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Abstract 

Regression is a statistical method which is widely used in various fields of 

science for defining the relationships between the variables in the form of 

an equation to estimate the parameters, the strength and direction of the 

relationships. This main objective of this thesis was to study the 

Multivariate Multiple Linear Regression Models which relate more than 

one dependent variable with more than one independent variable.   

Four types of regression models were considered; Simple Regression, 

Multiple Regression, Multivariate Regression, and Multivariate Multiple 

Regression. The method of least squares was used in estimating the 

multivariate multiple linear regression models. Then multivariate analysis 

of variance (MANOVA) was used to test the usefulness of the estimated 

models. Several software programs were used to achieve this objective, 

such as Stata, Matlab, Minitab, SPSS, and SAS. 

The multivariate multiple regression model was applied to simulated data 

and to real data. A case study was constructed from three universities in 

Palestine; An-Najah National University, Arab American University, and 

Alquds Open University. A sample of size 350 students from these 
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universities was considered to study the relationship between two 

psychological variables (self concept and achievement motivation) and the 

cumulative average of the student, which were the response variables. Then 

we showed how these three responses were affected by some predictors 

such as tawjihi average, English score level exam, budget per day, absents 

per semester, the study program of the student, and the university he/she is 

studying in. The results showed, according to the p-values, that the study 

program has no effect on both self concept and achievement motivation of 

a student. When we test the effect of the study program on these two 

responses, the p-values were 0.5674, and 0.2227, respectively. On the other 

hand, the cumulative average was affected by the study program, the p-

value was 0.0501. The cumulative average of the student was also affected 

by the university, it was with null p-value. But the student‟s self concept 

and achievement motivation were not affected by the university, the p-

values were 0.2530, 0.4352, respectively. Also, data for each university 

was analyzed separately. The results for An-Najah National University 

showed that the twajihi average controlled the responses very well and the 

student‟s cumulative average was affected by the study program. The 

results of The Arab American University showed that the three responses 

were affected by tawjihi average and English score, but they were not 

affected by the study program. Finally, the results of Alquds Open 

University showed that the three responses were affected by just one factor 

which is the tawjihi average. 
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Chapter One  

Introduction 

1.1 Overview 

In statistics, the term linear model is used in different ways according to the 

context. The most common occurrence is in connection with regression 

models. Linear models describe a continuous response variable as a 

function of one or more predictor variables. They can help understand and 

predict the behavior of complex systems or analyze experimental, financial, 

and biological data. The term linear model is often taken as synonymous 

with linear regression model. 

The term “regression” was first coined by Sir Francis Galton, an 

accomplished 19th century scientist. He tried to describe a biological 

phenomenon [10]. The phenomenon was that extreme characteristics (e.g., 

height) in parents are not passed on completely to their offspring. Rather, 

the characteristics in the offspring regress towards a mediocre point (a 

point which has since been identified as the mean). By measuring the 

heights of hundreds of people, Galton observed that children‟s heights tend 

to „revert‟ to the average height of the population rather than diverting from 

it, (a phenomenon also known as regression toward the mean) [11]. GaIton 

originally used the word „reversion‟ to describe this tendency and some 

years later used the word „regression‟ instead. He was able to quantify 

regression to the mean, and estimate the size of the effect. Galton wrote 

that, “the average regression of the offspring is a constant fraction of their 
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respective mid-parental deviations”. This means that the difference 

between a child and its parents for some characteristic is proportional to its 

parents' deviation from typical people in the population. If its parents are 

each two inches taller than the averages for men and women, on average, it 

will be shorter than its parents by some factor (which, today, we would call 

one minus the regression coefficient) times two inches. For height, Galton 

estimated this coefficient to be about 2/3: the height of an individual will 

measure around a midpoint that is two thirds of the parents‟ deviation from 

the population average. This is incorrect, since a child receives its genetic 

makeup exclusively from its parents. There is no generation-skipping in 

genetic material: any genetic material from earlier ancestors than the 

parents must have passed through the parents. The phenomenon is better 

understood if we assume that the inherited trait (height) is controlled by a 

large number of recessive genes. Exceptionally tall individuals must be 

homozygous for increased height mutations on a large proportion of these 

loci. But the loci which carry these mutations are not necessarily shared 

between two tall individuals, and if these individuals mate, their offspring 

will be on average homozygous for "tall" mutations on fewer loci than 

either of their parents. In addition, height is not entirely genetically 

determined, but also subject to environmental influences during 

development, which make offspring of exceptional parents even more 

likely to be closer to the average than their parents. 

For Galton, regression had only this biological meaning, but his work was 

later extended by Udny Yule and Karl Pearson to a more general statistical 
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context around the 20th century. George Udny Yule initially studied to be a 

civil engineer, but through the influence of the famous statistician, Karl 

Pearson, he turned his attention to theoretical and inferential statistics. 

They completed pioneering work developing multiple regression models 

[20] [27]. Yule wrote, speaking about the typical fit curve of y as a function 

of x over many data points: “It is a fact attested by statistical experience 

that these means do not lie chaotically all over the table, but range 

themselves more or less closely round a smooth curve, which we will name 

the curve of regression of x on y. So regression methods evolve from  

finding the curve of regression, which itself is the best fit for groups of 

observations after allowing some of the variation to be declared 

“unexplained” and left in a noise term. This is advance from mere fitting or 

solving where you might be trying to explain all of the observed variation 

in n-individuals using as many as n-variables [27]. 

The earliest form of regression was the method of least squares, which was 

published by Legendre in 1805 [19], and by Gauss in 1809 [12]. Legendre 

and Gauss both applied the method to the problem of determining, from 

astronomical observations, the orbits of bodies about the Sun (mostly 

comets, but also later  then newly discovered minor planets). Gauss 

published a further development of the theory of least squares in 1821 [13], 

including a version of the Gauss–Markov theorem. In 1806, Legendre 

published new methods to determine the orbits of comets. His method 

involved three observations taken at equally spaced intervals and he 

assumed that the comet followed a parabolic path so that he ended up with 
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more equations than there were unknowns [1]. However, Gauss published 

his version of the least squares method in 1809 and, while acknowledging 

that it appeared in Legendre's book, Gauss still claimed priority for himself. 

This greatly hurt Legendre, leading to one of the infamous priority disputes 

in the history of mathematics.                                                                                                                        

1.2 Regression Analysis 

Regression analysis is a statistical process for estimating the relationships 

among variables. This includes estimating the parameters of the regression 

model, showing the strength and direction of the relationships, and 

assessing the estimated model. Regression analysis includes many 

techniques for modeling and analyzing several variables. When the focus is 

on the relationship between a dependent variable y (also called a response 

variable) and one or more independent variables xi (called the predictors or 

the explanatory variables) [18]. More specifically, regression analysis helps 

one understand how the typical value of the dependent variable changes 

when any one of the independent variables is varied, and the other 

independent variables are held fixed. It is also used to understand which 

among the independent variables are related to the dependent variable, and 

to explore the forms of these relationships. Regression analysis is applied 

in many areas of academic and applied sciences such as social sciences, 

medical researches, biology, meteorology, psychology, chemistry and 

economics.  
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Regression analysis tries to find answers to questions such as “Is there a 

relationship between dependent and independent (explanatory) variables? If 

there is, what is the power of this relationship? How good is this 

relationship? What kind of a relationship is there between the variables?”  

Regression analysis can be defined as the expression of the relationship 

between dependent and independent variables in the form of a 

mathematical function. Most studies assume a linear relationship between 

independent and dependent variables [8]. The parameters of the regression 

models usually unknown and can be estimated using different methods.  

