
 
 

  

[
 
 
 
 
 
 
  

 

 
     

 
 

 
     

 
 

 
     

 
 

 
     ]

 
 
 
 
 
 
 

 

we obtain  

  

[
 
 
 
 
   

 

 
   

   
 

 
   

  
 

 
   

 
 
 
 

 
   ]

 
 
 
 
 

 

[
 
 
 
 
 

 
     

     
 

 
     

     ]
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Now,  

       ∑
 

  

 

   

          

   
|

  
 

 

   
 

 
   

 

 
           (  

 

 
)

                                                                                                     

       ∑
 

  

 

   

          

   
|
  

 

 

   
 

 
   

 

 
           (  

 

 
)

              

This agrees with the exact solution (5.2) for equation (5.1). Moreover, for 

a fixed   we compare the exact and the approximate solutions of equation 

(5.1) as shown in figure (5.1). 

 

Table (5.1) compares the results with the exact solution using Definition 

(1.11). 
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Table (5.1): The error resulted by algorithm (5.1) at     

r         
     

               
           

 

      3     

                    

                    

                    

                    

                    

                    

                    

                    

                    

            

These results reveal the accuracy and the great potential of Taylor 

expansion method for solving equation (5.1) since the 

       (                        )   

   
     

,   |              |     | 
     

  
      

|-     
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Numerical example (5.2): (Taylor expansion method) The following 

fuzzy Fredholm integral equations: 

                          ∫
 

 
         

 

 

         

                          ∫
 

 
               

 

 

                    

have the exact solutions 

                     

                                                                                                      

Here we expand the unknown functions in Taylor series at   
 

 
. 

Algorithm (5.1) implements the Taylor expansion method using MAPLE 

software so we obtain the following results: 

    
        

   
 

 [

                                                       
                                                      
                                                
                                                

] 

    
        

    [

    
    
    
    

] 

hence, 

  0
    

       
   

    
       

   1 
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[
 
 
 
 
 
 
 
 
 
 
 
       

        

         

          

       

  
 
     

  
  
     

  
   
     ]

 
 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
                   

                    

                 

                  

                   

                    

                 

                  ]
 
 
 
 
 
 
 
 

  
 

 

 

  

[
 
 
 
 
 
 
 
 
                  

                 
                  
                  
                  

                 
                  
                  ]

 
 
 
 
 
 
 
 

 

Solving the following linear system  

     

we obtain  

  

[
 
 
 
 
 
 
 
 
 
 
        

         

          

           

         

 
 
       

 
  
       

 
   
       ]

 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 

                 
                 
                 
                 
                 
                 
                 

                  ]
 
 
 
 
 
 
 
 

 

Now,  
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       ∑
 

  

 

   

          

   
|

  
 

 

   
 

 
  

                                      

                                               

       ∑
 

  

 

   

          

   
|
  

 

 

   
 

 
  

                                      

                                           

Figure (5.2) compares the exact and approximate solutions for a fixed 

     

 

Table (5.2) uses Definition (1.11) to compare the approximate solution 

with exact solution (5.4). 
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Table (5.2): The error resulted by algorithm (5.1) at    . 

r         
     

               
           

 
     
                   

0.0                                                                  

0.1                                                                  

0.2                                                                  

0.3                                                                  

0.4                                                                  

0.5                                                                  

0.6                                                                  

0.7                                                                  

0.8                                                                  

0.9                                                                  

1.0                                                                  

These results reveal the accuracy of Taylor expansion method to solve 

equation (5.3) since the                          . 

Numerical example (5.3): (Trapezoidal method) The fuzzy Fredholm 

integral equations (5.1) have the exact solution (5.2) where 

      on the interval         
   

 
                

                         

The approximate fuzzy function calculated at the 24-th iteration with 

    , the following algorithm implements the trapezoidal rule using 

MAPLE software. 
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Algorithm (5.2) 

1. input                              , m 

2.   
   

 
 

3.           

4. For         , compute          

5. Compute   
                

           
     

     [
             

 
 ∑        

   

   

] 

        
                 ∫           

     
 

 

   

6. Compute   

   
             

         

     
     [

             

 
 ∑        

   

   

] 

       

   
              ∫           

     
 

 

   

So we obtain the following results: 

   
                     

   
                     ∫          
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                     ∫          

          

 

 

 

                                         

   
                     ∫          

          

 

 

 

                                         

   
                     ∫          

          

 

 

 

                                        

   
                     ∫          

          

 

 

 

                                        

   
                     ∫          

          

 

 

 

                                        

   
                     ∫          

          

 

 

 

                                       

   
                     ∫          
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                     ∫          

          

 

 

 

                                        

   
                      ∫          

          

 

 

 

                                            

   
                      ∫          

           

 

 

 

                                           

   
                      ∫          

           

 

 

 

                                          

   
                      ∫          

           

 

 

 

                                           

   
                      ∫          
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                      ∫          

           

 

 

 

                                          

   
                      ∫          

           

 

 

 

                                           

   
                      ∫          

           

 

 

 

                                          

   
                      ∫          

           

 

 

 

                                          

   
                      ∫          

           

 

 

 

                                          

   
                      ∫          

           

 

 

 

                                          

   
                      ∫          
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                      ∫          

           

 

 

 

                                          

   
                      ∫          

           

 

 

 

                                           

   
                      ∫           

           
 

 
  

                                           

and 

   

   
                  

   

   
                  ∫          

   
       

 

 

 

                                         

   

   
                  ∫          

   
       

 

 

 

                                        

   

   
                  ∫          
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                  ∫          

   
       

 

 

 

                                                  

   

