An-Najah National University
Faculty of Graduate Studies

Linear Fredholm Integro-Differential Equation

of the Second Kind

By
Khulood Nedal Iseed Thaher

Supervised
Prof. Naji Qatanani

This Thesis is Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science of Mathematics, Faculty of

Graduate Studies, An-Najah National University, Nablus, Palestine.
2016



il

Linear Fredholm Integro-Differential Equation

of the Second Kind

By
Khulood Nedal Iseed Thaher

This Thesis was Defended Successfully on 23/5/2016 and approved by:

Defense Committee Members Signature

1. Prof. Naji Qatanani /Supervisor
2. Dr. Maher Qarawani / External Examiner

3. Dr. Hadi Hamad / Internal Examiner



Dedication

| dedicate this thesis to my beloved Palestine, my parents, my
love my husband Ayman, my children Sandra and Kareem, my
brother Khaled and my sisters Amany and Farah. Without their
patience, understanding, support and most of all love, this work

would not have been possible.



iv

ACKNOWLEDGMENT

First of all, I thank my God for all the blessing he bestowed on

me and continues to bestow on me.

| would sincerely like to thank and deeply greatful to my
supervisor Prof. Dr. Naji Qatanani who without his support, kind
supervision, helpful suggestions and valuable remarks, my work
would have been more difficult. My thanks also to my external
examiner Dr. Maher Qarawani and to my internal examiner Dr.

Hadi Hamad for their useful and valuable comments.

Also, my great thanks are due to my family for their support,

encouragement and great efforts for me.

Finally, | would also like to acknowledge to all my teachers in

An-Najah National University department of mathematics.



v

U

P ol Jaas Al ALY avie ¢ ool adgall U

Linear Fredholm Integro-Differential Equation

of the Second Kind

adl 5L G le sl cpaldll Gaga W g e Allull oda adde cilad Lo b il
ole il ol Ay (6 Jil 0 e pds o leie e gl f RIS ALl 038 o cayy Lea

(oal Ainy 5l Apaded Tuge g3 i

Declaration

The work provided in this thesis unless otherwise referenced, is the
researcher’s own work , and has not been submitted elsewhere for any

other degree or qualification .

Student’s Name : AP e el sl s lldal) o
Signature: . b gl

Date : <’-‘"\/°/Q“<' s gl



Vi

Table of Contents

No. Content Page
Dedication ii
Acknowledgement \Y
Declaration %
List of Figures viii
List of Tables IX
Abstract X
Introduction 1

Chapter One: Mathematical Preliminaries 3
1.1 Classification of integro-differential equations 3
1.1.1 | Types of integro-differential equations 3
1.1.2 | Linearity of integro-differential equations 5
1.1.3 | Homogenity of integro-differential equations 5
1.1.4 | Singularity of integro-differential equations 6
1.2 Systems of Fredholm integro-differential equations 7
1.3 Systems of Volterra integro-differential equations 8
1.4 Kinds of kernels 8
Chapter Two: Analytical Methods for Solving 10
Fredholm Integro-Differential Equation
2.1 Direct computation method 10
2.2 Variational iteration method 12
2.3 Adomian decomposition method 15
2.4 Modified decomposition method 18
2.5 Noise terms phenomenon 21
2.6 Series solution method 22
Chapter Three: Numerical Methods for Solving 26
Fredholm Integro-Differential Equation
3.1 B-spline scaling functions and wavelets 26
3.2 Homotopy perturbation method (HPM) 35
3.3 Legendre polynomial method 37
3.4 Taylor collocation method 47
Chapter Four: Numerical Examples and Results 55
4.1 The numerical realization of equation (4.1) using the B-spline | 55

scaling functions and wavelets




vii

4.2 The numerical realization of equation (4.1) using the 59
Homotopy perturbation method

4.3 The numerical realization of equation (4.2) using the B-spline | 61
scaling functions and wavelets

4.4 The numerical realization of equation (4.2) using the 63
Homotopy perturbation method

4.5 The numerical realization of equation (4.3) using the 66
Legendre polynomial method

4.6 The numerical realization of equation (4.3) using the Taylor 72
collocation method
Conclusions 79
References 80
Appendix 86
Maple code for B-spline scaling functions and wavelets for 86
example 4.1
Maple code for Homotopy perturbation method for example 93
4.1
Maple code for B-spline scaling functions and wavelets 94
method for example 4.2
Maple code for Homotopy perturbation method for example 101
4.2
Matlab code for Legendre polynomial method 103
Matlab code for Taylor collocation method 110
oadldl -




viii

List of Figures

No. Title Page

4.1 | The exact and numerical solutions of applying 58
Algorithm 4.1 for equation (4.1).

4.2 | The error resulting of applying algorithm 4.1 on 58
equation (4.1).

4.3 | The exact and numerical solutions of applying 60
Algorithm 4.2 for equation (4.1).

4.4 | The error resulting of applying algorithm 4.2 on 61
equation (4.1).

4.5 | The exact and numerical solutions of applying 62
Algorithm 4.1for equation (4.2).

4.6 | The error resulting of applying algorithm 4.1 on 63
equation (4.2)

4.7 | The exact and numerical solutions of applying 65
Algorithm 4.2 for equation (4.2).

4.8 | The error resulting of applying algorithm 4.2 on 65
equation (4.2)

4.9 | The exact and numerical solutions of applying 71
Algorithm 4.3 for equation (4.3).

4.10 | the error resulting of applying algorithm 4.3 on 71
equation (4.2).

4.11 | The exact and numerical solutions of applying 78
Algorithm 4.4 for equation (4.3).

4.12 | the error resulting of applying algorithm 4.4 on 78

equation (4.3).




iX

List of Tables

No. Title Page

4.1 | The exact and numerical solutions of applying Algorithm 57
4.1 for equation (4.1).

4.2 | The exact and numerical solutions of applying Algorithm 60
4.2 for equation (4.1).

4.3 | The exact and numerical solutions of applying Algorithm | 62
4.1 for equation (4.2).

4.4 | The exact and numerical solutions of applying Algorithm 64
4.2 for equation (4.2).

4.5 | The exact and numerical solutions of applying Algorithm 70
4.3 for equation (4.3).

4.6 | The exact and numerical solutions of applying Algorithm | 77

4.4 for equation (4.3).




X

Linear Fredholm Integro-Differential Equation of the Second Kind
By
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Abstract

In this thesis we focus on solving linear Fredholm integro-differential
equation of the second kind due to it's wide range of physical applica-
tions. We will investigate some analytical and numerical methods to solve
this equation. The discussed analytical methods include: Direct
computation method, variational iteration method, Adomian decompos-
ition method, modified decomposition method, noise terms phenomenon

and series solution method.

The numerical methods that will be presented here are: B-spline scaling
function and wavelet method, Homotopy perturbation method, Legendre
polynomial method and Taylor collocation method. Particular numerical
examples demonstrating these numerical methods have been implement-
ed for solving linear Fredholm integro-differential of the second kind. A
comparison has been drawn between these numerical methods. Our
numerical results show that the Homotopy perturbation method and
Legendre polynomial method have proved to be the most efficient in
comparison to the other numerical methods regarding their performance on

the used examples.



Introduction

The subject of integro-differential equations is one of the most important
mathematical tools in both pure and applied mathematics. Integro-
differential equations play a very important role in modern science and
technology such as heat transfer, diffusion processes, neutron diffusion
and Dbiological species. More details about the sources where these
equations a rise can be found in physics, biology and engineering
applications as well as in advanced integral equations books. (see [2, 4, 5,

8, 18, 19, 20, 22]).

Some valid numerical methods, for solving Fredholm integro-differential
equations have been developed by many researchers. In [7] Behiry and
Hashish used wavelet methods for the numerical solution of Fredholm
integro-differential equation. Lakestani, Razzaghi and Dehghan [25]
applied linear semiorthogonal B-spline wavelets, specially constructed for
the bounded interval to solve linear Fredholm integro-differential equation.
In [16] Ji-Huan He solved linear Fredholm integro-differential equation
by a Homotopy perturbation method. This method yields a very rapid
convergence of the solution series in most cases, usually only few iterations
leading to very accurate solutions. A Legendre collocation matrix method
IS presented to solve high-order linear Fredholm integro-differential
equations under the mixed conditions in terms of Legendre polynomials
were used in [42] by Yalcinbas, Sezer and Sorkan. In [23] Karamete and
Sezer solved Fredholm integro-differential equation by a truncated Taylor

series. Using the Taylor collocation points, this method transforms the
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integro-differential equation to a matrix equation which corresponds to a

system of linear algebraic equations with unknown Taylor coefficients.

However many approaches for solving the linear and nonlinear kind of
these equations may be found in [10], [11], [13], [14], [15], [29], [30], [32],
[36], [39] and [43].

In this work, some analytical methods have been used to solve the
Fredholm integro-differential equation of the second kind. These methods
are: direct computation method, variational iteration method, Adomian
decomposition method, modified decomposition method,  noise terms

phenomenon and series solution method.

For the numerical treatment of the Fredholm integro-differential equation
of the second kind, we have implemented the following methods: B-spline
scaling functions and wavelets, Homotopy perturbation method, Legendre

polynomial method and Taylor collocation method.

This thesis is organized as follow: In chapter one, we introduce some basic
concepts of integro-differential equations. In chapter two, we investigate
some analytical methods to solve the Fredholm integro-differential
equation. These have been mentioned before. In chapter three, we
implement some numerical methods for solving Fredholm integro-
differential equation. These have mentioned before. Numerical examples
and results are presented in chapter four and conclusions have been

drawn.
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Chapter One
Mathematical Preliminaries

Definition 1.1 [39]

An integro-differential equation is the equation in which the unknown

function appears inside an integral sign and contains ordinary derivatives.

A standard integro-differential equation is of the form:

vW(x)=f (x)+,1h(jx)e (x,y)v(y)dy, (1.1)

g(x)

where v ™ (x) = d’v

n ]

n integer, A is a constant, g(x) and h(x) are

limits of integration that may be both variables, constants, or

mixed,G (x,y) is a known function of two variables x and y called the

kernel or the nucleus of the integro-differential equation. The function

V that will be determined appears under the integral sign, and sometimes

outside the integral sign. The function f (x) and G(x,y) are given .

1.1 Classification of Integro-Differential Equations
1.1.1 Types of integro-differential equations

There are three types of integro-differential equations:
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1. Fredholm integro- differential equation

The Fredholm integro-differential equation of the second kind appears in

the form:

v (x)=f (X)+/1TG(X,Y)V(V)O|V- (1.2)

2. Volterra integro-differential equation

The Volterra integro-differential equation of the second kind appears in the

form:

VOX)=f (x)+A[G(X,y)v(y)dy, (13)

where the upper limit of integration is variable.
3. Volterra-Fredholm integro-differential equation

The Volterra-Fredholm integro-differential equation of the second kind

appear in two forms, namely:

v (x)=f (X)+21T£Gl(x,y)V(y) dy +%EGz(x,y)V(y)dy (1.4)
and

viV(x,y)=f (x,y)ijF(x,y,g,r,v(g,r))dgdz, X,y €eQx[0Y ]

(1.5)
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where f (x,y) and F(x,y,&,7v(&,7)) are analytic functions,

D =Qx[0Y ]Jand Q is a closed subset of R", n =1,2,3. It is interesting
to note that (1.4) contains disjoint VVolterra and Fredholm integrals,
whereas (1.5) contains mixed integrals. Other derivatives of less order may

appear as well.
1.1.2 Linearity of integro-differential equation
Definition 1.2 [39]

The integro- differential equation

h(x)

vIx)=f (x)+4 [ G(x,y)v(y)dy,
g(x)

is said to be linear if the exponent of the unknown function v (x ) under the

integral sign is one and the equation does not contain nonlinear functions of

v (X ), otherwise, the equation is called nonlinear.

1.1.3 Homogeneity of integro-differential equation
Definition 1.3 [39]

The integro-differential equation

h(x)

VO x)=f ()2 [ GX,y)V(Y)dy,

g(x)

is said to be homogeneous if f (x) is identically zero, otherwise it is

called nonhomogeneous.
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1.1.4 Singularity of integro-differential equation

When one or both limits of integration become infinite or when the kernel
becomes infinite at one or more points within the range of integration. For

example, the integro-differential equation.

dy v(y) v ) =f () +2 [ G(X,y)

Is a singular integro-differential equation of the second kind.
(i) Singular integro-differential equation

If the kernel is of the form

G(X,y)=HX(+’;/) (1.6)

where H (x,Yy) is differentiable function a<x <b, a<y <b with

H (x,y)#0, then the integro-differential equation is said to be a singular

b
equation with Cauchy kernel where the G (x,y) = J- HX(X ’;/) f(y)dy is

understood in the sence of Cauchy Principal value (CPV) and the notation

P.V j Mdy is usually used to denote this. Thus

X ¢ X -y X -y

a X+&

—£ b
. jH(X Yy, _,,m“ H(X’y)dy+IH(X’y)dy},

for example
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1
v'(x):gx2+7x4+x5ln =X )2, [y y)dy, x| <1.
3 1+X 5 X -y

(i1) Weakly singular integro-differential equation

The kernel is of the form

G(x,y)= (1.7)
where H (x,y) is bounded i e.several times continuously differentiable

a<x <band a<y <b with H(x,y)#0 and « is a constant such that

O0<a<1. For example, the equation

v(”)(x):/i)j

—~V(y)dy, O<a<l
o|x —y|

Is a singular integro-differential equation with a weakly singular kernel.
1.2 Systems of Fredholm Integro-Differential Equations

A system of Fredholm integro-differential equations of the second kind can

be written as:
b
U960 =100+ [@0UW+GEYIVN Y (L8)
b
v<‘>(x)=f2(x>+j(ez(x,y>u(y)+G”2(x,y)v(y» dy .