One of the most commonly used prediction techniques is the method of 

least squares which will be used in this research. The correlation coefficient 

and the coefficient of determination will indicate the strength of the 

estimated relationships, and the sign of the correlation coefficient will be 

the indicator for the direction of this relationships. Regression analysis is 

an easily comprehensible method. Today, it has a wide area of usage and 

applications with the help of statistical package softwares such as SPSS, 

Minitab, Matlab, SAS, and Stata. 

A regression model in which only one independent variable is used to 

predict the value of one dependent variable is called simple regression 

model. Whereas a regression model in which more than one independent 

variable is used to predict the value of one dependent variable is called 

multiple regression model. Also, a regression model in which only one 

independent variable is used to predict the value of many dependent 

variables is called multivariate regression model. Whereas a regression 
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model in which more than one independent variable is used to predict the 

value of more than one dependent variable is called multivariate multiple 

regression model. Many people confuse between the multivariate 

regression model and the multivariate multiple regression model and 

consider them the same. Here, we separate between the two models and 

give an explanation about the multivariate regression model, derive its 

formulas, write the model in matrix form, and give examples. So, we 

consider four types of regression models; Simple Regression, Multiple 

Regression, Multivariate Regression, and Multivariate Multiple 

Regression.  

The main objective of this research was to study the Multivariate Multiple 

Regression Model. We constructed two main examples to estimate this 

model. The first one using simulation, data from different distributions has 

been generated on three psychological variables, four academic variables 

(standardized test scores) for 20 high school students. We were interested 

in how the set of psychological variables is related to the academic 

variables. In the second example, A case study was generated about 

university students in Palestine. Data for 350 university students has been 

collected on three dependent variables; two psychological variables (self 

concept, achievement motivation) and cumulative average of the student. 

We were interested in how the set of the dependent variables is related to 

the set of independent variables which were tawjihi average, English score 

level exam, budget, absents, and the study program of the student. 
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After estimating the regression model and expressing the relationship 

between dependent and independent variables in the form of a 

mathematical function, we have to find answers to the questions; How 

good is the relationship? And what is the power of this relationship? We 

gave answers for these questions through assessing the estimated models 

by testing the goodness of fit for the models. One of the most important 

techniques for assessing the regression model is the analysis of variance 

approach (ANOVA). We used ANOVA to test for the significance of the 

estimated regression model in simple and multiple regression in chapter 2, 

i-e ANOVA can be used when we have only one dependent variable. 

However, ANOVA can‟t be used when we have more than one dependent 

variable; instead, we use multivariate analysis of variance (MANOVA). 

MANOVA has been applied to test the significance of the estimated 

multivariate multiple regression models in the simulated data and in the 

case study.  The MANOVA output for the first case study showed that the 

predictor variables; tawjihi, English score, budget, and absent were good 

predictors for the response variables. Our decision was according to the p-

values of the four predictors which were 0.0000, 0.0001, 0.0011, and 

0.0010 respectively. Small p-values indicate us to reject the null hypothesis 

that a certain variable has no effect on the responses. The results of 

MANOVA will be explained in details in chapters three and four. 
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Chapter Tow 

Estimating Linear Regression Models 

Regression analysis is used to answer questions about how one variable 

depends on one or more other variables. For instance, does diet correlate 

with cholesterol level, and does this relationship depend on other factors, 

such as age, smoking status, and level of exercise? 

Regression models can answer these questions. They describe the 

relationship between a dependent variable, which is diet in our example, 

and an independent variable or variables, which are cholesterol level, age, 

smoking status, and level of exercise. 

2.1 Linear Regression Models 

2.1.1  Definitions, Basic Concepts, and Examples 

 A regression model is a mathematical equation that describes the 

relationship between two or more variables, sometimes we call it 

regression equation. 

 And by linear regression model we mean a model that assumes a 

linear  relationship between two or more variables. 

 Types of linear regression models:  

 Simple Linear Regression: When we consider the relationship 

between one dependent variable and one independent variable, we use 

Simple Linear Regression. 
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 Multiple Linear Regression: When we consider the relationship 

between one dependent variable and more than one independent 

variable, we use Multiple Regression. 

 Multivariate linear regression: When we consider the relationship 

between more than one dependent variable and one independent 

variable, we use Multivariate Regression. 

 Multivariate Multiple Linear Regression: When we consider the 

relationship between more than one dependent variable and more than 

one independent variable, we use Multivariate Regression. This is the 

model that we are most interested in and will study it in details later in 

chapter 3. 

 Correlation analysis is a statistical approach used to measure the 

strength of the relationship among variables. The term correlation 

most often refers to the linear association between two quantities or 

variables, that is, the tendency for one variable to increase or decrease 

as the other increases or decreases, in a straight-line trend or 

relationship.  Correlation and regression analysis are related in the 

sense that they both deal with relationships among variables. 

 The correlation coefficient (also called the Pearson linear correlation 

coefficient) is a numerical index of the strength of relationship 

between two variables. Values of the correlation coefficient are 

always between -1 and +1. A correlation coefficient of +1 indicates 

that the two variables are perfectly related in a positive linear sense. A 

correlation coefficient of -1 indicates that two variables are perfectly 
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related in a negative linear sense. A correlation coefficient of 0 

indicates that there is no linear relationship between the two variables.  

 The population correlation coefficient, ρ (rho), measures the 

strength and direction of the linear association between the variables. 

 The sample correlation coefficient, r, is an estimate of ρ and is used 

to measure the strength of the linear relationship in the sample 

observations. The closer r is to +1, the stronger the positive correlation 

is. The closer r is to -1, the stronger the negative correlation is. If |r| = 

1 exactly, the two variables are perfectly correlated. A value of zero 

for r does not mean that there is no correlation.  

Regression models are widely used for prediction. We can predict the value 

of a response variable from knowledge of the values of one or more 

explanatory variables. Below are some examples: 

 We may be interested to know whether the sale price of home will 

rise next year. 

  We may wish to examine whether cigarette consumption is related 

to various socioeconomic and demographic variables such as age, 

education, income, and price of cigarettes. 

  A meteorologist may forecast it will rain tomorrow. 

  An executive of an insurance company may predict there will be 

more road accidents and casualties next year.  

 A researcher in education may claim that educational success 

depends on intelligence, economic and social class of a student. 
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2.1.2 Regression Equation 

The simple regression equation takes the algebraic form for a straight line:                                     

y = mx + b, where m is the slope of the line, and b is the y-intercept. It is 

known from algebra that a line is identified by its slope (the angle of the 

line describing the change in y per unit x) and intercept (where the line 

crosses the y axis). So regression describes the relation between x and y 

with just such a line. We look for the equation or formula for the straight 

line that minimizes the total error.  

We can use the regression equation to predict the value of the dependent 

variable at fixed values of the independent variable(s). 

Generally, when we have k predictor variables the formula of regression 

equation takes the form 

yi = β1 xi1 + β2 xi2 +…+  βk xik + εi   =   xi
T
 β + εi ,      i = 1,2,…,n.  

where T denotes the transpose, so that xi
T
β is the inner product between 

vectors xi and β.  

Often these n equations are stacked together and written in vector form as:                            

Y = X β + ε,  

where 

 Y is the column vector of n observations of the response variable. 

The decision as to which variable in a data set is modeled as the 

dependent variable and which are modeled as the independent 
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variables may be based on a presumption that the value of one of the 

variables is caused by, or directly influenced by the other variables. 

 X is called the design matrix consisting of column vectors of 

observations on the predictor variables. 