   
                  ∫          

   
       

 

 

 

                                         

   

   
                  ∫          

   
       

 

 

 

                                                  

   

   
                  ∫          

   
       

 

 

 

                                                  

   

   
                  ∫          

   
       

 

 

 

                                        

   

   
                  ∫          
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                  ∫          

   
       

 

 

 

                                                  

   

    
                  ∫          

    
       

 

 

 

                                                    

   

    
                  ∫          

    
       

 

 

 

                                                     

   

    
                  ∫          

    
       

 

 

 

                                                   

   

    
                  ∫          

    
       

 

 

 

                                           

   

    
                  ∫          

    
       

 

 

 

                                                   

   

    
                  ∫          
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                  ∫          

    
       

 

 

 

                                                    

   

    
                  ∫          

    
       

 

 

 

                                                    

   

    
                  ∫          

    
       

 

 

 

                                                    

   

    
                  ∫          

    
       

 

 

 

                                                    

   

    
                  ∫          

    
       

 

 

 

                                                    

   

    
                  ∫          
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                  ∫          

    
       

 

 

 

                                                    

   

    
                  ∫          

    
       

 

 

 

                                                     

Figure (5.3) compares both the exact and the approximate solutions for a 

fixed    . 

 

 

 

 

 

 

 

We use Definition (1.11) to compare the results of example (5.3) with the 

exact solution (5.2) as shown in table (5.3) with     . 
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Table (5.3): The error resulted by algorithm (5.2) at    . 

r              
               

           
 

     
                   

0.0                                                   

                                                     

                                                     

                                                     

                                                     

                                                     

                                                     

                                                     

                                                     

                                                     

                                                     

These results reveal the effeciency of trapezoidal method to solve 

equation (5.1) since the                            

Numerical example (5.4): (Trapezoidal method) The fuzzy Fredholm 

integral equations (5.3) have the exact solution (5.4) where 

      on the interval         
   

 
                

                          

The approximate fuzzy function calculated at the 24-th iteration with 

    , algorithm (5.2) implements the trapezoidal method using MAPLE 

software. Then we obtain the following results: 
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and 
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Figure (5.4) compares both the exact and the approximate solutions for a 

fixed    . 

 

Table (5.4) shows a comparison between the results and the exact 

solution (5.4) using Definition (1.11) with     . 
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Table (5.4): The error resulted by algorithm (5.2) at    . 

r         
     

               
           

 
     
                   

0.0                                                                  

                                                                     

                                                                     

                                                                     

                                                                     

                                                                     

                                                                     

                                                                     

                                                                     

                                                                     

                                                                     

These results show the accuracy of trapezoidal method to solve equation 

(5.3) since the                            

We conclude from our numerical test cases that the Taylor expansion 

method is more efficient than the Trapezoidal method. 
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Conclusions 

 In this thesis, some analytical and numerical methods for solving fuzzy 

Fredholm integral equation of the second kind are presented. The analytical 

methods are: Fuzzy Laplace method, Homotopy analysis method (HAM), 

Adomain decomposition method (ADM) and Fuzzy differential 

transformation method (FDTM). The numerical methods include: Taylor 

expansion method and Trapezoidal method. 

In addition, the numerical methods were implemented in a form of 

algorithms to solve some cases using MAPLE software. Numerical results 

have shown to be in a closed agreement with the analytical ones. 

However, for the numerical methods the Taylor expansion method seems 

to be more accurate than the Trapezoidal method according to our numerical 

test cases. 
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Appendix 

Maple Code for example (5.1) 
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Maple code for example (5.2) 
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Maple Code for example (5.3) 
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Maple Code for example (5.4) 
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 جامعة النجاح الوطنية
 كمية الدراسات العميا

 
 

 
 
 
 
 

معادلة فريدهولم التكاممية الضبابية من النوع 
 الثاني

 
 
 

 إعداد
 منى شاهر يوسف عماوي

 
 
 

 إشراف
 أ.د ناجي قطناني

 

 
 

بكمية  قدمت هذه الرسالة استكمالا لمتطمبات الحصول عمى درجة الماجستر في الرياضيات
 فمسطين.-الدراسات العميا في جامعة النجاح الوطنية, نابمس

4102 



 ب 

 معادلة فريدهولم التكاممية الضابية من النوع الثاني
 إعداد

 منى شاهر يوسف عماوي
 إشراف

 أ.د ناجي قطناني
 

 الممخص
ىمية ىذه معادلات فردييولم التكاممية الضبابية من النوع الثاني تمقت  اىتماماً كبيراً نظراً لأ

 المالية لنظمالمعادلات في الدراسات المرتبطة مع التطبيقات في الرياضيات الفيزيائية وا
 .الضبابية والاقتصادية

بعد أن تناولنا المفاىيم الأساسية لممعادلات التكاممية الضبابية, قمنا باستقصاء بعض الطرق 
ة من النوع الثاني. ىذه الطرق التحميمة التحميمية والعددية لحل معادلة فريدىولم التكاممية الضابي

شممت: طريقة تحويل لابلاس الضبابية, طريقة ىوموتوبي التحميمة, طريقة أدومين التحميمية, طريقة 
 التحويل التفاضمية الضبابية.

بعد ذلك قمنا مور التوسعية, طريقة شبو المنحرف. الطرق العددية التي قمنا بتنفيذىا ىي: طريقة تاي
والنتائج  حميميةوأجرينا مقارنة بين النتائج الت .عض الأمثمة باستخدام تمك الطرق العدديةبتنفيذ ب

 قريبية. النتائج التقريبية أظيرت دقتيا وقربيا من النتائج التحميمة.الت

 