The unknown functions u(x)and v (x), that will be determined, occur

inside the integral sign whereas their derivatives appear mostly outside the
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integral sign. The kernels G, (x,y), G, (x,y) and the functions f, (x)are

given as real-valued functions [39].
1.3 Systems of Volterra Integro-Differential Equations

A system of Volterra integro-differential equation of the second kind has

the form:

u<‘>(x)=f1(x)+j(el(x,y)u<y)+c§1(x,y)v(y»dy (1.9)

v<‘>(x>=f2(x)+[<ez(x,y)u(y)+<§2(x,y)v(y)) dy.
0

The unknown functions u(x) andv (x )that will be determined, occur

inside the integral sign whereas their derivatives appear mostly outside the

integral sign. The kernels G; (x,y), G, (x,y) and the functions f; (x ) are

given as real-valued functions [39].
1.4 Kinds of Kernels

1. Separable kernel

A kernel G(x,y) is said to be separable or (degenerate) if it can be exp-

ressed in the form (1.10)

G(x.y) =D gy (O (y),
k=1
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where the functions g, (x) and the functions h, (y) are linearly indepe-

ndent. (see [39]).

2. Symmetric (or Hermitian) kernel

A complex-valued function G(x,y) is called symmetric (or Hermitian) if
G(x,y)=G (x,y), (1. 11)

where the asterisk denotes the complex conjugate. For a real kernel, we

have

G(x,y)=G(y,x). (1.12)
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Chapter Two
Analytical Methods for Solving Fredholm
Integro-Differential Equation of the Second Kind

There are many analytical methods for solving Fredholm integro-
differential equation of the second kind. In this chapter we will focus on the
following methods: direct computation method, variational iteration
method, Adomian decomposition method, modified decomposition method,

noise terms phenomenon and series solution method.
2.1 Direct Computation Method

This method can be used to solve the Fredholm integro-differential

equation of the second kind directly instead of a series form.

For the application of this method we consider the separable kernel of the

form
G(x,y)=g(x)h(y), (2.1)

We consider the Fredholm integro-differential equation of the general form

b
v‘“’(x)=f(x)+jG(x,y)v(y)dy, (2.2)

with the initial conditions v *)(0)=b, ,0<k <n —1.

Substituting (2.1) into (2.2) gives

b
v<“’(x)=f(x)+g(x)jh(y)v(y)dy. (2.3)
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Since the integral in equation (2.3) is a bounded integral and dependent

only on one variable y, then we can assign this integral by a constant 2,

That is

b
j h(y)v(y)dy =5 (2.4)

Thus equation (2.3) becomes
v (x)=f (x)+ Bg(x). (2.5)

Integrating both sides of (2.5) n times from 0 to x, also using the initial

conditions, we can find formula for v (x )that depends on B and x. This

means we can write
v (x)=u(x,p). (2.6)

Substituting (2.6) into the right side of (2.4), calculating the integral, also
solving the resulting equation, we determine S.We obtain the exact

solution v (x ) after substituting A into (2.6).

Example 2.1

Consider the Fredholm integro-differential equation

v'(x)=12x +jv (y)dy with v(0)=0. (2.7)
0

This equation may be written as

v'(x)=12x + g, v(0)=0. (2.8)
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obtained by setting

1

j v(y)dy = 5. (2.9)

0

Integrating both sides of (2.8) from 0 to x, and by using the initial

condition we obtain

V(X)=6x2+pX. (2.10)

Substituting (2.10) into (2.9) and evaluating the integral yield

1
p=[rrdy ~2+p (2.11)
0
hence we find
B=4. (2.12)
The exact solution is given by
Vv (X)=6x%+4x. (2.13)

2.2 Variational Iteration Method (VIM)

The variational iteration method (VIM) was established by Ji-Huan He
[17]. The method provides rapidly convergent successive approximations

of the exact solution only if such a closed form solution exists.

We consider the Fredholm integro-differential equation of the general form
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b
v(‘)(x):f(x)+iJ-G(x,y)v(y)dy. (2.14)

The correction functional for this equation is given by

X b
vn+1(x)=vn(x)+jz(r) v (z) - f (r)—jG(r,z)v}(z)dz]dr. (2.15)
0 a

The variational iteration method needs to determine the Lagrange

multiplier A(z) via integration by parts and by using a restricted variation.

The variational iteration formula, without restricted variation, should be

used for the determination of the successive approximations v ,(Xx),n >0
of the solution v (x). The zeroth approximation v, can be any selective
function. However, using the given initial values v (0),v'(0),...are

preferably used for the selective zeroth approximation v .
Consequently, the solution is given by

v(x)=Ilimv_ (x). (2.16)

Example 2.2

Consider the Fredholm integro-differential equation

v'(x)=12x +J‘v (y)dy with v(0)=0. (2.17)

The correction functional for this equation is given by

1

Va0 =V, 00 - [V @ -12e - [v, @) dlde, (218)
0

0
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as A =-1 for first-order Fredholm integro-differential equation.

This gives:

Vo(x)=0

1

vl(x):vo(x)—jpg(f)—lzr—jvo(z) dz]dr =6x>
0

0

1

vz(x)=v1(x)—jp1'(r)—12r—_[v1(z) dz]dz =6x2+2x

0

vg(x)=v2(x)—jp;(f)—12r—jv2(z)dz]df —6x242x +X  (2.19)
0 0

v4(x):vg(x)—jpg(r)—lzr—jvg(z)dz]dr — 6% % 12X +X +%x

0

X 1
V5(X):V4(X)—J-E/:1(T)—121—J.V4(Z)dz]dr =6X 2 +2X +X +%x +%x
0 0

V00 =V 100 - [Faa(0 120 [v, @) dz1de

=6x 2 +3x +(1+1+1+---)x
2 4 8

and so on. The VIM admits the use of

v(x)=limv_ (x). (2.20)

We obtain the exact solution

Vv (X)=6x%+4x. (2.21)
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2.3 Adomian Decomposition Method

The Adomian decomposition method (ADM) was introduced and develo-
ped by George Adomian [1-3]. ADM gives the solution in an infinite series
of components. The idea of Adomian decomposition method is

transforming Fredholm integro-differential equation to an integral equation.

We consider the second order Fredholm integro-differential equation of

the second kind of the form .

b
Vi) =t )+ [ y)v(y) dy, 2.22)

with the initial conditions v (0) =b, , v'(0) =b,.

Integrating both sides of (2.22) from 0 to x twice, we get

b
V() =by +bx + LT (L[ yv ) @223)

where the initial conditions are used, and L™ is a two-fold integral

operator. Vv (x) expressed as

L(x). (2.24)

n=0

Setting (2.24) into (2.23) gives:

o0

ZV” (x)=by +bx + L7 (F (x))+ Ll[IG (x,y )iv (y)dy } (2.25)
0 n=0

n=0
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or equivalently,

V(X)) +V (X)) +V, (X ) +...=by +b (X )+ L7H(f (x))

L[S 0y voly) dy) LG 0 y)vaty ) dy)

+L‘1(J.G (Y, (Y) dy) +... (2.26)
0

Note that, v, (x ) is defined by all the terms that are not included under the

integral sign, that is

Vo(x) =hg +by(x) +L7(F (x))

et =L ey v ), k2o @27)

Using (2.24), the obtained series converges to the exact solution if such a

solution exists, see ([12], [39]).
Example 2.3

Consider the Fredholm integro-differential equation

v'(x)=-1+24x +Iv (y)dy with v(0)=0. (2.28)

Note that, the integral at the right side is equivalent to a constant.

Integrating both sides of Eq. (2.28) from 0 to X , we get
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V(x)=V(0)=—x +12x % +X “v (y )dy ] (2.29)

0

using the initial condition

V(X)=—X +12x % +x [J‘v (y)dy J (2.30)

0

Let

V()= YV, (x). (2.31)

Setting (2.31) into (2.30) gives

ivn(x)z—x +12x 2 +x (Ivn(y)dy J (2.32)

n=0 0

The components v ;, j >0 of v(x) can be determined by using the recu-

rrence relation

1
Vo(X)=—X +12x % | vk+1(x)=x“vk(y)dy}, k >0. (2.33)

0

This gives

1
Vo(X)=—Xx +12x? | vl(x):vao(y)dyJ:gx
0

Vo(x)=x le(y)dy}gx . Va(x)=x Uvz(y)dy}%x (2.34)

0 0

Hence, the solution is
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V(X)=—X +12x2+%x(1+%+%+---), (2.35)

which gives the exact solution

v (x)=6x +12x 2. (2.36)
2.4 Modified Decomposition Method

As shown before, The Adomian decomposition method provides the solu-

tion in an infinite series of components. The method substitutes the

decomposition series of v (X ), given by

o0

v(x)= ) v, (x) (2.37)

n=0
The process of converting Fredholm integro-differential equation to an
integral equation can be achieved by integrating both sides of the Fredholm
integro-differential equation from 0 to X as many times is needed to

convert it into the integral equation

b
v(x)=f(x)MIG(x,y)v(y)dy. (2.38)

The standard Adomian decomposition method introduces the recurrence

relation

Vo) =f (x) 239

b
vkﬂ(x):ﬂje(x,y)vk(y)dy, k >0,
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The modified decomposition method presents a slight variation to the

recurrence relation (2.38) to determine the components of v (X ) in an easier
and faster manner. For many cases, the function f (x) can be set as the

sum of two partial functions, namely f,(x) and f,(x). In other words
f(x)=Ff,(x)+f,(x). (2.40)

The modified decomposition method admits the use of the modified

recurrence relation

Vo(x)=Fi(x)

b
v1<x)=f2<x)+zfe(x,y>vo(y)dy (2.41)

b

Veat)=2[B ey VL) dy L k21

a

The difference between the recurrence relation (2.39) and the modified
recurrence relation (2.41) is in the formation of v,(x) and v,(x)only.

The other components v ; (x), j >2 remain the same in the two recurrence

relations [39].
Example 2.4

Consider the Fredholm integro-differential equation

v'(x)=-sin(x)+x —=x |y v(y)dy withv(0)=0, v'(0) =1. (2.42)

o'—,l\)‘h\
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Using the modified decomposition method. First, integrate both sides of

(2.42) from 0 to x twice, and using the given conditions, we obtain the

Fredholm integral equation

T

v(x):sin(x)+%x3—%x3jy v(y)dy. (2.43)

0

f (x)=sin(x)+%x3 (2.44)

We split f (x) into two parts, namely
f, (x)=sin(x)

fz(x)=+%x3, (2.45)

f,(x) related to the zeroth component, v,(x),and add f,(x) to the

component v,(x). Therefore, we obtain the modified recurrence relation

Vo (x)=sin(x)

T

2

1 1
) =31 =2 [y valy) dy =0, (2.46)

0

all remaining components v, (X ),v3(x),... are zeros. This gives the exact

solution as

v (X)=sin(x) (2.47)
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2.5 The Noise Terms Phenomenon

The idea behind solving equations with noise terms if the noise terms

appear between components of Vv (X),then the exact solution can be

obtained by considering only the first two components v ,(x) and v,(X).

The noise terms are defined as the identical terms, with opposite signs, that

may appear between the components of the solution v (x ). The conclusion

made by [1], [3], and [41] suggests that if we observe the appearance of

identical terms in both components with opposite signs, then by canceling

these terms, the remaining non-canceled terms of v, may in some cases

provide the exact solution, that should be justified through substitution.

It was formally proved that other terms in other components will vanish in

the limit if the noise terms occurred in v ,(x) and v, (X).

Example 2.5

Consider the Fredholm integro-differential equation

v'(x):l—%x +Ixy v(y)dy with v(0)=0. (2.48)

0

Using the noise terms phenomenon. By integrating both sides of the

equation (2.48) from 0 to X gives

v(x)—v(0)=x—%x2+%x2_(‘;y v(y)dy , v(0)=0. (2.49)

by using the initial condition
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1
v(x):x—lx2+lx2_‘-yv(y)dy.
6 2
0
Let

n=0

Substituting (2.51) into both sides of (2.50) yields

0

n=0

or equivalently
1
Vo(X)=x — X 2

.
vl(x)zﬁxz.

Notice that v,(X) can be written as

1, 1,
Vi X)=—X" ——X".
1) 6 48

ZVn(x):x —%x2+%x2jy(ivn(y))dy.
0 n=0

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

. 1
The noise terms J_rgx 2 appear between the components v ,(x ) and v,(x).

By canceling the noise term form v ,(X ), we obtain the exact solution

vV(X)=X.

2.6 The Series Solution Method

(2.55)

The series method is useful method that stems mainly form the Taylor

series for analytic functions for Fredholm integro-differential equation.
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Definition 2.1 [39]

A real functionv (x) has the Taylor series representation

v (x) = ZV (k)(b)( ), (2.56)

is called analytic if it has derivatives of all orders such that the Taylor

series at any point b in it is domain converges to v (X) in a neighborhood

of b.