  Remark:  

 Usually a constant is included as one of the predictor variables. For 

example we can take xi1 = 1 for i = 1, ..., n. The corresponding 

element of β is called the intercept. Many statistical inference 

procedures for linear models require an intercept to be present, so it 

is often included even if theoretical considerations suggest that its 

value should be zero. That is, the regression equation will take the 

form:  yi = β0 +β1 xi1 + β2 xi2 +…+  βk xik + εi  , where  β0 represents 

the intercept parameter. 

 Sometimes one of the predictor variables can be a non-linear 

function of another predictor, as in polynomial regression. The 

model remains linear as long as it is linear in the parameter vector β. 

 β is the column vector of coefficients to be estimated. Statistical 

estimation and inference in linear regression focuses on β.  

 ε is the error term, or noise. This variable captures all other factors 

which influence the dependent variable yi other than the regressors 

xi.  
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In fact, we don‟t know the exact population regression line (values of the 

regression coefficients), and the goal of linear regression methods is to find 

the “best” choices of the estimated values for the constants β0, β1, β2, …, βk 

to make the regression formula as “accurate” as possible. The regression 

line that we obtain from a sample provides an estimate of the population 

regression line. The estimated regression model:  

 

E( yi) = β̂0 + β̂1 xi1 + β̂2 xi2 +…+  β̂k xik    (population) 

    

ŷi = β̂0 + β̂1 xi1 + β̂2 xi2 +…+  β̂k xik         (sample) 

where  

  ŷ: is the estimated y value. 

  β̂i : are the estimated values of the regression coefficients. 

  β̂0: is the estimate of the regression intercept. 

 The individual random error terms εi have a mean of zero. 

 A residual (or the error term) is the difference between the observed 

response y and the predicted response ŷ, εi = yi − ŷi . 

2.1.3 Linear Regression Assumptions  

The following are major assumptions made by standard linear regression 

models with standard estimation techniques (e.g. ordinary least squares): 

 Error values (ε) are statistically independent. This assumes that the 

errors of the response variables are uncorrelated with each other. 

Some methods are capable of handling correlated errors, although 
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they typically require significantly more data unless some sort of 

regularization is used to bias the model towards assuming 

uncorrelated errors. Bayesian linear regression is a general way of 

handling this issue. 

 The probability distribution of the errors is normal with mean zero. 

 The probability distribution of the errors has constant variance. 

 The independent variables are measured with no error. The observed 

values of x are assumed to be a set of known constants. In other 

words, the predictor variables are assumed to be error-free.  

 Linearity: The underlying relationship between the x variable and the 

y variable is linear. More generally, that the mean of the response 

variable is a linear combination of the parameters (regression 

coefficients) and the predictor variables. Because the predictor 

variables are treated as fixed values, linearity is really only a 

restriction on the parameters. The predictor variables themselves can 

be arbitrarily transformed, and in fact multiple copies of the same 

underlying predictor variable can be added, each one transformed 

differently. 

 The predictors are linearly independent, that is, it is not possible to 

express any predictor as a linear combination of the others [29]. 

Sometimes one of the predictors can be a non-linear function of another 

predictor or of the data, as in polynomial regression [21] and segmented 

regression [22]. The model remains linear as long as it is linear in the 

parameter vector β. For example, consider a situation where a small ball is 
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being tossed up in the air and then we measure its heights of ascent hi at 

various moments in time ti. Physics tells us that, ignoring the drag, the 

relationship can be modeled as:  

hi= β1 ti + β2 ti
2
+ εi , 

where β1 determines the initial velocity of the ball, β2 is proportional to 

the standard gravity, and εi is due to measurement errors. Linear regression 

can be used to estimate the values of β1 and β2 from the measured data. 

This model is non-linear in the time variable, but it   is linear in the 

parameters  β1 and β2. If we take regressors       xi = (xi1, xi2)  = (ti, ti
2
), the 

model takes on the standard form: 

hi = xi
T
β + εi   [25] 

Remark: In statistics, the independence and normality assumptions about 

the errors are called the Gauss–Markov conditions [23]. 

2.2 Nonlinear regression 

The assumption of linearity in regression models requires that the 

relationship among the variables must be linear. That is a straight-line 

relationship between the variables (the response variable is a linear 

combination of the parameters and of the predictor variables). In linear 

regression we try to find the best straight line fitted to data, but, sometimes 

the true relationship that we want to model is curved. For example, if 

something is growing exponentially, which means growing at a steady rate, 

the relationship between x and y is curve. To fit something like this, we 

http://en.wikipedia.org/wiki/Standard_gravity


16 

need non-linear regression, which is a form of regression analysis in which 

observational data are modeled by a function which is a nonlinear 

combination of the model parameters and depends on one or more 

independent variables.  

Nonlinear regression is a general technique to fit a curve through the data. 

It fits data to any equation that defines y as a function of x and one or more 

parameters. It finds the values of those parameters that generate the curve 

which comes closest to the data (minimizes the sum of the squares of the 

vertical distances between data points and curve). 

Both linear and nonlinear regression find the estimated values of the 

parameters (slope and intercept for linear regression) that make the line (in 

linear regression) or the curve(in nonlinear regression) come as close as 

possible to the data.  

The two diagrams in Figure 2.1 show a linear and a nonlinear relationship 

between the dependent variable food expenditure and the independent 

variable income. A linear relationship between income and food 

expenditure, shown in Figure 2.1 (a), indicates that as income increases, the 

food expenditure always increases at a constant rate. A nonlinear 

relationship between income and food expenditure, as shown in Figure 2.1 

(b), shows that as income increases, the food expenditure increases. 

Although, after a point, the rate of increase in food expenditure is lower for 

every subsequent increase in income. 
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Figure 2.1: Relationship between food expenditure and income 

(a) Linear relationship      (b) non linear relationship 

Many relationships in biology and other fields of science do not follow a 

straight line. To analyze such data, you have two choices: 

 Use nonlinear regression methods:  

Like the ordinary least squares (OLS) approach which gives the best-

fit curve that minimizes the sum of squared residuals.  

 Do mathematical transformations, to force the data into a linear 

relationship. Then use linear regression. Although these techniques 

are commonly used, they should be avoided. They are less accurate 

than   nonlinear regression, and are not any easier [14]. 

For example, consider the nonlinear regression problem,  

y = Ae
bx 

u 

This is an exponential growth equation. b is the growth rate. u is a random 

error term. If we take the logarithm of both sides of that equation, we get:    
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ln(y) = ln(A) + bx + ln(u), 

 this equation has logarithms in it, but they relate in a linear way. It is in the 

form   y = a + bx + error, except that y, a, and the error are logarithms. This 

means that if we create a new variable, the base-e logarithm of y, written as 

ln(y), we can use the linear regression methods to fit   

ln(y) = ln(A) + bx + ln(u) 

That is a way of fitting the curve       

y = Ae
bx

 to the data  [3]. 

In general, there is no closed-form expression for the best-fitting 

parameters, as there is in linear regression. Usually numerical optimization 

algorithms are applied to determine the best-fitting parameters. Again, in 

contrast to linear regression, there may be many local minima of the 

function to be optimized and even the global minimum may produce a 

biased estimate. In practice, estimated values of the parameters are used in 

conjunction with the optimization algorithm to attempt to find the global 

minimum of a sum of squares [4], [9]. 

2.3 The Method of Least Squares 

Least squares linear regression (also known as “ordinary least squares”, 

“OLS”, or often just “least squares”), is one of the most basic and most 

commonly used prediction techniques known to humankind, with 

applications in fields as diverse as statistics, finance, medicine, economics, 

and psychology.  
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The mathematical concept of least squares is the basis for several methods 

to fit certain types of curves and surfaces to data. Problems of fitting curves 

and surfaces have a history spanning several millennia. The basic idea of 

the method of least squares is easy to understand. It may seem unusual that 

when several people measure the same quantity, they usually do not obtain 

the same results. In fact, if the same person measures the same quantity 

several times, the results will vary. What then is the best estimate for the 

true measurement? 

Why is least squares so popular? 

Least squares is such an extraordinarily popular technique that often when 

people use the phrase “linear regression” they are in fact referring to “least 

squares regression”. Much of the use of least squares can be attributed to 

several factors: 

 It is one of the earliest general prediction methods known to 

humankind. 

 Its implementation on modern computers is efficient, so it can be 

very quickly applied even to problems with hundreds of features and 

tens of thousands of data points. 

 It is easier to analyze mathematically than many other regression 

techniques. 

 It is not too difficult for non-mathematicians to understand at a basic 

level. 
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 It is the optimal technique in a certain sense in certain special cases. 

In particular, if the system being studied truly is linear with additive 

independent normally distributed errors (i.e. with mean zero and 

constant variance), then the constants solved for by least squares are 

in fact the most likely coefficients to have been used to generate the 

data [28]. 

There is also the Gauss-Markov theorem which states that if the system 

we are modeling is linear with additive noise (error), and the random 

variables representing the errors made by our ordinary least squares model 

are uncorrelated from each other, and if the distributions of these random 

variables all have the same variance and a mean of zero, then the least 

squares method is the best unbiased linear estimator of the model 

coefficients, in that the coefficients it leads to have the smallest variance.   

So, the method of least squares gives a way to find the best estimate, 

assuming that the errors (i.e. the differences from the true value) are 

random and unbiased [23]. 

The goal of the least squares estimate is to choose the constants β0, β1, β2, …, 

βk so that our linear formula  

yi = β0 +β1 xi1 + β2 xi2 +…+  βk xik + εi 

is as accurate as possible. But what do we mean by “accurate”? By far the 

most common form of linear regression used is least squares regression, 

which provides us with a specific way of measuring “accuracy” and hence 

gives a rule for how precisely to choose our “best” constants β0, β1, β2, …, 
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βk once we are given a set of training data. The Least squares method says 

that we are to choose these constants so that for every example point in our 

training data we minimize the sum of the squared differences between the 

actual dependent variable (the exact value of yi) and our predicted value for 

the dependent variable (ŷi). In other words, we want to select β̂0, β̂1, β̂2, …, 

β̂k to minimize the sum of the values (observed y – predicted y)²  for each 

training point, which is the same as minimizing the sum of the values 

   (yi – (β̂0 + β̂1 xi1 + β̂2 xi2 +…+  β̂kxik))
2
 =  (yi - ŷi)

2
 = εi

2 

To illustrate the idea of least squares in a better way, we will take the 

simplest form of a linear model. The relationship between two variables x 

and y. Let us go back to our example of the relationship between income 

(x) and food expenditure (y). Suppose we take a sample of seven 

households from a small city and collect information on their incomes and 

food expenditure (in hundreds of dollars) in a certain month. The data 

obtained was as given in table 2.1.  

Table 2.1:  Income and Food Expenditure of seven households 

Income Food expenditure 

55 14 

83 24 

38 13 

61 16 

33 9 

49 15 

67 17 
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In this table, we have a pair of observations for each of the seven 

households. Each pair consists of one observation on income and a second 

on food expenditure. For example, the first household‟s income was $5500 

and its food expenditure was $1400. If we plot all seven pairs of values, we 

obtain a scatterplot as shown in Figure 2.2.  

    

  

We would like to find a line that best describes the relationship between the 

variables. How do we determine which line is best? 
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Figure 2.2: scatterplot of food expenditure and income 

 

Which line best 

describes the 

relationship 

between x and y? 

Figure 2.3: Lines that may describe the relationship between food expenditure and income 
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The best line will be the one that is “closest” to the points on the 

scatterplot. In other words, the best line is the one that minimizes the total 

distance between itself and all the observed data points. We want to find 

the line that minimizes the vertical distance between itself and the observed 

points on the scatterplot. Here we have three different lines in figure 2.3  

that may describe the relationship between x (income) and y (food 

expenditure). In Figure 2.4, ε is the vertical distance between the actual 

position of a household and the point on the regression line.   

 

 

 

 

 

   

 

  The value of an error is positive if the point that gives the actual food 

expenditure is above the regression line and negative if it is below the 

regression line. The sum of these errors is always zero. In other words, the 

sum of the actual food expenditures for the seven households included in 

the sample will be the same as the sum of food expenditures predicted from 

the regression model. Thus,  
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Figure 2.4: The best fit line for the relationship between food expenditure and income 
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Σεi = Σ(yi - ŷi) = 0 

Hence, to find the line that best fits the scatter of points, we can‟t minimize 

the sum of errors. Instead, we minimize the sum of squares of the errors, 

(denote it as SSE), which is obtained by adding the squares of errors. Thus, 

SSE= Σεi
2
= Σ(yi - ŷi)

2
  

Now we can define the Least Square Method to be the best line  that 

minimizes the sum of squared vertical differences between the points and 

the line. That is, to find estimated values for the coefficients β0, β1, β2, …, 

βk, that give the minimum SSE [21]. 

Now, after this overview, we will show how to derive the least squares 

regression formulas to estimate various regression models. But note that the 

formulas that we will use are for estimating a sample regression line. 

Suppose we have access to a population data set. We can find the 

population regression line by using the same formulas with a little 

adaptation. We replace the coefficients β̂0, β̂1, β̂2, …, β̂k (which are for the 

sample) by other coefficients, say β0, β1, β2, …, βk (to be coefficients for 

the population), and the sample size n by N, the population size. Then the 

population regression equation is written as:  

µy|x = β0 +β1 xi1 + β2 xi2 +…+  βk xik + εi 

where µy|x is read as “the mean value of y for a given x”. When plotted on a 

graph, the points on this population regression line give the average value 
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of y for the corresponding values of x. These average values of y are 

denoted by µy|x .  

2.4 Simple Linear Regression Model 

We begin with the simplest situation, the simple linear regression model 

which involves only one dependent variable (y) and one independent 

variable(x) and states that the true mean of the dependent variable changes 

at a constant rate as the value of the independent variable increases or 

decreases. The equation of the line relating y to x is called the simple linear 

regression equation.  

y = β0 + β1 x + ε 

where,  

y: the dependent (response) variable. 

x: the independent (explanatory) variable. 

β0:  the y-intercept, the value of y when x = 0. 

β1: the slope, the expected change in y relative to one unit increase in x.    

ε: is the random error.       

The estimate of the simple linear regression equation is given by 

substituting the least squares estimates into equation: ŷ = β̂0 + β̂1x, where ŷ 

is the expected value of y for a given value of x. 
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The simple linear regression model has two coefficients β0 and β1, which 

are to be estimated from the data, that is we want to find β̂0 and β̂1. If there 

was no random error in yi, any two data points (xi, yi) could be used to 

solve explicitly for the values of the parameters. The random variation in y, 

however, causes each pair of observed data points to give different results. 

(All estimates would be identical only if the observed data fell exactly on 

the straight line). The method of least squares will be used to combine all 

the information to give one solution which is “best” by some criterion. 

The least squares estimation procedure uses the criterion that the best 

solution must give the smallest possible sum of squared deviations of the 

criterion observed yi from the estimates of their true means provided by the 

solution. The best fit regression line is the line that minimizes the sum of 

errors.  