For simplicity, the generic form of the Taylor series at b =0 is given as

v(x)= Zanx " (2.57)
n=0

We will assume that the Fredholm integro-differential equation of the

second kind

b
v® (x)=f (x)mje(x,y) v(y)dy,v,(0)=a,, 0<j<(k-1) (258)

is analytic, and therefore possesses a Taylor series of the form given in

(2.57), where the coefficients a, will be determined recurrently.

Setting (2.57) into (2.58) yields
o (k) b o
[Zanx”] =T (f (x))+ﬂjG (x,y) [Zany”}dy, (2.59)
n=0 a n=0

This is equivalent to
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b
(@ +ax +ax 2 +..) ") =T (f (x))+ijG(x,y) (8, +ayy +ay 2 +---)dy
(2.60)

where T (f (x)) is the Taylor series for f (x).

After performing integration in the right hand side of (2.60), we compare

coefficients of power of X on both sides.
Example 2.6

Consider the Fredholm integro-differential equation of the second kind

v'(x)=4x +J‘(x—y)v(y)dy with v (0) =2, (2.61)

using the series method.

Let

v'(x)= (ianx Y. (2.62)
n=0

Inserting (2.62) into (2.61), yields

o0

Znanx”‘ =4X +J;((x -v) ;any )dy . (2.63)

n=0

a, = 2 from the given initial conditions. Evaluating the integral at the right

side gives
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a +2a,X +3aX° +---=

2y 20 20 20 ihe2a+2a+2a, s 20 vy, OO
3% 5T 7% T g% BT 3R TEHT % -

Comparing coefficients of like powers of X in both sides of (2.64) gives

8=0, a,=6, a,=0,n=2 (2.65)

The exact solution is given by
V(X)=2+6x2 (2.66)

where we used a, =2 from the initial condition.
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Chapter Three
Numerical Methods for Solving Fredholm

Integro-Differential Equation of the Second Kind

There are many numerical methods available for solving Fredholm integro-
differential equation of the second kind . In this chapter we will discuss the
following methods: B-spline scaling functions and wavelets, Homotopy
perturbation method, Legendre polynomial method and Taylor collocation

method.
3.1 B-Spline Scaling Functions and Wavelets on [0,1]

B-spline scaling functions and wavelets which are presented to
approximate  the solution of linear second order Fredholm integro-
differential equation [6], [7] and [9]. Their properties and the operational
matrices  of derivative for these functions are presented to reduce the
solution of linear Fredholm integro-differential equations to a solution of

algebraic equations.

Consider the linear second-order Fredholm integro-differential equation of

the form:
ZTi (X)y(i)(x):f (x)+JK(X D yt)dt,0<x <1 (3.1)
with

y@=y,  y@®=y, (3.2)
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where 7; (i =0,1,2), f, and K ,are given functions in L*[0,1], y, andy,

are given real numbers and vy is the unknown function to be found.

The second-order B-splines scaling functions are defined as:

X, — 1], J<x;<j+1
2 () =42=(x; =), j+1<x;<j+2,j=0,.,2 -2 (3.4)
0, otherwise

with the respective left- and right-hand side boundary scaling functions

i X)= I 3.5
%, () {0, otherwise (59
Xi—J, j<x,<j+Lj=2"-1
Ai '(X):{ ' (3.6)
! 0, otherwise

the actual coordinate position X is related to x; accordingto x;, =2'x.

The second-order B-spline wavelets are given by

X =], J <X <j+1/2
A-T7(x; =), j+Y2<x; <j+1
—19+16(x; —j), j+1<x;,<j+3/2

ﬂi,j(x):% 20-16(x, — ), | +3/2<x, <] +2 (37)
—17+7(x; —j), j+2<x;,<]j+5/2
3—(x; — 1), j+5/2<x, <j+3
0, otherwise

with the respective left- and right-hand side boundary wavelets:
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—6+23x;, 0<x, <1/2
14-17x,, 1/2<x, <1
1 | (x):% ~10+7x,, 1<x; <3/2 (3.8)
2-X,, j+3/2<x,<2,j=-1
0, otherwise

2—(j+2-x;), J<x;<j+12

~10+7(j +2-x;), J +Y2<x; <j+1
/hﬂM:%1¢4ﬂj+zmﬁ,yﬂ§m<j+W&j:?—2(&%
—6+23() +2—X;), ] +3/2<x; <j+2

0, otherwise.

From (3.4)-(3.9), we get more clear description for these two sets of

equations
1 1 :
Ai J(X) Z|+12](X)+)(|+121+1(X)+ZZ|+121+2(X) I :2131---
j=012,...,21 -2
(X) Z|+l 1(X)+ Z|+1O(X) i _23 (310)
1 :
Zi ,Zi—l(x):Zi+1,2”1_1(x)+§Zi+1,2i+1(x)v | :2,3,...
and
1 1 5
Hi j( ) Z|+12]( ) Z|+12]+1(X)+6Z|+121+2(X)

1 ) . .
_Zi+l,2j+4(x)' | :2131---1 J 20’112""121 _2

__Zi+1,2j+3(x)+12

2
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1
Zis12(X),

11
Xio(X)— Z|+11(X)+ 12

Hi —1(X)_ Z|+l 1(X)+ 12

11 1
Hy 3 1 (X) ==X 029 o (X) + 25 X120 5(X) = Z|+12 i (X)+ Z|+12 a_5(X).

12

(3.11)

We define
)
Xur age VK =12 ) =[ g 1 T oo Zurpia | (312)

let

Qum +1:J.XM +1XTM+1dX- (3.13)
The entry Q) ,,);; of the matrix Qy, ,; in (3.13) is calculated from

JZM i (X)) xm Y (x )dx (3.14)

using (3.4)-(3.6), (3.12) and (3.14) , we get a symmetric

" +1) x (2" ** +1) matrix for Q,,,; which is given by:

195 o0
12 24
1 11 0
1 24 6 24
QM+1:2|V|*1 E .'. .'. . : (315)
0 1 1 1
24 6 24
0 1 1
L 24 12 |
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Finally, we want to define a vector M of order (2™ * +1) x1 as:

M :[12’_1,Z2’0,...,Zle,ﬂZ,_l,...,/,12’2,/,13’_1,...,#3‘6,...,ILIM ‘_1,...,/1'\/' l2M _2]T .

(3.16)

The operational matrix of derivative

The differentiation of the vector X,,,, and M in (3.16) can be express-

ed as:
Xua=DxXy, . M'=DyM (3.17)

where Dy and D,, are (2" +2)x (2" * + 2) operational matrices of

derivative of B-spline scaling functions and wavelets respectively. The

matrix Dy
1

DX - J‘X'M +1(t )XTM +1(t )dt B (J‘X'M +1(t )XT M +1(t )dt ](QM +1)_1 =R (QM +1)_1

0

(3.18)

where

1
R = [ Xy s OXT (3.19)
0

In (3.19), R is(2" ™ +1)x (2" " +1) matrix given by
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1

1
J‘Zl’\/l +1,-2 (t) xwm +1,-2 (t)dt J‘Z{\A +1,-2 (t )ZM +1,2M _1(t )dt
0 0

1

1
j Tz O j PARPUTRIN (VN
0 0

(3.20)

since the elements in the vector given in (3.12) are nonzero between

k /2"* and (k +2)/2" ™, then for any entries of R;,, we have

1 (k+2)/2"
Rj k= J.Zl'\/l +1,] (t) ywm +1k (t)dt = J I +1, (t) xwm +1k (t)dt
0 k/2M+l
(k +1)/2"* (k+2)/2"+
= I Zl,\/l+1,j(t)ZM+1,k (t)dt + I Zl,\/l+l,j(t)ZM+1,k (t)dt
k/2v (k+1)/2"
(k +1)/2"* (k+2)/2"+
= I 2" +1ZM 11,k (t)dt + I —2M +17(|v| +1k (t)dt
k/2M+1 (k +l)/2M 1

. (3.21)

From (3.21), we get

|
N |- |\>||_\
N

R = . (3.22)

|
N |-~ |\>|H

N |-
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The matrix D, can be obtained by considering
M=G X, 4 (3.23)

where G isa (2" * +1) x (2" ** +1) matrix, which can be calculated as
follows. Let X and M be defined as:

X:[Zj,—1’Zj,07""Zj72171i|! (324)

M =[yj T ,2,_1]. (3.25)

Using (3.10) and (3.24) , we get

(3.26)

with

NI, N~

NI~ N~

1
L3 (3.27)

NI~
H

1

NI~ N~

where o (j =2,3,..), is (2’ +1)x (2!* +1) matrix. From (3.11) and
(3.25), we have

M, =X, (3.28)

with B;



IR
12 2 12
1 -1 5 -1
2 2 65 2

1 -1
1z 2

Bk oo Glr

-1 1
2 12
-1 5 -1 1
2 6 2 12
1 -1 5 -1
2 2 6 2
1 -1
12 2

where B (j =2,3,...),is 2 x (2" +1) matrix.

From (3.26) and (3.28), we get

]

Xj =@y Xy XX oy Xy

M = xaj x...xay Xy -

Using (3.24) and (3.16), we have

From (3.17),(3.18), and (3.31), we get

Bk oo Glr

12
11
12

(3.30)

(3.31)
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(3.32)
M'=G X}, ,; =GDxXy ; =GR Qy +1)_1XM 1=GRQy +1)_1G M= DyM,

where
Dy =GR@Qy +1)_1G - (3.33)
we want to explain the technique. We solve linear Fredholm integro-

differential equation by using B-spline wavelets. For this purpose we

write (3.1) as

2 7)Yy V) =f (x)+z(x) 0<x <L (3.34)
=
where
z(x):jK(x )y (t)dt. (3.35)
0
We define
y (x)=CTM(x) (3.36)
z(x):l'K(x £)CT M(t)dt, (3.37)

where M(x) is defined in (3.16 ), and C is (2™ " +1) x1 unknown vector

defined as

;
[C1,CorrCarlly gyl 0 ggronnOagrinn iy green iy g |

We can approximate (3.37), using Newton-Cotes techniques as

z(x):}K(x,t)CT M(t) dt :iWiK(X ,ti)CT M(t;) =F(x,C), (3.38)
0 i=1
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where w; and t; are weight and nodes of Newton-Cotes integration
techniques respectively. Using (3.32) and (3.36), we get

y'(x)=C"M'(x)=C"D,,M(x),

(3.39)
y"(x)=CTDyM(x),

From (3.30), (3.34), and (3.35), we get

7,(x)CTM(x) + 7,(x )CT D, M(X) + 7,(x)D 2, M(x) =f (x)+F (x,C).
(3.40)

Also, using (3.2) and (3.36), we have
C'¥(0)=y, C'¥(1)=y,. (3.41)

To find the solution y (x ), we first collocate (3.40) in
X, =(2i -1)/(2"*?-2),i =1,2,...,2" " —1, the resulting equation gener-

2M +1

rates —1 linear equations which can be solved using Newton's

iterative method. The initial values required to start Newton's method have

been chosen by taking Yy (x) as linear function between y (0) =y, and

y (1) = y,. The total unknown for vector C is 2™ ** +1. These can be

obtained by using (3.40) and (3.41).

3.2 Homotopy Perturbation Method (HPM)

The Homotopy perturbation method was introduced and developed by
Jihvan He [16]. The Homotopy perturbation method couples a Homotopy

technique of topology and a perturbation technique.
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Consider the following Fredholm integro-differential equation of the

second kind of the form

v'(x)=f () +A[G(x,y)v(y)dy. (3.50)
0

We define the operator

1
LUu)=u'(x)-A[G(x,y)u(y)dy -f (x)=0 (3.51)
0

where u’(x) =v'(x ). Next we define the Homotopy H (u,m), m €[0,1] by
Hu,0)=F@u) , Hu,)=L(u), (3.52)

where F(u) is a functional operator. We construct a convex Homotopy of

the form

Hu,m)=1-m)F@Uu)+mL(u). (3.53)

This Homotopy satisfies (3.52) for m =0 and m =1 respectively. The

embedding parameter m monotonously increases from zero to unity as the
trivial problem F(u)=0 is continuously deformed to the original problem

L(u)=0.

HPM uses the Homotopy parameter m as an expanding parameter to

obtain

U=Wy+mw,+mw,+mw,+.... (3.54)
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when m —1, (3.54) corresponds to (3.53) and becomes the approximate

solution of (3.51), i.e.,

v:rlnir_n)lu =W +W, +W, +W 5 +.... (3.55)

The series (3.55) is convergent for most cases and the rate of convergence

depends on L (u).

Assume F(u)=u(x)—f (x), and substituting (3.54) in (3.51) and equating

the terms with identical power of m, we have

m®:wj(x)=f (x) (3.56)

m" :Wr;(x):IG(va)Nn—l(y)dy’n:1’2!"' (357)
0

Notice that the recurrence relation (3.57) is the same standard Adomian

decomposition method as presented before in chapter two.
3.3 Legendre Polynomial Method

Orthogonal polynomials play a very important role in applications of
mathematics, mathematical physics, engineering and computer science.