We want to minimize  

SSE =  ∑   
   i

2
 = ∑    

   i -ŷi)
2
  = ∑   

   [yi – (β̂0 + β̂1xi)]
2
, 

This is a quadratic expression and it reaches its minimum value when its 

derivatives vanish. So, by taking the derivative of SSE with respect to β̂0 

and β̂1 and setting them to zero gives the following set of equations (called 

the normal equations): 

  
    

 β̂ 
 =  

   ∑   
   [   – (β̂   β̂   )]

 
 

 β̂ 
  

         = 2 ∑   
   [yi – (β̂0 + β̂1xi)] 

      β̂   β̂     

 β̂ 
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           = -2 ∑   
   [yi – (β̂0 + β̂1xi)] 

  We set this partial derivative equal to zero: 

-2  [yi – (β̂0 + β̂1xi)] = 0                  [yi – (β̂0 + β̂1xi)] = 0 

                                                        yi = n β̂0 + β̂1 Σxi  

  
    

 β̂ 
=  

   ∑   
   [   – (β̂    β̂   )]

 
 

 β̂ 
  

          =  2 ∑   
   [yi – (β̂0 + β̂1xi)] 

      β̂    β̂     

 β̂ 
 

           = -2  xi[yi – (β̂0 + β̂1xi)]. 

Set the partial derivative equal to zero: 

-2  xi[yi – (β̂0 + β̂1xi)] = 0               xi[yi – (β̂0 + β̂1xi)] = 0 

                                                        xiyi -  β̂0  xi - β̂1 xi
2
 = 0 

                                                        xiyi = β̂0  xi + β̂1 xi
2
 

  Now we must solve this system of two normal equations:  

    yi = n β̂0 + β̂1 Σxi  

 xiyi = β̂0  xi + β̂1 xi
2
  

The system can be solved to get:   β̂1 = 
  Σ       Σ      

 Σ     Σ    
 

and 

β̂0 = 
Σ    

  
 +  

    

  
 . 
Σ    Σ    Σ   Σ     

  Σ     Σ    
  

Σ    

  
– β̂  

 Σ   

  
   ̅   β̂   ̅     [21] 
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We can rewrite β̂1 given the following information about what  are called 

“sums of squares”,   

Sxy = Σ(xi -  ̅)(yi -  ̅) = Σxi yi - 
 

 
 Σxi Σyi = Σxi yi – n   ̅ ̅   

Sxx = Σ(xi - ̅)
2
 = Σxi

2
 - 

 

 
 (Σxi)

2
 = Σxi

2
 - n  ̅  

Syy = Σ(yi -  ̅)
2
 = Σyi

2
 - 

 

 
 (Σyi)

2
 = Σyi

2
 - n  ̅  

Therefore, β̂1 = 
    

   
 

So, the line that minimizes the sum of squared errors has the following 

slope and y-intercept estimated parameters: 

β̂ = 
     

    
        and       β̂     ̅   β̂   ̅ 

To illustrate the method, let us consider the following example. 

Example (2.1):   

Find the “best” regression line for the data on income and food expenditure 

on the seven households given in table 2.1. Use income as independent 

variable and food expenditure as dependent variable.  

Solution:  

We want to find the values of β̂0 and β̂1 for the regression model   ŷ = β̂0 + 

β̂1x. Table 2.2 shows the calculations required for the computation of β̂0 and 

β̂1. We denote the independent variable (income) by x and the dependent 

variable (food expenditure) by y, both in hundreds of dollars. 
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Table 2.2: Data on Income and Food Expenditure 

x y xy x
2
 

55 14 770 3025 

83 24 1992 6889 

38 13 494 1444 

61 16 976 3721 

33 9 297 1089 

49 15 735 2401 

67 17 1139 4489 

Σx= 386 Σy= 108 Σxy= 6403 Σx
2
= 23058 

 First, we find Σx, Σy, Σxy, Σx
2 

as shown in the table. And compute  ̅ 

and  ̅:  

             ̅ = Σx/n = 386/7 = 55.1429 

             ̅ = Σy/n= 108/7 = 15.4286 

 Compute Sxy and Sxx :  

Sxy = Σxi yi - 
 

 
 Σxi Σyi = 6403 - 

 

 
 .(386). (108) = 447.57 

Sxx = Σxi
2
   - 

 

 
 (Σxi)

2   
 = 23058 - 

 

 
  .(386)

2        
 = 1772.85 

 Compute β̂0 and β̂1:  

β̂1= 
S  

S  
 = 

      

       
 = 0.2525 

β̂0 =  ̅ - β̂1  ̅ = 15.4286 – (0.2525)(55.1429) = 1.505 

  Thus, our estimated regression model is:  

ŷ = 1.505 + 0.2525 x  
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Using this estimated regression model, we can find the predicted value of y 

for any fixed value of x (during the month in which the data has been 

collected). For instance, suppose we randomly select a household whose 

monthly income is $6100, so that x = 61. The predicted value of food 

expenditure for this household is: 

ŷ = 1.505 + 0.2525 (61) = $16.9075 hundred = $1690.75 

In other words, based on our regression line, we predict that a household 

with a monthly income of $6100 is expected to spend $1690.75 per month 

on food. In our data on seven households, there is a one household whose 

income is $6100. The actual food expenditure for that household is $1600 

(see Table 2.2). The difference between the actual and predicted values 

gives the error of prediction  . 

  = y – ŷ = 16 – 16.9075 = $ -0.9075 hundred = $-90.75 

   β̂   = 1.505, is the expected value of y when x=0. That is, a 

household with no income is expected to spend $150.5 per month on 

food.  

 The value of  β̂  in the regression model gives the change in y due to 

increase  of one unit in x. That is, for every one dollar increase in 

income, a household food expenditure  is predicted to increase by 

$0.2525. 

 We can find the correlation coefficient r which can be computed 

from the formula : 

r = 
   

√       
 =  

      

√                   
 = 0.94805 
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Goodness of Fit of the model 

Once we fit a model, a natural question comes to our mind, how good is the 

fit? Are the explanatory variables useful in prediction? To answer these 

questions we need to assess the regression model, either using t-test or 

using ANOVA for regression. In general, the purpose of analysis of 

variance (ANOVA) is to test for significant differences between means. 

But in regression models it consists of calculations that provide information 

about levels of variability within a regression model and form a basis for 

tests of significance.  

It is easy to show that the total variation of the response variable y can be 

decomposed into two parts: the residual variation of y (error sum of squares 

(SSE)) and the explained variation of y (regression sum of squares (SSR)). 

Consider the total sum of squares:  

 Σ(yi - ̅)  = Σ(yi –ŷi + ŷi - ̅)² 

 Σ(yi - ̅)  = Σ(yi –ŷi)  + Σ(ŷi - ̅)², which we usually rewrite as: 

             SST =   SSE     +    SSR 

 SST stands for the “total sum of squares”, this is essentially 

the total variation in the data set. That is, the total variation of 

food expenditure. 

 SSR stands for “sum of squares due to regression” - this is the 

squared variation around the mean of the estimated food 

expenditure. This is sometimes called the total variation 

explained by the regression.  
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 SSE stands for “sum of squares due to error” - this is simply 

the sum of the squared residuals, and it is the variation in the 

y variable that remains unexplained after taking into account 

the variable x. 

For the simple regression case, these are computed as: 

  SST = Syy = Σyi² - n  ̅² 

  SSR = β̂1 Sxy 

  SSE = SST – SSR 

Each sum of squares can be divided by an appropriate constant (degrees of 

freedom) to get the mean sum of squares due to regression MSR, and the 

mean sum of squares due to error MSE. 

It is often useful to summarize the decomposition of the variation in y in 

terms of an analysis of variance (ANOVA). In such a case the total 

explained and unexplained variations in y are converted into variances by 

dividing by the appropriate degrees of freedom. This helps develop a 

formal procedure to test the goodness of fit by the regression line.  

Initially we set the null hypothesis that the fit is not good. In other words, 

our hypothesis is that the overall regression is not significant in a sense that 

the explanatory variable is not able to explain the response variable in a 

satisfactory way. 
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Table 2.3: ANOVA table for simple regression  

Source of 

Variation 

(Source) 

Sum  of 

Squares 

(SS) 

Degrees of      

Freedom 

(df) 

Mean          

Square 

(MS) 

F 

statistic 

Regression 

 

SSR 1 MSR= 
   

 
 F = 

   

   
 

Error SSE n-2 MSE= 
   

   
  

Total SST n-1   

From the ANOVA table we can easily conclude the overall regression is 

significant at the 5% level of significance, i.e., the OLS regression line 

adequately fits the data. 

If the calculated value of the statistic falls in the critical region, we reject 

the null hypothesis and conclude that the regression coefficient is 

significant. In other words, we say that the explanatory variable has 

significant effect on the response variable. The critical region (or the 

rejection region) is determined by the value of F-tabulated, Fα,1,n-2 . 

If the value of the statistic falls outside the critical region, we do not reject 

the null hypothesis and conclude that the regression coefficient is not 

significant, i.e., the explanatory variable has no significant effect on the 

response variable. 

Now, back to our example on income and food expenditure, if we were 

asked to assess the usefulness of the model at the significance level 0.05 (α 

= 0.05) 
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  First, set the null hupothesis (H0) and the alternative hypothesis (H1): 

        H0: β1= 0      versus       H1: β1 ≠ 0  

  Compute the quantities SST, SSR, and SSE: 

SST = Syy = Σyi² - n ȳ  = 1792 – 
      

 
  125.71 

SSR = β̂1 Sxy = 0.2525 . (447.57) = 113.01 

          SSE = SST – SSR = 125.71 – 113.01 = 12.7 

 Put the calculations in ANOVA table and compute the rested 

quantities: 

 Source  SS  (df)  (MS) F statistic 

Regression 113.01 1 113.01 44.49 

Error 12.7 5 2.54  

Total 125.71 6   

The tabulate F value is:  

F0.05,1,5 = 6.61  

 

Since the F-statistic falls in the rejection region, we reject the null 

hypothesis. That is,  the income is useful to explain the food expenditure in 

a satisfactory way. 

 From the assumptions about the errors, that they have a constant 

variance σ , and since it is a population parameter, so we can‟t know 

for certain what its value is. Therefore, it is usually estimated by s² = 

6.61    rejection region 

F stat.  
44.49 
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   , “MSE”, which is provided in the regression output under the 

name “standard error”.  

We define the coefficient of determination r², which is the portion of the 

total variation in the dependent variable that is explained by variation in the 

independent variable (it is a measure of the explanatory power of the 

model).  And it can be defined  by the percentage of the response variable 

variation that is explained by a linear model,  

               r² = 
   

   
   , 0 ≤ r  ≤ 1,    r² = 

      

      
 = 0.8989 

In general, the higher the R-squared, the better the model fits your data. 

2.5  Multiple Linear Regression Model  

In this section we present one more complicated model, and develop the 

normal equations and solution to the normal equations for a more general 

linear model involving finite number of independent variables. We present 

multiple regression analysis in matrix notation. In this model we consider 

the relationship between one dependent variable and more than one 

independent variable.  

The linear model for relating a dependent variable to k independent 

variables is given by:  

y = β0 + β1 x1 + β2 x2 +…+  βk xk + ε 

                                ŷ = β̂0 + β̂1 x1 + β̂2 x2 +…+  β̂k xk 
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The multiple linear regression can be thought of as an extension of simple 

linear regression, where there are k explanatory variables, or simple linear 

regression can be thought as a special case of multiple linear regression, 

where k = 1. Also here we use the least squares method to find the 

estimated coefficients β̂0, β̂1, …,β̂k that minimize the sum of squares Σ(y - 

ŷ)² 

  The method is to write the following formulas, 

      =  β̂1 Sx x   +  β̂2  Sx x²   + … +  β̂k Sx xk 

 Sx²y = β̂1 Sx x² +  β̂2  Sx²x²  + … +  β̂k Sx²xk 

. 

. 

. 

 Sxky =  β̂  Sx xk +   β̂2 Sx²xk   + … +  β̂k Sxk xk 

    β̂0   =    ̅ -  β̂1 ̅    -  β̂2   ̅2   -  …  -   β̂k xȳk 

These equations are called normal equations, so we can solve these 

equations to find the estimated coefficients β̂0, β̂1, …,β̂k. Note that, because 

the normal equations are linear, and because there are as many equations as 

unknown regression coefficients (k+1), there is usually unique solution for 

the coefficients β̂0,β̂1, …,β̂k  [6]. 

To illustrate how the method of least squares work in this model, we will 

consider a very simple example of multiple regression model in the case of 

just two explanatory variables, that is the formula of the model:     ŷ = β̂0 + 

β̂1 x1 + β̂2 x2 , and through this example we will see how to compute the 
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regression coefficients by doing similar steps like in simple regression in a 

developed manner. 

Example (2.2): 

A researcher is interested in predicting the average value of y, length of 

time that an individual can continue a physical exercise, on the basis of two 

predicting variables, x1, the average number of cigarettes smoked per day, 

and x2, the ratio of weight in kilograms to height in meters. The following 

data summary for 20 individuals:  
 

Σy = 360, Σx1= 200, Σx2= 900 ,   Σy = 7162, Σx 
2 
= 3398   Σx2

2
 = 41058,   

Σx1y= 2669,      Σx2y= 16034,    Σx1x2= 9298. 

        Obtain the multiple regression equation. 

Solution:  

  ̅ = 18,   ̅ = 10 ,   ̅2 =45. 

 Compute Sx y, Sx²y, Sx x , Sx x², Sx²x² 

Sx y  = Σx1y  – n  ̅1 ̅  =  2669  –  (20)(10)(18)  = -931 

Sx²y  = Σx2y  – n  ̅2 ̅  = 16034 –  (20)(45)(18)  = -166 

Sx x  = Σx1
2
   – n  ̅1

2 
  =  3398  –  (20)(10)

2
       = 1398 

Sx x² = Σx1x2 – n  ̅1 ̅2 =  9298  –  (20)(10)(45)  = 298 

Sx²x² = Σx2
2
  – n  ̅2

2 
   = 41058 –  (20)(45)

2           
 = 558 

 Set the normal equations to find the estimated coefficients 
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Sx y = β̂  Sx x  + β̂2 Sx x² 

  Sx²y = β̂  Sx x² + β̂2 Sx²x² 

-931 = 1398 β̂1 + 298 β̂2 

-166 =   298 β̂1 + 558 β̂2   

these are two equations in two unknowns, solving these equations we get:  

β̂1= -0.68   and   β̂2= 0.066 

And  β̂0 = 18 –(-0.68)(10) – (0.066)(45) = 21.83 

The multiple regression equation is given by 

ŷ = 21.83 – 0.68 x1 + 0.066 x2 

Using this estimated regression model, we can find the predicted value of y 

for specific values of x1 or x2. For instance, suppose we randomly select a 

person who smokes seven cigarettes per day, so that x1= 7, and that this 

person weighted 70 kg and is 1.7 meter tall, so that x2= 41.176. The 

predicted value of time to continue a physical exercise for this person is: 

ŷ = 21.83 – (0.68)(7) + (0.066)(41.176) = 19.787 unit of time (minute, say) 

 The value of  β̂  indicates that for every one more cigarette smoked 

in a day, the length of time for a person to continue an exercise is 

expected to decrease by 0.68 minute. Keeping the ratio of weight to 

height fixed. 
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 The value of  β̂2 indicates that if the ratio of weight to height for a 

person increases by one unit, the length of time for a person to 

continue an exercise is expected to increase by 0.066 minute. 