One of the most common set of the Legendre polynomials
{Py(x),Py(X),...,Py (X)} which are orthogonal on [-11] and satisfy the

Legendre differential equation

A-x2)y"(x)=2xy'(xX)+n(n +Dy (x)=0, —-1<x <1 n=0

and are given by the form
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2] _
Pn(x):zinZ(—l)k (:)(in Zk]x“k n=01,... (3.58.a)
k=0

Moreover, recurrence formulas associated with derivates of Legendre

polynomials are given by the relation
P, (xX)-P4(xX)=2n+D)P,(x), n>1. (3.58.b)

Consider the following m™ order linear Fredholm Integro-differential

equation with variable coefficients

iFk (x)y<k>(x):g(x)+z}|<(x Dy t)dt, -1<x,t<1  (3.59)
k=0

-1
with conditions

kmz:_:ajkym(—l)mjky W@ +c;, y“0)=4, j=012..,m-1 (3.60)
where the constants I b k1 Cik s A and p; are stable constants.

Our aim is to obtain a solution expressed in the form:

y(x):ianpn(x), -1<x <1, (3.61)

so that the Legendre coefficients to be determined are the a_ 's where
n=0,12,..N and the functions P,(x) (n=0,12,...,N) are the Legendre
polynomials defined by the formula (3.58.a). Here F, (x), g(x) and

K (x,t)are functions defined in the interval -1<x,t <1.
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Fundamental matrix relations

Equation (3.59) can be written as

D(x)=g(x)+ 2, (x) (362)
where

D()= 3R ()y “(x)
and

1
I (x) = [K(x,t)y (t)dt.

We convert the solution y (x ) and its derivative y *)(x), the parts D (x)
and I; (x), and the mixed conditions in (3.60) to matrix form.

Matrix relations for y (x) and y “’(x)

The function y (x) defined by (3.61) can be expanded to the truncated

Legendre series in the form
N
y(x)=22a,P,(x), -1<x<1 (3.63)
n=0
formula (3.63) and its derivative can be written in the matrix forms,
[y c)1=P(x)A and [y ()1=P 0 (x)A, (3.64)

where

P(x)=[Py(x) Pi(x) ....Py (x)]
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PO x)=[Px) PY(x) .... Py (x)]
and A=[a, a...a,],
which A is the coefficient matrix.

On the other hand, by using the Legendre recursive formulas (3.58.a) and

(3.58.b) and taking n =0,1,...,N we can obtain the matrix equation

POx)=P(x)IT, (3.65)
where, for odd values of N
[ 0000 . 0 0 0
1 000.. 0 0 0
0300.. 0 0 0
1050 .. 0 0 0
0307.. 2N-—-3 0 0
| 1050 ... 0 2N—1 0
for even values of N
[ 0000 . 0 0 0
1 000.. 0 0 0
0300.. 0 0 0
1050 .. 0 0 0
1050.. 2N-—3 0 0
10307 ... 0 2N—1 0

Also, it is clearly seen that the relation between the matrix P (x )and its

derivative P ®)(x), from (3.65), is



41

POx)=Px)IT

PAx)=PY)IT =P x)(IT )? (3.66)
PO x)=P*Dx)IT ) =Px)(IT ),k =0,1,2,....

Consequently, by substituting the matrix relations (3.66) into Eq. (3.64), we

obtain the matrix relations for y (x) and P%)(x) as
[y “0)]=POOIT ) A, (3.67)
Matrix representations based on collocation points

The Legendre collocation points defined by

xi:—1+§%i, i =0,1,...,N, (3.68)

we substitute the collocation points (3.68) into Eq. (3.62) to obtain the

system
D(X;)=9(x;)+ Al (x;)

Represented in matrix equation as

D=G+Al, (3.69)
where
D (Xo) | [ 9(Xg) | 1 (%) |
D= D(.Xl) G= g(?(l) 1= If(-xl)

| D(xy) ] g (Xy) ] 1 (X))
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Matrix relation for the differential part D (x)

To reduce the D (x) part to the matrix form by means of the collocation

points, we first write the matrix D defined in eq.(3.69) as

m
D:ZFKY (k) (3.70)
k=1
where
F.(xo) 0 .. 0 |
(o 0 RG e o |
0 0 ... F(xy)
Ly ©(xo) |

y (= y(k)(xl)

Ly ()

Using the collocation points x;(i=0,1, N in (3.67) we have the

system of matrix equations
[y (x)I=Px)AT )*A, k=01..,m

or

_y(k)(xo)_ [ P(X) |

v 02| YO0 | PO g parryea, (3.71)

Ly ©xy)] PO

where
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[ Py(Xo)  Pi(Xg) o Py (Xp)]
Po(x))  Pi(xy) . Py(xy)

Po(xn) Puxy) o Py(Xy)]

Thus, from the matrix forms (3.70) and (3.71), we get the fundamental

matrix relation for the differential part D (X)

D=3 FP(IT ) A (3.72)
k =0

Matrix relation for the Fredholm integral part | (X)

The kernel function K (x,t) can be approximated by the truncated

Legendre series

N N
K(x,t) =3 > KpyPro (X)P, 1) (3.73)
m=0n=0
or
N N
KX, t)=> >kxmt" (3.74)
m=0n=0
where

1 3""K(0,0).
't“”:m!n! g M =0L1..N.

We convert (3.73) and (3.74) to matrix forms and then equalize

[K (x,1)]=P(X)K,P" (t) = X(x )K X" (t) (3.75)
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where
P(x)=[Po(x) Py(x) ... Py (x)]
X(x)=[L x .. x"]
K, =[k, 1, K =[k!.]; mn=01..,N.

On the other hand, by using the Legendre recursive formula (3.58.a) for

n=0,1,...,N we can obtain the matrix equation
P"(x)=DX" (x) or P(x)=X(x)D' (3.76)
where for odd values of N and for even values of N see [42].

Therefore, substituting the matrix P (x) in (3.76) into the relation ~ (3.75)

and simplifying the result equation, we find the matrix relation

K,=(D™") K,D™ (3.77)

which is the relation between the Legendre and Taylor coefficients of
K (x,t). Substituting the matrix forms (3.75) and (3.64) corresponding to
the functions K (x,t) and y (t) into the Fredholm integral part I, (x), we

obtain

[1 ()1 = [POOK,PT (t)P(t)Adt =P(x)K QA (3.78)

where

Q=[P t)P(t)dt =[q,,];



o
2m+1 S m,n =0,1,....N

Dmn —

and the matrix K is defined in (3.77).
Using the collocation points x; (i =0,1,...,N ) defined in (3.68) in the
relation (3.78) we obtain the system of the matrix equations
I (X,)=P(x;),K,QA;i =0,1,...,N
or briefly I; =PK, QA; (3.79)

which is the fundamental matrix relation for I; (X).

Matrix relation for the mixed conditions

We can obtain the corresponding matrix form for the conditions (3.60), by

means of the relation (3.66), as

:ij[ajkp(—1) +by P+, PO)I(IT ) A=y, j=0,1...m-1. (3.80)

Method of solution

Now, we are ready to construct the fundamental matrix equation
corresponding to (3.59). For this purpose, substituting the matrix relations
(3.72) and (3.79) into Eq. (3.69) then simplifying it, we obtain the matrix
equation

m

2 ARPUT) -2PK, QYA =G, (3.81)

k=0
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which corresponds to a system of (N +1) algebraic equations for the

(N +1) unknown Legendre coefficients a,, &, ...ay . Briefly, we can write

Eq. (3.81) in the form

WA=G or [W;(G] (3.82)
where
W:[vqu]:ZFkP(HT)k—ﬂPKlQ, p,g=0,1..,N
k=0

G=[g(xg) 9(xy) ... g(x")I.

On the other hand, the matrix form (3.80) for the conditions (3.60) can be

written as
U;A=[g] or [Uj;ll’lj] , 1=01..,m-1 (3.83)

where

U. =

]

g

[8; P (=D +by P (@) +c, P (O)I(IT )"

=
Il
o

E[ujo uJ1 csee UJN].

To obtain the solution of Eq. (3.82) under the conditions (3.83), by
replacing the rows matrices (3.83) by the last m rows of the matrix (3.81)

we have the new augmented matrix



W 40 W, cee Wiy : g(xo)
Wi Wiy o e Wy ;o g(xy)
-~ w w e Wy ; X\ _
W:G] = N -m,0 N -m 1 N —m N . g(Xy_m) (3.84)
Uoo Upg .o Uon ) Ho
Usg Ugp Uiy ; )2
| Unao  Umar -+ Upan 5 Hma

If rank W = rank[W;G] =N +1, then we can write

A= (W)*G.

Thus the coefficients a,(n =0,1,...,N ) are uniquely determined by Eqg.
(3.84).

3.4 Taylor Collocation Method

Consider the mth -order linear Fredholm integro-differential equation

iPk (x)y ©(x) =f (x)+/1ij(x L)y (t) dt (3.85)
k=0 a

where the unknown functions P, (x), f(x), K(x,t) are defined

ona<x,t<b and A is a real parameter where Y (X)is the unknown

function.

With conditions

m-1
2. [a;y P @+byy V) +cy P ©)]=4.i =01...m-1 (3.86)
j=0
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where a<c <b, provided that the real coefficients a;, by, ¢; and 4 are

appropriate constants.

We assume that the solution of (3.85) be the truncated Taylor series

N (n)
y(><)=Zy n,(c)(x —c)";  a<x <b (3.87)

where N is chosen any positive integer such that N >m. Then the

solution (3.87) of Eg. (3.85) can be expressed in the matrix form
[y O)I=X M, A
where
X=[L x-c (x-c)® ..(x-c)"]

A=ly9c) yPC) y?c) ..y™M )]

and

l00 0

0!

030 0

1
M.=
0001 0
21

O 0 O i
L NI

To obtain a solution, we can use the following matrix method, which is a

Taylor Collocation method. This method is based on computing the Taylor
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coefficients by means of the Taylor collocation points are thereby finding

the matrix A containing the unknown Taylor coefficients.

We substitute the Taylor collocation points

X, :a+ibN;a; I =0,1,..,N; x,=a, x =b (3.88)

into (3.85) to obtain

SR ()Y 0, ) =F (x;)+ 21 (x,) (3.89)
k =0

such that

I (xi)zi)[K(x L)y (t)dt

then we can write the system (3.81) in the matrix form

PYO +PY® 4 4P Y™ =P YO =F 4l (3.90)
k =0

where
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[f (o) ] YO | 1x) ]
e T | oo [ Y0 | |10
(X)) y® )] L)

Assume the k™ derivative of the function (3.87) with respect to X has the

truncated Taylor series expansion defined by (3.87):

y ") ok
y©(x )= Z( —k)l( kK- a<x <b

where y “)(x) (k =0,...,N) are Taylor coefficients; y @ (x) =y (x).

Then substituting the Taylor collocation points, we obtain

[y ©x)1=X, M,A, k =01...,N (3.91)

or the matrix equation

y*®)=CcM, A (3.92)
where
X, | [ (xo-c)°  (xp—c) (xo—C)"
co Xe | (x,—¢)®  (x,—c)' (x,—c)"




00 « = 0 0
0!
00 . 0 * 0
I
My = '
00 - 0 .
(N —k)!
00 - 0 0 0
00 - 0 0 0 |

Then Eq. (3.88) can be written as

Q_PCM,)A=F+al

k=0

The kernel K (x,t) is expanded to construct Taylor series

KD =3 3 Ko (x —€)" ()"

n=0m=0

1 8""K(0,0)
"™ nlm! ox"ot™

(x=c,t=c)
The matrix representation of K (X,t) defined by
[K(x,D)]=X K T
where
X=[l X—-C (x-c)? ..xx-c)"]

T=[L t-c (t-c)® ... t-c)"]

(3.93)

(3.94)
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Koo Koi - Ko

10 kll k1N

In addition, the matrix representation of y (x) and Y (t) are
[y()l= X Mg A, [y®)]=T My A, (3.95)

Setting (3.94) and (3.95) into | (X;) defined in (3.89), we have
b
[1(x)]= I{XKTT TM,AMt = XKHM A (3.96)

B (b _C)n+m+1 _ (a _C)n+m+1
n+m+1

n,m=01,...,N

b
H:[hnm]z_[TT Tdt, Non

from (3.96) we get the matrix | in the form
|=CKHM,A. (3.97)
Finally, substituting (3.97) in (3.93), we get the matrix equation

(Z P.CM, - ACKHM,)A =F (3.98)

k=0

which is the fundamental relation for solving of Fredholm integro-

differential equation defined in a<x <b.
Equation (3.98) can be written as

WA =F (3.99)
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which corresponds to a system of (N +1) algebraic equations with the

unknown Taylor coefficients

W=Ww;]=> P.CM, - ACKHM,, i,j=01...,N.
k=0

Also, for the conditions in (3.86). We assume

[yP@)]=PM;A
[y?b)]=QM;A

[y€)]=RM;A (3.100)

where
P=[1 (a-c) (a-c)*..(@@-c)"]
Q=[t b-¢) (-c) ..0-c)"]
R=[1 0 0 ---0].
Setting (3.100) in (3.86), we get

mz_l{aij P+bijQ+Cij R}MjA =[A4]

Let

m-1
U, => {a;P+b;Q+c;RIM, =[u;, u,, ...u,] i=01..,m-1 (3.101)
j=0

Thus, the conditions (3.86) becomes



54

U A=[4] (3.102)
also the augmented matrices representing them are
Ui AT=ui Uy ous 4] (3.103)

Finally, the augmented matrix [W;F] is defined by the matrices:

WOO WOl * e 0 WON
Wi W Win
W=IWy_no Wnomz WN_mN
Ugg Uos Uon
Unao  Umoaz Unan
f (xq)
f(x,)
F=1f (Xy_n)
L ﬂm—l i
If, [W| =0 we can write
A=W'F

Matrix Ajs uniquely determined. Then (3.85) has a unique solution in the

form (3.87).
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Chapter Four

Numerical Examples and Results

To test the efficiency and accuracy of the numerical methods represented

in chapter three we will consider the following numerical examples:
Example 4.1
Consider the Fredholm integro-differential equation of the second kind
u'(x)=3%%* —%(2e3+1)x +'1[3xt u(t)dt with u(0)=1. (4.1)
0
Equation (4.1) has the exact solution u (x ) =e**.
4.1 The numerical realization of equation (4.1) using the
B-spline scaling functions and wavelets on [0,1]

The following algorithm implements the B-spline scaling functions and

wavelets on [0,1] using the Maple software
Algorithm 4.1 [25]

1. Input the fixed positive integer M

2. Input the values of the matrix Q,, .,

3. Input the values of the matrix R

4. Input the values of the matrix «(])

5. Input the values of the matrix £(j)
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6. Calculate the matrix G, by using (3.24) and (3.38).