Keeping the number of cigarette smoked in a day fixed. 

Goodness of Fit of the model 

As in simple regression we use ANOVA for regression to test the goodness 

of the multiple regression models.  

Our hypothesis is that the overall regression is not significant in a sense 

that the explanatory variables are not able to explain the response variable 

in a satisfactory way.  

  SST = Syy = Σyi² - n  ̅² 

  SSR = β̂  Sx y + β̂2 Sx²y 

  SSE = SST – SSR     [6] 

Table 2.4: ANOVA table for multiple regression 

Source of 

Variation 

(Source) 

Sum  of 

Squares 

(SS) 

Degrees of      

Freedom 

(df) 

Mean          

Square 

(MS) 

F statistic 

Regression 

 

SSR K MSR= 
   

 
 F = 

   

   
 

Error SSE n-k-1 MSE= 
   

     
 

 

Total SST n-1   

At 5% level of significance, the rejection region is determined by    F0.05,k,n-

k-1 . 
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  we want to test      

   H0:β = β2=  0      versus         H1: not all βi‟s equal to zero  

 Source SS Df MS F statistic 

Regression 622.124 2 311.062 88.37 

Error 59.876 17 3.52  

Total 682 19   

F0.05,2,17 = 3.59 

 

 

Since the F-statistic falls in the rejection region, we reject the null 

hypothesis. That is,  both cigarettes and ratio of weight to height are useful 

for predicting the length of time an individual need to continue an exercise 

in a satisfactory way. 

 r
2
 = 

SSR

SST
 = 

622 124

682
 =  0.9122 , the value of  r

2
 is close to 1, this means 

that the explanatory power of the model is very good. 

 The correlation coefficient r = √   = 0.955, this indicates that the 

variables can be considered very highly correlated. 

Multiple Regression Model in Matrix Notation:  

Here we begin by representing the linear model in matrix form. For the 

multiple regression model  

yi = β0 + β1 xi1 + β2 xi2 +…+  βk xik + εi, for all i= 1,2,…,n    

where the error terms assumed to have the following properties: 

     3.59    rejection region 

F stat.  

88.37 
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 E(εi) = 0. 

 Var (εi) = σ
2 
(constant). 

 Cov(εi, εj) = 0,  i ≠ j 

The subscript i denotes the observational unit from which the observations 

on y and the k independent variables were taken. The second subscript 

designates the independent variable. The sample size is denoted with n, i = 

1, . . . , n, and k denotes the number of independent variables. There are (k 

+ 1)  estimated coefficients β̂j, j = 0, . . . , k when the linear model includes 

the estimated intercept β̂0.  

  Four matrices are needed to express the linear  model in matrix notation:  

Y : the n×1 column vector of observations on the dependent variable y. 

X: the n × (k+1) matrix consisting of a column of ones, which is labeled 1, 

followed by the k column vectors of the observations on the independent 

variables. 

β: the (k+1) × 1 vector of parameters to be estimated. 

 : the n × 1 vector of random errors.  

  With these definitions, the linear model can be written as 
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Y = Xβ +   

or : 

 

 

 

 

 

  The assumptions become: 

 E( ) = 0 

 Cov( ) =  E(   T
) = σ

2
I. 

The elements of a particular row of X, say row i, are the coefficients on the 

corresponding parameters in β. Notice that β0 has the constant multiplier 1 

for all observations; hence, the column vector 1 is the first column of X. 

The normal equations and their solution 

For the least square estimation our main objective is to find a vector of 

parameters which minimizes the error sum of squares 

SSE = Σ εi² = ε
T
ε 

In matrix notation, the normal equations are written as:  

X
T
X β̂ = X

T
Y 

       y1                       1     x11    x12    .  .  .     x1k                     β                        

       y2                       1     x21   x22     .  .  .     x2k                    β                      2 

       y3        =         1     x31   x32     .  .  .    x3k              β2         +          3 

        .                     .       .                            .                .                      .                             

        .                     .                  .  .  .  .       .                 .                      .               

       yn                     1     xn1   xn2     .  .  .      xnk            βk                          n           

        (n × 1)                                           (n × (k+1))                                ((k+1) × 1)                (n × 1) 
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The normal equations are always consistent and hence will always have a 

solution of the form 

β̂ = ( X
T
X)

-1
 X

T
Y 

If  X
T
X  has an inverse, then the normal equations have a unique solution 

given by                        

β̂ = ( X
T
X)

-1
 X

T
Y 

here Ŷ = Xβ̂ the predicted value of the response variable (in matrix form),  

and      ε = Y – Ŷ        [21]. 

Example (2.3):  

  The data in table 2.5 relate grams plant dry weight ,y, to percent soil 

organic matter, x1, and kilograms of supplemental soil nitrogen added per 

1000 square meters, x2. Obtain the multiple regression equation. 

Table 2.5 

y x1 x2 

78.5 7 2.6 

74.3 1 2.9 

104.3 11 5.6 

87.6 11 3.1 

95.9 7 5.2 

109.2 11 5.5 

102.7 3 7.1 

  Solution: We want to find the estimated coefficients β̂ , β̂  and  β̂2 for the 

regression equation   

                          ŷ = β̂0 + β̂1 x1 + β̂2 x2  using matrices 
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 First, write the variables in matrix form 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              78.5                                      1        7       2.6        

               74.3                                      1        1        2.9              

 Y =       104.3       ,          X =         1       11       5.6                               

               87.6                                 1       11       3.1             

               95.9                                  1        7        5.2                              

              109.2                                 1       11       5.5   

              102.7                                1        3        7.1                    

                        

 

 

 

 

 

 

- Find the matrix X
T
X 

                   7        51       32 

   X
T
X  =         51      471     235 

                  32      235    163.84 

- Find the inverse of X
T
X 

 

                       1.7996       -0.0685       -0.2532 

(X
T
X)

-1   
=      -0.0685        0.0101       -0.0011 

                      -0.2532       -0.0011        0.0571 
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We get the multiple regression equation:  

ŷ = 51.6 + 1.5 x1 + 6.72 x2 

From the regression equation, for every additional one percent soil organic 

matter, the plant dry weight is expected to increase by approximately 1.5 

gram, keeping the number of supplemental soil nitrogen fixed. Also, for 

every additional one kilogram supplemental soil nitrogen added per 1000 

square meter, the dry weight is expected to increase by approximately 6.72 

gram, keeping the percent soil organic matter fixed. 

We can find the predicted value for each observation of the response 

variable by computing the matrix Ŷ = Xβ̂, and the matrix of errors   ε = Y – 

Ŷ, as shown,  

 

- Find X
T
Y 

                    652.5 

      X
T
Y =    4915.3 

                    3103.7 

 

                                             1.7996     -0.0685     -0.2532         652.5 

- Now, β̂ = (XTX)-1 XTY  =  -0.0685      0.0101     -0.0011         4915.3 

                                             -0.2532    -0.0011       0.0571      3103.7 

 

          β̂0               51.6 

β̂  =    β̂1          =           1.5 

          β̂2               6.72 
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2.6 Estimating regression models using software 

Fitting linear regression models is very important and widely used. When 

we deal with simple regression with just two variables, it was easy. Then 

we access to multiple regression models, and in chapter three we will 

introduce more complicated regression models. We studied slight examples 

in the case of two explanatory variables and one response spending a lot of 

time in doing calculations. So, what if we want to study the relationship 

between five independent variables and one response each of 30 

observations? How much time will we need to fit the model?  