7. Calculate the matrix D,

8. Forifrom2to2"? -2 /X @®)=0 X 2"*"+1)=1
X (i)=(i -1)/(2"*?-2)

9. Defined y; ;(X), xi 1(X), % » 1 (X)

10. Defined g4 ; (X), g5 41(X)s 4 5 (X)

11, |nputh:¥,t(i)=i*h

12. For i from 1 to 5, for j from 1 to 2™ +1, for k from 2to M , for |
from 1 to 2X, define mut(i, j) = (mu(2,i —2,t(j —1)), and
mut, (@i, j)=(mu(k,l —2,(j —1)) to calculate mutt =(mut,mut,)

13. Define the kernel

14. For i from 1 to 5, for j from 1 to 2" ** +1, for k from 2to M , for |
from 1 to 2, define muX (i, j) =(chi (2,i —2,X (j)), and
muX (i, j) =(mu(K,I =2,X(j))

15. Calculate muXX =(muX ,muX )
16. Calculate zz =z — integration

17. F(1,1) =1, and calculate F (L)

18. Calculate C=F * Matrix Inverse zz

19. The solution is U =C *muXX
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20. Input the exact solution

u =Transpose (U )

u, =convert (u vector)

r:=plot(X ,u,)

r, = plot (u,(x))
21. Display (r,r,)

22. Absolute error = [u —uy, |

Table 4.1 shows the exact and numerical solutions when applying
algorithm 4.1 on equation (4.1), and showing the resulting error of using
the numerical solution.

Table 4.1: The exact and numerical solutions of applying Algorithm
4.1 on. equation (4.1).

X Exact solution Numerical Absolute error
u(x)=exp(3x) solutionu, =[u—uy |

0.1 1.349858808 | 1.36616469332652 | 0.0163058853265190
0.2 1.822118800 | 1.85217464520521 | 0.0300558452052084
0.3 2.459603111 |2.48804090541187 | 0.0284377944118681
0.4 3.320116923 | 3.33272256083022 | 0.012605637830226
0.5 | 4.4816890701 |4.51948395416716 | 0.0377948841671625
0.6 6.049647464 |6.06159218771469 | 0.0119447237146941
0.7 8.166169913 |8.19415390871779 | 0.0279839957177916
0.8 11.02317638 | 11.0673029532516 | 0.0441265732516403
0.9 1487993172 | 14.8583456549649 | 0.0213860650350881
1.0 20.08553692 | 19.7454628997592 | 0.340074020240781
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These results show the accuracy of the B-spline scaling functions and

wavelets to solve equation (4.1) with the max error = 0.34007402024078.

Figure 4.1 compares the exact solution u(x)=e* with the approximate

solution with M =4.

20

18 f
16
14

/

u(x) ,, ] 7

e i

0 0.2 0.4 0.6 0.8 1

3]

| * Mumerical solu Exact solul

Figure 4.1: The exact and numerical solutions of applying algorithm 4.1 for equation (4.1).

Figure 4.2 shows the absolute error resulting of applying algorithm 4.1 on

equation (4.1).

Absolute Error

Error=|wm— u_—'Lf||

Figure 4.2: The error resulting of applying algorithm 4.1 on equation (4.1).
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4.2 The numerical realization of equation (4.1) using the

Homotopy perturbation method

The following algorithm implements the Homotopy perturbation method

using the Maple software

Algorithm 4.2

(1) Input @, A, n,f (x),G(x,y)

(2) Calculate wm1[0] =int ((f ,x))

(3) Calculate wm[0]:=y —sub(x =y ,wml[0])
(4) Calculate ¢ =a —eval (wm[0](0))

(5) Define ws[0] =wm1[0] +c

(6) Calculate w [0] =subs (x =y ,ws[0Q])

(7) For i =1 to n, calculate
wml[i]=(int(G *w[i -1],y =0...1))

ws[i]=(intvm[i],x))
w [i ]=subs(x = yws[i])

(9) Define u, = combine (add (ws[k ],k =0..1) ,

(10) Define
u:=x —exp(x)

r:=plot (u,(x))
r, = plot (u(x))

(11) Absolute Error = [u —u,|

For more details see [21, 43].



Table (4.2) shows the exact and numerical results when n=4, and
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showing the error resulting of using the numerical solution.

Table (4.2): The exact and numerical solution of applying Algorithm

4.2 on equation (4.1).

X Exact solution | Numerical solution Absolute Error
u(x)=e” U, (x) =lu—u,|

0.1 |1.349858808 1.348501851 0.001356957
0.2 |1.822118800 1.816690973 0.005427827
0.3 |2.459603111 2.447390500 0.012212611
0.4 |3.320116923 3.298405614 0.021711309
0.5 |4.4816890704 | 4.447765150 0.033923920
0.6 |6.049647463 6.000797020 0.048850444
0.7 |8.166169918 8.099679031 0.066490882
0.8 [11.023176388 | 10.936331144 0.08684524

0.9 |14.879731722 | 14.679818222 0.10991350

1 20.085536922 | 19.949841244 0.13569568

These results show the accuracy of the Homotopy perturbation method to

solve equation (4.1) with the max error = 0.13569568.

Figure 4.3: shows both exact and numerical solutions with n =4.

20

18

16

Fi

/

]

02 0.4
X

0.6

0.8 1

| *  Numerical solu

Exart solu |

Figure 4.3: The exact and numerical solutions of applying algorithm 4.2
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for equation (4.1)

Abzolute Error ] /
0.0/

0.04 | /

— Error=u— uﬂl

Figure 4.4: The error resulting of applying algorithm 4.2 on equation (4.1).

Example 4.2
Consider the Fredhom integro-differential equation

u'(x)=-2zsin(2zx) —zsin(4zx) + 27[ISiﬂ(47TX +27t)u(t)dt, 42)

u(0)=1.
Equation (4.2) has the exact solution u (x ) = cos(2zx).

4.3 The numerical realization of equation (4.2) using the B-

spline scaling functions and wavelets on [0,1]

Table (4.3) shows the exact and numerical results when M =8, and

showing the error resulting of using the numerical solution.
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Table (4.3): The exact and numerical solution of applying Algorithm

4.1 on equation (4.2).

x | Exactsolution | Approximate solution Aboslute Error
u(x)=cos(2zx) Uy, ‘u _UM‘

0.1 ]0.8090169943 |0.716839678443304 0.0921773158566965
0.2 ]0.3090169938 |0.1983687045/77070 0.11064828932222930
0.3 |-0.3090169938 | -0.414317/811956477 | 0.105300818156477
0.4 |-0.8090169943 | -0.909564138036594 | 0.100547143736594
05 |-1 -1.09848238174981 0.0984823817498084
0.6 |0.8090169943- | -0.910024012119846 | 0.101007017819846

0.7 ]0.3090169938- | -0.414601813875286 | 0.105584820075286
0.8 |0.3090169938 |0.198637238538349 0.1110379755261651
0.9 ]0.8090169943 |0.717312752695359 0.0917042416046411

1 1 1.00027574181029 0.000275741810288777

These results show the accuracy of the B-spline scaling functions and
wavelets to solve equation (4.2) with the max error

=0.11064828932222930.

Figure 4.5 shows both the exact and the numerical solutions with M =8.

Exact solu |

| *  Numerical solu

Figure 4.5: The exact and numerical solutions of applying algorithm 4.1 on equation (4.2).
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Figure 4.6 shows the absolute error resulting of applying algorithm 4.1 on

equation (4.2).

Absolute Error

' ] _I2 ' ] _I 4 I (1] _IG I a .I 8 I 1
x
|—Errc| r=|LE-L_n||

Figure 4.6 : The error resulting of applying algorithm 4.1 on equation (4.2).

4.4 The numerical realization of equation 4.2 using the

Homotopy perturbation method

Table (4.4) shows the exact and numerical solutions when applying
algorithm 4.2 on equation (4.2) when n =8, and showing the error

resulting of using the numerical solution.



Table (4.4): The exact and numerical solution of applying Algorithm

4.2 on equation (4.2).
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X Exact solution | Approximate solution Error
u(x)=cos(27x ) u,(x) =[u —uy|

0 1 1
0.1 |0.8090169943 |0.8090169943
0.2 0.3090169938 | 0.3090169938 0
0.3 0.3090169938- | 0.3090169942- 4x10710
0.4 |0.8090169943- |0.8090169945- 2510710
05 |-1 -1 0
0.6 |0.8090169943- | 0.8090169940- 3%x107%0
0.7 |0.3090169938- | 0.3090169934- 4x10720
0.8 0.3090169938 | 0.3090169946 8x10710
0.9 |0.8090169943 |0.8090169947 4x10720
1 1 1 0

These results show the accuracy of the Homotopy perturbation method to

solve equation (4.2) since the max error = 8x107'%

Figure 4.7: shows both exact and the numerical solutions with n =8
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u(xj 0.5

| * Numerical solu Exact solul

Figure 4.7: The exact and numerical solutions of applying algorithm 4.2 on equation (4.2).

Figure 4.8 shows the absolute error resulting of applying algorithm 4.2 on

equation (4.2)

Absolute Error 0.5

Error= u-uﬂ||

Figure 4.8 : The error resulting of applying algorithm 4.2 on equation (4.2).
Example 4.3

Consider the Fredholm integro-differential equation



66
y"+xy'—xy =e* —25in(x)+J‘sin(x)e‘ty(t)dt ,y(0)=1,y'(0)=1
(4.3)

Equation (4.3) has the exact solution y (x ) =exp(x).

We will find an approximate solution to equation (4.3) by the Legendre

polynomial method, the Taylor collocation method.

4.5 The numerical realization of equation 4.3 using the

Legendre polytnomial method

The following algorithm implements the Legendre polynomial method

using the Matlab software
Algorithm 4.3 [42 ]
1. Input N ,a, b, m, Py(x), P,(x), P,(x), f (x),G(x,y)
2. Let x; =zeros(LN +1)

fori =0:N

;@i +Y)=a+i*(b-a)/N)

end

3. Let F=zeros(N +1,N +1,N)
for k =1:length(f )

fori =0:N
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F@O+1i+1Lk)=subs(f (k),{x}{x;(i+1)})
end

end

4. Pk =zeros(N)
for j =0:N
for i =0:N
P = Legendrep(i,'X ')
X =x;(j +1)
Pk (j +1i +1) =evalf (P)
end

end

5. Define Pl =LegendrePi (N +1)

6. Define K, =LegendreK, (N ,K (x,t))
7. Calculate Q =diag(2/(2*n +1))

8. Calculate G =subs(g(x),x,X;)

9. Let WD =zeros(N +1L,N +1),N -1)

for k =0:N -1
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WD (., K +) =F(,:,k +D)*Pk *((PI )" k)
end
10. Let WX =zeros(N +1)
for k =0:N -1
WD () =WX (;,))+WD(:,:,k +1)
end
W =WX —A*Pk *K, *Q
11. Let U, =zeros(L,N)
fori =0:N
P =Legendre(i,'X ')
X =0
U,@i +1) =evalf (P)
end
12. Let U, =zeros(L,N )
U(@1)=0
fori =0:N

P =Legendrep(i,'X )
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P =evalf (P)
P =diff (P)
U, +1) =subs(P,x,0)
end
13. Put WU =W (1:N -1:);U,U,]

14. GU =[G(L:N -1),1,1]

15. A=WU /GU
16.Y ='0'
fori =0:N

aux =['(‘num2str (A(i +1))

Legendrep(i,'x )]

Y =Y '+'aux]
end
Y =evalf (Y )

Table 4.5 shows the exact and numerical solutions when applying
algorithm 4.3 on equation (4.3), and showing the error resulting of using

the numerical solution.
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Table 4.5: The exact and numerical solution of applying Algorithm 4.3
on equation (4.3).

Approximate Absolute Error =
X; | Exactsolution solution ly -yl
y (x) =exp(x) yn (X)
-1 0.36787944 0.36787945 1x1078
-0.8 | 0.44932896 0.44932895 1x10°®
-0.6 1 0.54881163 0.54881163 0
-0.4 | 0.67032004 0.67032005 1x107®
-0.2 0.81873075 0.81873075 0
0 1 1 0
0.2 1.22140275 1.22140276 1x1078
0.4 1.49182469 1.49182470 0
0.6 1.82211880 1.82211882 2x107®
0.8 2.22554092 2.22554046 4.6x107"
1 2.71828182 | 2.71827657 5.25x10°°

These results show the accuracy of the Legendre polynomial method to

solve equation (4.3) with the max error =5.25x107°.

Figure 4.9 compares the exact solution

approximate solution

y (X)=exp(x) with the
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Figure 4.9: The exact and numerical solutions of applying algorithm 4.3 on equation (4.3).

Figure 4.10 shows the absolute error resulting of applying algorithm 4.3 on

equation (4.3)
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Figure 4.10: The error resulting of applying algorithm 4.3 on equation (4.3).
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4.6 The numerical realization of equation 4.3 using the

Taylor collocation method

The following algorithm implements the Taylor collocation method using

the Matlab software
Algorithm 4.4
1. Input a,b, c, K(x,t), f (x), Py, P, P,
2. Let x; =zeros(LN +1)
for 1 =0:N
X, Li+)=a+i*((b-a)/N)
end
3. Let H =zeros(N +1)
forn=0:N
for m=0:N
expnt =n+m +1
H(m+Lm+1)=((b —c)”expnt —(a—c)*expnt) /expnt
end

end
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4.Let C =zeros(N +1)
forn=0:N
for m=0:N
Cin+Lm+1Y)=(x;@Ln+10)"m
end
end
5.Let F=zeros(N +11)
for i =0:N
F(i =1,1) =subs (FX {x}.{x; (i +1})
end
6. Let K, =zeros(N +1)
forn=0:N
for m=0:N
fortd =0:m
if td >0
PK =diff (K(x,t),t)

K (x,t) =Pk
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end
end
for xd =0:n
if xd >0
PK =diff (K(x,t),x)
K (x,t)=Pk
end

end

7. Calculate K, (n +1,m +1) = (1/ (factorial (n) * factorial (m))
*subs (K (x,t),{x,t},{0,0})

8. Input the values of the matrix M
9. Input Py=—x, P,=x, P,=1, P, =[1x,—X]

P =zeros(N +1,N +1K)

for k =0:K

forn=0:N
form=0:N

if n=m



75

P(n+1m+1,(k =1)) =subs (P (k +1),{x},{x;(m +1)})
end
end
end

end

10. Let YS =zeros(N +1,1)
YS@)=1
YS(2)=1
11. FU =[FYS]
12. Let U =zeros(N +1)
forn=0:N
for m=0:N
if n=m & ({¥S(m+1)=1))
end
end

end

13. Let WD =zeros(N +L,N +1,K)
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for k =0:K
WDC(,,,k +)=P(,;,k +1)*C *M (:,;,k +1)
end
14. Let WX =zeros(N +1)
fork =0:K
WD () =WX () +WD(;,;,k +1)
end
15. Calculate W =WX —A*C *K, *H *M (;,:,1)
WU =W ;U]
16. A=WU /FU
17.PutY =0
forn=0:N
Y =Y +(A(n+21)*/factorial (n))*(x —c)™n
end

Table 4.6 shows the exact and numerical results , and showing the error

resulting of using the numerical solution.



Table 4.6: The exact and numerical solution of applying Algorithm 4.4

on equation (4.3).
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Exact solution

Approximate

X. ) —ex0(x) solution Error =|y —y, |
Y (X)

-1 0.367879 0.368019 1.4x107
-0.8 0.449328 0.449403 7.5x107°
-0.6 0.548811 0.548854 4.3x107°
-0.4 0.670320 0.670347 2.7x107°
0.2 0.818730 0.818741 1.1x10°°

0 1 1 0
0.2 1.221402 1.221415 1.3x10°°
0.4 1.491824 1.491827 3.0x10°
0.6 1.822118 1.821847 2.7x107*
0.8 2.225540 2.224079 1.5x107°

1 2.718281 2.713341 4.9x107

These results show the accuracy of the Taylor collocation method to solve

equation (4.3) with a maximum error = 4.9x107°,
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Figure 4.11 compares the exact solution y(x)=exp(x) with the

approximate solution.
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Figure 4.11: The exact and numerical solutions of applying algorithm 4.4 on equation (4.3).

Figure 4.12 shows the absolute error resulting of applying algorithm 4.4 on

equation (4.3)
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Figure 4.12: The error resulting of applying algorithm 4.4 on equation (4.3).
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Conclusions

Analytical and numerical methods have been used to solve linear Fredholm
integro-differential equation of the second kind. The numerical methods
are implemented in a form of algorithms to solve some numeri- cal

examples using Maple and Matlab software.
The numerical results show the following observations:

(1) Numerical results for examples 4.1 and 4.2 show clearly that the
Homotopy Perturbation Method (HPM) is very efficient in comparison
with the B-spline scaling functions and wavelets method. This is
because the HPM is very well known for it's fast convergence and
consequently requires less CPU time and therefore less error.
Moreover, the HPM introduces less complexity and can easily be
implemented.

(2) Example 4.2 has been solved numerically by both the Legendre
polynomial method and the Taylor collocation method. In fact one of
the most important feature of the Legendre polynomial method is that
the error introduced is considerably small in comparison with the

Taylor collocation method.
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Appendix

Maple Code for B-Spline Scaling Functions and Wavelets for

Example 4.1

> restart:

> with(plots) :with (LinearAlgebra) :

> M:=4:

> 27~ (M+1) +1;

> Q:=Matrix (2" (M+1)+1) :R:=Matrix (2™ (M+1)+1) :
> for i from 1 to (2~ (M+1)+1) do

> for j from 1 to (27 (M+1)+1) do

> if (i=j+1) then Q(i,]j):= 1/24; R(i,]J):= 1/2 elif
(J=i+1)then Q(i,j):= 1/24;R(i,3j):= -1/2 elif (i=j) then
Q(i,j):= 1/6 end if

> od;

> od:

0(1,1):=1/12:Q(2" (M+1)+1,2" (M+1)+1) :=1/12:R(1,1) :=-
1/2:R(2" (M+1)+1,2" (M+1)+1) :=1/2:

> Qm:= 1/2~(M-1)*Q:

> for j from 2 to M do

> alpha(j) := Matrix(27j+1,27(J+1)+1):
> beta(j) :=Matrix (273,27 (3+1)+1) :

> od:

> for k from 2 to M do

> for i from 1 to 2"k+1 do

> for j from 1 to 27 (kt+t1l)+1 do

> if (j=2*i-1) then alpha(k) (i,j):= 1 elif (j=2*(i-1))then
alpha(k) (i,3):= 1/2 elif (j=2*1i) then alpha(k) (i,73):= 1/2
end if

> od:
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> od:

> od:

> for k from 2 to M do

> for i from 2 to 27”k-1 do

> for j from 1 to 2" (k+1)+1 do

> if (j=2*i-1) then beta(k)(i j):= =1/2 elif (j=2*(i-

1)) then beta (k) (i,]J):= 1/12 elif (Jj=2*i) then
beta (k) (1,73) := 5/6 ellf (j=2*i+1) then beta (k) (i,]):= -1/2

elif (j=2*(i+1)) then beta(k) (i,7):=1/12 end if

> od:

> od:

> beta(k) (1,1):= -1l:beta(k) (1,2):= 11/12:beta(k) (1,3):=
1/2:beta(k) (1,4):= 1/12:beta(k) (2°k, 2" (k+1)+1) := -
l:beta(k) (2"k, 2" (k+1)):= 11/12:beta (k) (2"k,2" (k+t1)-1) :=
1/2:beta (k) (2°k, 2" (k+1)=-2):= 1/12:

> od:

> for i from 2 to M do

> g(i) :=alpha (i) :

> for j from 2 to M do

> if (J+(i-2)=M) then g(i):=gq(i); break; else
g(i):=g(i) .alpha(j+(i-2)+1),;g(i):=g(i): end if

> od:

> if (i-1=1) then Gl (i-1):= g(i) else Gl(i-1):= beta(i-
1) .g(i) end if

> od:

> Gl (M) :=beta (M)

> G (1) :=G1(1)

> for i from 1 to M-1 do

> G(i+l) := <G(i),Gl(i+1)>

> od:

> rtable elems (G(M)) :
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> Dl:= G(M) .R.MatrixInverse (Qm) .MatrixInverse (G(M)) :

> X:= Vector (2™ (M+1)+1) :

> for i from 2 to 27~ (M+1l) do

> X(1):= (2*(1i-1)-1)/ (2" (M+2)-2) :

> od:

> X (1) :=0:X (2" (M+1)+1) :=1:

> X,

> chi:=(1i,7,x)-> piecewise ((3/271)<=x and x<=((j+1)/2"1i),
27i*x-9 , ((§+1)/271)<= x and x<= ((j+2)/2"1),2 - (2"i*x-
3,0 )

> for i from 2 to M do

> chi(i,-1,x) :=piecewise(0 <= x and x <= 1/271,2 - (2"1*x-
(-1)),0 ):
> chi(i, (271)-1,x) := pilecewise((((27i)-1)/2"1)<=x and

x<=(((2"1)-1+1)/271),2"i*x-((2"1)-1) ,0)

> od:

> mu:= (i,3j,x)-> 1/6* piecewise((J/271)<=x and x<=((J+
1/2)/271),2%i*x-9, ((3+ 1/2)/27i)<=x and x<= ((3+1)/2°1i), 4-
7* (271i*x-3), ((jJ+1)/271) <= x and x <= ((3+3/2)/271), -

194+16% (27i*x-3), ((§+3/2)/2~i)<= x and x <= ((3+42)/2~i), 29-
16% (27i*x—3), ((34+2) /27i)<= x and x <= ((3+5/2)/2°1),

1747% (27i*x-3), ((3+5/2)/2”1)<= x and x <= ((3+3)/2"i), 3-
(27i*x-3),0 ):

> chi(2,2,9/14);

> for i from 2 to M do

> mu(i,-1,x) :=piecewise(0 <= x and x <= (1/2)/2"1,-6
+23*(2A1 x),((1/2)/2A ) <= x and x <= ((1)/271),14 -
17*(271*x), ((1)/271) <= x and x <= ((3/2)/271),-10

+7%(271*%x), ((3/2)/271) <= x and x <= ((2)/271),2 -(2"i*x),0

) :

> mu (i, ((271)-2),x) := piecewise((((271)-2)/2"1)<=x and
x<=((((271)=-2)+ 1/2)/271),2-(((271)-2)+2-2"7i*x), ((((2"1)-
2)+ 1/2)/271)<=x and x<= ((((271)-2)+1)/2"~1), -

104+7* (((27°1)-2)42-2"1*x), ((((271)-2)+1)/271) <= x and x <=
((((271)=-2)+43/2)/271), -14-17*(((271)-2)+2-2"i*x), ((((2"1)-
2)+3/2)/271)<= x and x <= ((((2*1)-2)+2)/2~1), -

O0+23* (((271)-2)4+2-2"1*x),0)
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> od:

> mu(2,-1,1/14);

#HAHHH AR AR AR FHHHAH A HHHH# 4433 Integration
> h:=1/4:

> for i from 0O to 4 do

> t(i):= i*h:

> od:

> t(4);

> mut:=Matrix (5,5):

> Qs:= Vector (2" (M+1)+1):

> for i from 1 to 5 do

> for j from 1 to 5 do

> mut(i,j):= (chi(2,i-2,t(j-1))):
> od:

> mutl:=Matrix (2" (M+1)+1-5,5):

> od:

> for k from 2 to M do

> #for i from 0 to (27 (M)-4) do
> for 1 from 1 to 27k do

> for j from 1 to 5 do

> mutl ((27°k-4)+1,7J):= (mu(k,1-2,t(3-1))):
> od:

> od:

> od:

> #od:

> mutt:=<mut,mutl>:

> for i from 1 to 5 do
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> KE(1-1) :=3*x*t (i-1) *mutt(l..2"(M+1)+1,1):

> od:
> KE (1) :

intg:=(2*h/45) * (7T*KE (0) +32*KE (1) +12*KE (2) +32*KE (3) +7*KE (4) )

> intgr:=Matrix (2" (M+1)+1):
> for i from 1 to 27 (M+1)+1 do
> for j from 1 to 2" (Mt+t1l)+1 do
> intgr (i, J) :=subs (x=X(7j),intg(i)) :
> od:
> od:
> intgr:
> muX:=Matrix (5,2 (M+1)+1):
> for i from 1 to 5 do
> for j from 1 to 2" (M+1)+1 do
> muX (i, j):= (chi(2,1-2,X(3))):
> od:
> od:
> muX:
> muXl:=Matrix (2" (M+1)+1-5,2" (M+1)+1) :
> for k from 2 to M do
> for 1 from 1 to 27k do
> for j from 1 to 2~ (M+1)+1 do
> muXl ((2"k-4)+1,7) := (mu(k,1-2,X(J))):
> od:
> od:
> od:

> muXl1:
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> muXX:=<muX,muXl>:

> HAFAHAFAARAAAFAARAAAFAARAAA AR FAFAFFHHAH3 The solution
> Z:=D1.muXX:

> ZZ:=Z-intgr:

> F:=Matrix(l,2"(M+1)+1): C:=Matrix(1l,2" (M+1)+1):

> for i from 1 to 27 (M+1l)+1 do

> F(l,1):= evalf (3*exp (3*X(1))-(1/3)*(2*exp(3)+1)*X (1)),
> od:

> ZZ(1..2" (M+1)+1,1) :=muXX(l..2"(M+1)+1,1):

> F(1,1):=1:

> C:=F.MatrixInverse (ZZ):

> U:=(C.muXX) :

> uz:=x->evalf (exp (3*x)) :

> u:=Transpose (U) :

> ul:=convert (u,Vector) :

> r:=plot( X,ul,color="Blue",style = point, symbol =
asterisk, symbolsize =15,legend = ["Numerical solu" ]):

r2:=plot (u2(x),
["Exact solu" ]

x=0..1,color="Red", thickness=3, legend =
) :

> display(r,xr2);

> ######## error

> Ue:=Vector (2™ (M+1)+1) :

> for i from 1 to 2" (M+1)+1 do

> Ue (1) :=(u2(X(1)));

> od:

> Erroru:=Vector (2" (M+1)+1) :

> Erroru:=abs (Ue-ul) :
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> A2:=plot( X, Erroru,x =

0..1,color="Blue",thickness=3,1legend = ["E r r o r =| UE -
Un |H ]

> )

> display (A2,titlefont = ["COURIER", 15],labelfont =
["COURIER", 10],axesfont = ["COURIER", 8]);

> X1:= Vector (11l):

> for i from 1 to 11 do

> X1(1i):= (1-1)*1/10:

> od:

> evalf (X1(11));

> muX2:=Matrix(5,11):

> for i from 1 to 5 do

> for j from 1 to 11 do

> muX2 (i, J):= (chi(2,1i-2,X1(3))):
> od:

> od:

> muX2:

> muX3:=Matrix (2" (M+1)+1-5,11):
> for k from 2 to M do

> for 1 from 1 to 27k do

> for j from 1 to 11 do

> muX3((2°k=-4)+1,7) := (mu(k,1-2,X1(3))):
> od:

> od:

> od:

> muX3:

> muXX2:=<muX2,muX3>:

> U2:=C.muXX2:



>

rtable elems (U2) :

> NUM:= Matrix (10,1) :Exact:
(10,1):

> for i from 1 to 10 do

> NUM(i,1):= U2(1,1i+1):

> Exact (i, 1) :=u2 (X1 (i+1)) :

> Error (i, 1) :=abs(Exact (i, 1)
> od:
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= Matrix (10,1) :Error:= Matrix

-NUM(1i,1))

evalf (X1 (2..11)) ;exact;Exact;Nume; (NUM) ;errorr;Error;

Maple Code for Homotopy Perturbation Method for Example 4.1

>

restart;

> with(LinearAlgebra) :with(plots) :with (PDEtools) :

> # This is a program to solve the integro-differential
equation on the form:

>

>

Diff(v(x),x)=f(x)+ Int(G(x,y)*v(y),y=0..1);

a:=1;

f:= 3*exp(3*x)-(1/3)* (2*exp(3)+1) *x;
G:= 3*x*y;

n:=4;

wml[0]:= ( int(f,x)):

wm[0] :=y->subs (x=y,wml[0]) :

c:=a-eval (wm[0] (0)) :

> ws[0]:= wml[O]+c:

w[0] :=subs (x=y,ws[0]) :
for i from 1 to n do
wm[i]:= int (G*w[i-1],y=0.
ws[i]:=(int(wm[i],x));

w[i] :=subs(x=y,ws[1]);

1)
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> od:

> u:=combine (add(ws[k],k=0..n));
> um:= y-> subs (x=y,u):

> uexact:= x-> exp (3*x):

vV

r:=plot( um(x),x=0..1,color="Blue",style = point, symbol
= asterisk, symbolsize =15,legend = ["Numerical solu" ]):

r2:=plot (uexact (x),x=0..1,color="Red", thickness=3, legend =
["Exact solu" 1):

> display(r,r2);
> Erroru:=x->abs (uexact (x)-um(x)) :
> Erroru(l);

> A2:=plot( Erroru(x),x =

0..1,color="Blue", thickness=3,legend = ["E r r o r =| UE -
Un |" ]):

> display (A2, titlefont = ["COURIER", 15],labelfont =
["COURIER", 10],axesfont = ["COURIER", 8]);

> X1:= Vector (10) :NUM:= Matrix (10,1) :Exact:= Matrix
(10,1) :Exrror:= Matrix (10,1):

> for i from 1 to 10 do
> X1(i):= i*1/10:
> od:
> for i from 1 to 10 do
> NUM (i, 1) := evalf(um(X1(i))):
> Exact (i, 1) :=evalf (uexact (X1 (i))):
> Error (i, 1) :=evalf (abs (Exact (i, 1)-NUM(i,1)))
> od:
evalf (X1(2..11)) ;exact;Exact;Nume; (NUM) ;errorr;Error;
Maple Code for B-spline scaling functions and wavelets method for example 4.2
> restart:

> with(plots):with(LinearAlgebra):
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> M:=6:

> 2NM+1)+1;

> HHHHHHHHHH T3 Q & R

> Q:=Matrix(2"(M+1)+1):R:=Matrix(2"(M+1)+1):
> for i from 1 to (2*(M+1)+1) do

> for j from 1 to (2*(M+1)+1) do

> if (i=j+1) then Q(i,j):= 1/24: R(i,j):= 1/2 elif (j=i+L1)then Q(i,j):= 1/24:R(i,j):= -1/2 elif
(i=j) then Q(ij):= 1/6 end if

> od;
> od:

> Q(1,1):=1/12:Q(2NM+1)+1,2°(M+1)+1):=1/12:R(1,1):=-
1/2:R(NM+1)+1,2M(M+1)+1):=1/2:

> Qm:=1/2"(M-1)*Q:

> for j from 2 to M do

> alpha(j):= Matrix(2"j+1,27(j+1)+1):
> beta(j):=Matrix(27},2\(j+1)+1):

> 0d:

> for k from 2 to M do

> for i from 1 to 2°k+1 do

> for j from 1 to 2"(k+1)+1 do

> if (j=2*i-1) then alpha(k)(i,j):= 1 elif (j=2*(i-1))then alpha(k)(i,j):= 1/2 elif (j=2*i)
then alpha(k)(i,j):= 1/2 end if

> 0d:

> od:

> 0d:

> for k from 2 to M do

> for i from 2 to 2°k-1 do

> for j from 1 to 2*(k+1)+1 do



> if (j=2*i-1) then beta(k)(i,j):= -1/2 elif (j:926*(i-1))then beta(k)(i,j):= 1/12 elif (j=2*i)
then beta(k)(i,j):= 5/6 elif (j=2*i+1) then beta(k)(i,j):= -1/2 elif (j=2*(i+1)) then
beta(k)(i,j):=1/12 end if

> 0d:

> 0d:

> beta(k)(1,1):= -1:beta(k)(1,2):= 11/12:beta(k)(1,3):= -1/2:beta(k)(1,4):=
1/12:beta(k)(2k,2"N(k+1)+1):= -1:beta(k)(2"k,2"(k+1)):= 11/12:beta(k)(2k,2N(k+1)-
1):=-1/2:beta(k)(27k,2N(k+1)-2):= 1/12:

> 0d:

> for i from 2 to M do

> q(i):=alpha(i):

> for j from 2 to M do

> if (j+(1-2)=M) then g(i):=q(i); break; else g(i):=q(i).alpha(j+(i-2)+1);q(i):=g(i): end if
> 0d:

> if (i-1=1) then G1(i-1):= g(i) else G1(i-1):= beta(i-1).g(i) end if

> 0d:

> G1(M):=beta(M):

> G(1):=G1(2):

> for i from 1 to M-1 do

> G(i+1):= <G(i),G1(i+1)>:

> 0d:

> rtable_elems(G(M)):

> HHHHHHHHHHHHHHH S D

> D1:= G(M).R.MatrixInverse(Qm).MatrixInverse(G(M)):

> X:= Vector(2N(M+1)+1):

> for i from 2 to 2*"(M+1) do

> X(i):= (2*(i-1)-1)/(2N(M+2)-2):

> 0d:

> X(1):=0:X(2N(M+1)+1):=1:
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> X;

> chi:=(i,j,x)-> piecewise ((j/2"i)<=x and x<=((j+1)/2), 2"i*x-j ,((j+1)/2"i)<= x and
x<= ((j+2)I2"),2 -(27i*x-),0 ):

> for i from 2 to M do
> chi(i,-1,x) :=piecewise(0 <= x and x <= 1/2",2 -(2"i*x-(-1)),0 ):

> chi(i,(2"M)-1,x) = piecewise((((2")-1)/2N)<=x and x<=(((2")-1+1)/2),2"Ni*x-
((2")-1) ,0)

> od:

> mu:= (i,J,X)-> 1/6* piecewise((j/2")<=x and x<=((j+ 1/2)/2"),2"*x-],((j+
1/2)/27)<=x and x<= ((j+1)/2"), 4-7*(2"i*x-}), ((j+1)/2M) <= x and x <= ((j+3/2)/2"),
-19+16*(27*x-)),((j+3/2)/27)<= x and x <= ((j+2)/2"), 29-16*(27i*X-)),((j+2)/2"i)<=
x and x <= ((j+5/2)/12M), -17+7*(2"Ni*x-j), ((+5/2)/2")<= x and x <= ((j+3)/2"i), 3-
(2Mi*x-)),0):

> chi(2,2,9/14);

> for i from 2 to M do

> mu(i,-1,X) :=piecewise(0 <= x and x <= (1/2)/2"i,-6 +23*(2"i*x),((1/2)/2"i) <= x and
X <= ((1)/27M),14 -17*(27i*x),((1)/2M) <= x and x <= ((3/2)/2"),-10
+7*(27N*X),((3/2)/271) <= x and x <= ((2)/2"),2 -(2"i*x),0):

> mu(i,((2M)-2),X) := piecewise((((27)-2)/27)<=x and x<=((((2"i)-2)+ 1/2)/2"),2-
(((2MN)-2)+2-27*X),((((2M)-2)+ 1/2)127)<=x and x<= ((((2"1)-2)+1)/2M), -10+7*(((2N)-
2)+2-27*X), ((((27M)-2)+1)/2M) <= x and x <= ((((2™)-2)+3/2)12M), -14-17*(((2M)-
2)+2-27*X),((((2M)-2)+3/2)/127)<= x and x <= ((((2™)-2)+2)/2M), -6+23*(((2")-2)+2-
27i*x),0)

> od:

> mu(2,-1,1/14);

> HHHHH T 33 Integration

> h:=1/8:

> for i from O to 8 do

> t(i):= i*h:

> od:

>1(8);

> mut:=Matrix(5,9):

> Qs:= Vector(2N(M+1)+1):
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> forifrom1to5do

> for j from 1 to 9 do

> mut(i,j):= (chi(2,i-2,t(j-1))):

> 0d:

> mutl:=Matrix(2*(M+1)+1-5,9):

> 0d:

> for k from 2 to M do

> #for i from 0 to (2°(M)-4) do

> for | from 1 to 2k do

> for j from 1 to 9 do

> mutl((2°k-4)+l,j):= (mu(k,I-2,t(j-1))):
> 0d:

> 0d:

> 0d:

> #od:

> mutt:=<mut,mut1>:

> for i from 1to 9 do

> KE(i-1):=evalf(2*Pi*sin(4*Pi*x+2*Pi*t(i-1))*mutt(1..2 (M+1)+1,i)):
> 0d:

> KE(1):

> intg:=(4*h/14175)*(989*KE(0)+5888*KE(1)-928*KE(2)+10496*KE(3)-
4540*KE(4)+10469*KE(5)-928*KE(6)+5888*KE(7)+989*KE(8)):

> intgr:=Matrix(2"(M+1)+1):

> for i from 1 to 2°(M+1)+1 do
> for j from 1 to 22(M+1)+1 do
> intgr(i,j):=subs(x=X(j),intg(i)):

> od:
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> od:

> intgr:

> muX:=Matrix(5,2N(M+1)+1):

> for i from 1to 5 do

> for j from 1 to 22(M+1)+1 do

> muX(i,j):= (chi(2,i-2,X(j))):

> 0d:

> 0d:

> muX:

> muX1:=Matrix(2*(M+1)+1-52"(M+1)+1):

> for k from 2 to M do

> for | from 1 to 2k do

> for j from 1 to 22(M+1)+1 do

> muX1((2"k-4)+1,j):= (mu(k,1-2,X()))):

> 0d:

> 0d:

> 0d:

> muX1:

> muXX:=<muX,muX1>:

> HHHHHHH T R T R HH#H3 The solution
> Z:=D1.muXX:

> ZZ:=Z-intgr:

> F:=Matrix(1,2"(M+1)+1): C:=Matrix(1,2N(M+1)+1):
> for i from 1 to 2°(M+1)+1 do

> F(1,i):= evalf(-2*Pi*sin(2*Pi*X(i))-Pi*sin(4*Pi*X(i)));
> od:

> 7Z(1.2°N(M+1)+1,1):=muXX(L..2A(M+1)+1,1):
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> F(1,1):=1:

> C:=F.MatrixInverse(ZZ):

> U:=(C.muXX):

> u2:=x->evalf(cos(2*Pi*x)):
> u:=Transpose(U):

> ul:=convert(u,Vector):

> r:=plot( X,ul,color="Blue" style = point, symbol = asterisk, symbolsize =15,legend =
["Numerical solu™ ]):

> r2:=plot(u2(x),x=0..1,color="Red" thickness=3,legend = ["Exact solu™ ]):
> display(r,r2);

> HtHHHH# error

> Ue:=Vector(2 (M+1)+1):

> for i from 1 to 22(M+1)+1 do

> Ue(i):=(u2(X(1)));

> od:

> Erroru:=Vector(2(M+1)+1):

> Erroru:=abs(Ue-ul):

> A2:=plot( X, Erroru,x = 0..1,color="Blue",thickness=3,legend = ["Error =| UE - Un
"1
>):

> display(A2,titlefont = ['COURIER?", 15],labelfont = ['COURIER", 10],axesfont =
['COURIER", 8]);

> X1:= Vector(11):

> for i from 1 to 11 do
> X1(i):= (i-1)*1/10:
> od:

> evalf(X1(11));

> muX2:=Matrix(5,11):
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> forifrom1to5do

> for j from 1 to 11 do

> muX2(i,j):= (chi(2,i-2,X1(j))):

> 0d:

> 0d:

> muX2:

> muX3:=Matrix(2*(M+1)+1-5,11):

> for k from 2 to M do

> for | from 1 to 2k do

> for j from 1 to 11 do

> muX3((27k-4)+1,j):= (mu(k,1-2,X1(j))):

> 0d:

> 0d:

> 0d:

> muX3:

> MUXX2:=<muX2,muXxX3>:

> U2:=C.muXX2:

> rtable_elems(U2):

> NUM:= Matrix (10,1):Exact:= Matrix (10,1):Error:= Matrix (10,1):
> for i from 1 to 10 do

> NUM(i,1):= U2(1,i+1):

> Exact(i,1):=u2(X1(i+1)):

> Error(i,1):=abs(Exact(i,1)-NUM(i,1))>

> od:

> evalf(X1(2..11));exact;Exact;Nume;(NUM);errorr;Error;
Maple Code for Homotopy Perturbation Method for Example 4.2

> restart;
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with (LinearAlgebra) :with (plots) :with (PDEtools) :

> # This is a program to solve the integro-differential
equation on the form:

>

>

\%

Diff(v(x),x)=f(x)+ Int(G(x,y)*v(y),y=0..1);

a:=1;

f:= -2*Pi*sin(2*Pi*x)-Pi*sin (4*Pi*x);
G:= 2*Pi*sin (4*Pi*x+2*Pi*y);

n:=8;

wml[0]:= ( int(f,x)):

wm[0] :=y->subs (x=y,wml[0]) :

c:=a-eval (wm[0] (0)):
ws[0]:= wml[O]+c:
w[0] :=subs (x=y,ws[0]) :

for i from 1 to n do

wm[i]:= int(G*w[i-1],y=0.

ws[i]:=(int(wm[1i],x));
wl[i] :=subs (x=y,ws[i]);

od:

u:=combine (add (ws[k], k=0..

um:= y—-> subs (x=y,u):

uexact:= x-> cos (2*Pi*x):

r:=plot( um(x),x=0..1,color="Blue",style = point,
asterisk, symbolsize =15,legend =

1)

["Numerical solu"

symbol

1):

r2:=plot (uexact (x),x=0..1,color="Red", thickness=3, legend =

|:"

>

> Erroru:=x->abs (uexact (xX)-um(x)) :

>

Exact solu" 1):

display(r,r2);

A2 :=plot( Erroru(x),x =

0..1,color="Blue",thickness=5,1legend = ["E r r o

|"

1):

r =|

u-uM



> display (A2, titlefont =
["COURIER", 10],axesfont =

> X1:= Vector(ll) :NUM:= Matrix
(10,1) :Error:= Matrix (10,1):

> for i from 1 to 11 do
> X1(1i):= (1-1)*1/1:
> od:

> for i from 1 to 10 do

> NUM(i,1) := evalf(um(X1(i))):

["COURIER", 15],labelfont
["COURIER", 81);

(10,1) :Exact:= Matrix

> Exact (i,1) :=evalf (uexact (X1 (i))):

> Error(i,1l) :=evalf (abs (Exact(i,1)-NUM(i,1)))

> od:

evalf (X1(2..11)) ;exact;Exact;Nume; (NUM) ;errorr;Error;

Matlab Code for Legendre Polynomial Method

N = §;

Lambda = 1;
f=[-x x 1]1;% FO F1 F2
gx= exp(x)- 2*sin(x);
kxt= sin(x)*exp(-t);

x1i

o\
o\
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xi=zeros (1,N+1);

for i=0:N
x1(1l,1i+1) = a+i*((b-a)/N);

end

o\©°
o\©°

F
F=zeros (N+1,N+1,N);
for k=l:length (f)
for i=0:N
F(i+l,i+1,k) = subs(f(k),{x}, {xi(i+1)}):;

end

Pk=zeros (N) ;
for j = 0:N
for 1 = 0:N
P=legendrep (i, 'X'");
X=x1i(j+1);

Pk (j+1,i+1)=eval (P);

end
end
$% PI

PI = legendrePi (N+1);

K1 = legendreKT (N, kxt) ;

Q = diag(2./(2*n+1));
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G = subs(gx,x,x1);

G=double (G) ;

o\°
o\°

W
WD=zeros (N+1,N+1,N-1);
for k=0:N-1

WD(:,:,k+1)=F(:,:,k+1)*Pk* ((PI')"k);

WX=zeros (N+1) ;
for k=0:N-1

WX (:,:)=WX(:,:)+WD(:,:,k+1);
end

W=WX-Lambda*Pk*K1*Q;

o\°
o\°

U

UO0=zeros (1,N);

for i = 0:N
P=legendrep (i, 'X'");
X=0;

U0 (1,i+1)=eval (P);

0\
0\

Ul=zeros (1,N);

Ul(1,1)=0;

for i = 1:N
P=legendrep (i, 'x");

P=eval (P) ;
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P=diff (P);

Ul(1l,i+1)=subs(P,x,0);

o\°
o\°

WU=[W(1l:N-1,:);U00;U01];

GU=[G(1l:N-1),1,11;

aux= [' (' num2str (A(i+1l)) '*' legendrep(i,'x"') ")']l;

Y=[Y '"+' aux]:

Aprx sol legndr=double (subs (Y, {x},xu));
exct sol=exp (xu) ;

legndr err=abs (exct sol-Aprx sol legndr);

o°

load pd.mat

%% plot

figure (1)

% Create multiple lines using matrix input to plot

plotl = plot(xu,exct sol,xu,Aprx sol legndr);

set (plotl (1), 'Marker','*', 'LineWidth',?2);
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set (plotl (2), '"Marker', 'square', 'LineWidth',1, "Color', [1 O
01) 7

grid

legend('exct', "Aprx legndr')
figure (2)

plot (xu, legndr err)

grid

legend ('legndr err')

Note this part explains how to calculate legendre
polynomials

function p=legendrep (m, x)

% function which construct Legendre polynomial Pm(x)
% where M is the degree of polynomial and X is the
variable.

% Result - P is the char string that should be evaluated
EVAL (P)

% Example:

o°

P=legendrep (2, 'cos (theta)') will produce

0\

=' (3*cos (theta) .2 -1)/2'" which then can be evaluated
as

% theta=0.3; P=legendrep (2, 'cos(theta)'); Lp=eval (P);
produce

S  Lp = 0.8690

% For Matlab R14 the following example can be used:

% x==5:.1:5; p=legendrep(5,'x .*cos(x)'); xp = eval (p);
% figure; plot(x, xp, 'r.-'); grid
%% References:

% Gradshteyn, Ryzhik "Table of Integrals Series and
Products", 6th ed., p.973

o\°

o°
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% Sergei Koptenko, Resonant Medical Inc., Toronto
% sergei.koptenko@resonantmedical.com
% March/30/2004
switch m
case O
p='1"; return
case 1
p=x; return
case 2
p=["'(3*" x '.72 -1)/2"]; return
case 3
p=['(5*" x '"."3 - 3 *' x ")/2']; return
case 4
p=["(35 *'" x '". " - 30 * ' x '."2 + 3)/8']; return
case 5
p=['"( 63 * " x '". "5 - 70 * ' x ". "3 + 15 *'" x ' )/8'];
return
case 6
p=["'"(231 *' x '.%6 - 315 * ' x '~ + 105 * ' x '."2 -
5)/16']; return
case 7
p=["'(429 » ' x '".*7 - 693 * ' x '. 75 +315 * ' x '.*3 =35
*'x ' )/16']; return
case 8
p=['(6435 *' x '. 78 -12012 *' x '."6 + 6930 * ' x '. "

-1260 * ' x '".”2 +35)/128"']; return

case 9

p=['(12155 * ' x
'.A5 —4620 * ' x '.~3 4315 *' x

'.79 =25740 * ' x

) /128"

N7 +18018 ¢ ' ox
17
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return

case 10

p=['(46189 *' x '.7~10 -109395 *' x '.”8 490090 *' x
'.76 -30030 * ' x '."4 +3465 * ' x '."2 -63)/256'];

return
case 11
p=['(88179 * ' x '".~11 -230945 * ' x '.79 +218790 * ' x
'.~7 -90090 * ' x '.”~5 415015 * " x '"."3 -693 *' x '
)y /256'];
return
case 12
p=['(676039 *' x '.712 -1939938 *' x '.710 +2078505 *'

x '.7"8 -1021020 *' x '."6 4225225 * ' x '."~4 -18018 * ' x
'.N2 +231)/1024']1;

return
otherwise
iii=m-10; $shift counter

[e)

pp=strvcat (legendrep(ll,x),legendrep(l2,x)); % get last
two members

for 1i=3:1:iii, % Begin construct from 13th member
p ii=[num2str(1/(ii)) " * (' num2str(2*ii-1) ' * '
X’.*<’
deblank (pp(ii-1,:)) '")-" num2str(ii-1) ".* ('
deblank (pp (1i-2,:)) ")) "'1l;

pp=strvcat (pp, p_1ii);

end
p=deblank (pp(iii, :)); % remove traiing blanks
return

end

return
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Matlab Code for Taylor collocation method

clear all
clc
close all

format long

o\°
o\°

%******************************************************

sx** INPUT DATA

%******************************************************

syms x t

Lambda=1;
FX=exp (x) - 2*sin(x);
KXT=sin (x) *exp (-t) ;

PS=[1,-x, x];

0\
0\

X1

xi=zeros (1,N+1);

for 1i=0:N

x1i(1l,i+1l)=a+i* ((b-a)/N);

end

o°
o°

H

H=zeros (N+1) ;
for n=0:N
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for m=0:N

expnt=n+m+1;
H(n+l,m+1)=((b-c) "expnt-(a-c) “expnt) /expnt;
end

end

o\°
o\°

C
C=zeros (N+1) ;
for n=0:N
for m=0:N
C(n+l, m+1)=(xi(1l,n+1)) " m;
end

end

0\°
0\©
]

F=zeros (N+1,1);
for i=0:N
F(i+1l,1)=subs (FX, {x}, {xi(i+1)});

end

o\
o\

K
KL=zeros (N+1) ;
for n=0:N
for m=0:N
for td=0:m
if td > O
PK=diff (KXT, t);
KXT=PK;

end
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end

for xd=0:n
if xd > 0
PK=diff (KXT, x) ;
KXT=PK;
end
end
KL (n+l,m+1)=(1/ (factorial (n) *factorial (m))) *subs (KXT, {x,t},
{0,0})7
KXT=sin (x) *exp (-t) ;
end

end

0\°
0\©

M's
M=zeros (N+1,N+1,K);
fctrl=0;
for k=0:K
fctrl=0;
for n=0:N
for m=(k) :N
if n==(m-k)
M(n+1,m+1, (k+1))=1/factorial (fctrl);
fctrl=fctrl+l;
end
end
end

end

o\°
o\°
v}
0
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$ Pl=x
$ P2=1

o\°

PS=[1,x,-x];
P=zeros (N+1,N+1,K) ;
for k=0:K
for n=0:N
for m=0:N
if n==m
P(n+l,m+1, (k+1))=subs (PS (k+1), {x}, {xi(m+1)});
end
end
end

end

0\
0\

YS

YS=zeros (N+1,1) ;

YS(1l)=1;
YS(2)=1;
%% FU

U=zeros (N+1) ;

for n=0:N
for m=0:N
if ((n==m) && (YS(m+l)==1))

U(n+tl, m+1)=1;
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end

end

WD=zeros (N+1,N+1,K) ;
for k=0:K
WD(:,:,k+1)=P(:, :,k+1)*C*M(:, :,k+1);
end
WX=zeros (N+1) ;
for k=0:K
WX (:,:)=WX(:,:)+WD(:, :,k+1);
end

W=WX-Lambda*C*KL*H*M(:, :,1);

Co=zeros (1,N+1);
for n =0:N

Co(l,n+l) = (A(n+l)/factorial(n));

Co=[1 1 0.500343 0.166886 0.0403378 0.005774937;
for n =0:N

YT = YT + Co(n+l)*(x - c)”™n;
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end

%% Plot

xu=-1:0.2:1;

Aprx sol tyl=double (subs (YT, {x},xu));
exct sol=exp (xu);

figure (2)

plot (xu,exct sol,':',xu,Aprx sol tyl,'g')
grid

legend('exct', "Aprx tyl'")

%% Table

0\

T:
table (xu',exct sol',Aprx sol tyl', 'VariableNames', {'X'
'exct sol' '"Aprx sol'});

o3

5 filename = 'DataTable.xlsx';

$ writetable (T, filename, 'Sheet', 1)

0\
0\

err
figure (4)

tyl err=abs(exct sol-Aprx sol tyl);
plot (xu, tyl err)

grid

legend('tylr err')

0\
0\

tbhl

tbl tyl=[xu ; exct sol ; Aprx sol tyl ; tyl err]';
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