Many statistical softwares have been developed in order to do statistical 

analysis to save both effort and time. These can be used in fitting 

regression models, like SPSS, Minitab, SAS, Stata and Matlab. In this 

section we show Matlab and Minitab, ans SAS output for the examples 

done by hand before and see the results. In fact, Matlab is not a statistical 

software but it can fit regression models even if you have as many variables 

            79.5320                            -1.0320 

            72.5645                             1.7355 

 Ŷ =     105.6914    ,         ε =       -1.3914 

            88.8833                            -1.2833 

            97.0125                            -1.1125 

          105.0191                             4.1809 

          103.7970                            -1.0970 
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(dependent and independent) using just few commands, and provides you 

with accurate results [5]. 

Example (2.1’)   

In this example we will solve example (2.1), the relationship between food 

expenditure and income using Matlab and SAS. 

Matlab output: 

Linear regression model:     y ~ 1 + x1 

Estimated Coefficients: 

                            Estimate           SE              tStat             pValue   

                           ________      ________     _______       _________ 

    (Intercept)          1.5073          2.1742        0.69327          0.51902 

          x1                0.25246        0.037883     6.6641            0.0011485 

Number of observations: 7, Error degrees of freedom: 5 

Root Mean Squared Error: 1.6 

R-squared: 0.899,  Adjusted R-Squared 0.879 

F-statistic vs. constant model: 44.4, p-value = 0.00115 

Explanation for the outputs:  

 The first column of “Estimates” give the estimated values of 

regression coefficients, the intercept “β̂0” and the coefficient of x1 
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“β̂1”. β̂0 was found to be 1.505 and here it is 1.5073. And β̂1 was 

found to be 0.2525, here it is 0.25246. 

 The second and third columns of “SE” and “tstat” give the standard 

error and the test statistic, respectively. Which are used in making 

inferences and test hypothesis about the estimated regression 

coefficients. 

 The fourth column give the p-value for each coefficient, which is 

used in decision making when doing test hypothesis about the 

estimated regression parameters separately.  

In statistics, the p-value is a statistic that is used for testing a 

statistical hypothesis. Before performing the test a threshold value is 

chosen, called the significance level of the test, traditionally 5%. 

The p-value is also defined as the probability, under the null 

hypothesis, of obtaining a result equal to or more extreme than what 

was actually observed. The rule is that we reject the null hypothesis 

if the p-value is less than or equal the significance level and not to 

reject it if the p-value is greater than the significant level.  

 The Root Mean Squared Error (RMSE): which is the square root of 

the MSE, that is √
   

  
 . RMSE represents the sample standard 

deviation of the differences between predicted values and observed 

values. That is, RMSE is the standard deviation of the variation of 

observations around the regression line.  

 R-squared is the measure of the explanatory power of the model (or 

it is a statistical measure of how close the data are to the fitted 
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regression line), r
2
 = 

   

   
 , here it is 0.899 very close to the value 

computed by hand, it was 0.8989. 

 Adjusted R-Squared: sometimes, introducing extra variables can 

lead to spurious results and can interfere with the proper estimation 

of slopes for the important variables. So, in order to penalize an 

excess of variables, we consider the adjusted R
2
, which is computed 

by r
2
 = 

     

       
.  The adjusted r

2
 thus divides numerator and 

denominator by their degrees of freedom.  

 Finally, F-statistic: it is the statistic computed by dividing MSR by 

MSE (F= 
   

   
). Rejecting or not rejecting the null hypothesis 

depends on the value of the F-statistic. Here it is 44.4 very close to 

the value computed before (44.49). The p-value = 0.00115 less than 

0.05 so again,  the null hypothesis is rejected which is the same 

decision we made when we test the goodness of the model before 

that  the income was useful in predicting food expenditure. 

 

 

 

 

 

 



50 

  SAS output:  

The SAS System 

Model: MODEL1 

Dependent Variable: y 

Number of Observations Read 7 

Number of Observations Used 7 

Analysis of Variance 

Source DF 

Sum of 

Squares 

Mean 

Square F Value Pr > F 

Model 1 112.99285 112.99285 44.41 0.0011 

Error 5 12.72143 2.54429     

Corrected Total 6 125.71429       

Root MSE 1.59508 R-Square 0.8988 

Dependent Mean 15.42857 Adj R-Sq 0.8786 

Coeff Var 10.33850     

Parameter Estimates 

Variable DF 

Parameter 

Estimate 

Standard 

Error t Value Pr > |t| 

Intercept 1 1.50733 2.17424 0.69 0.5190 

X 1 0.25246 0.03788 6.66 0.0011 

Example (2.3’) 

Now, we will solve example 2.3, the relationship between grams plant dry 

weight ,y, percent soil organic matter, x1, and kilograms of supplemental 

soil nitrogen added per 1000 square meters, x2. Based on the table 2.5 given 

before. We will use Minitab and SAS to find the estimated multiple 

regression equation.  
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Minitab output: 

Regression Analysis: Y versus X1, X2  

The regression equation is 

Y = 51.6 + 1.50 X1 + 6.72 X2 

Predictor Coef SE Coef T P 

Constant 51.570 3.523 14.64 0.000 

     X1 1.4974 0.2636 5.68 0.005 

     X2 6.7233 0.6274 10.72 0.000 

S = 2.62587   R-Sq = 97.4%   R-Sq(adj) = 96.2% 

Analysis of Variance 

Source DF SS MS F P 

Regression 2 1053.83 526.91 76.42 0.001 

Residual Error 4 27.58 6.90   

Total 6 1081.41    

Notice that the p-value is 0.001 which is less than 0.05, i.e. the plant dry 

weight depends on the percent soil organic matter and kilograms of 

supplemental soil nitrogen added per 1000 square meters. And they are 

highly correlated. SAS out put:  
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The SAS System 

Model: MODEL1 

Dependent Variable: y 

Number of Observations Read 7 

Number of Observations Used 7 

Analysis of Variance 

Source DF 

Sum of 

Squares 

Mean 

Square F Value Pr > F 

Model 2 1053.82777 526.91388 76.42 0.0007 

Error 4 27.58081 6.89520     

Corrected Total 6 1081.40857       

Root MSE 2.62587 R-Square 0.9745 

Dependent Mean 93.21429 Adj R-Sq 0.9617 

Coeff Var 2.81703     

Parameter Estimates 

Variable DF 

Parameter 

Estimate 

Standard 

Error t Value Pr > |t| 

Intercept 1 51.56970 3.52258 14.64 0.0001 

x1 1 1.49741 0.26360 5.68 0.0047 

x2 1 6.72326 0.62735 10.72 0.0004 

Note that SAS gives more accurate results than Minitab. 
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Chapter Three 

Multivariate Multiple Linear Regression Model 

In chapter two we studied two types of regression models in which one 

response variable is affected by one predictor variable or a set of predictor 

variables. These two regression models were called simple and multiple 

regression models. Sometimes the model or the relationship among 

variables may be more complicated. In such cases, more than one response 

variable can be affected by one predictor or by the same set of predictors. 

For example, if we want to study the relationship between eating habits and 

playing sports and how they affect some other variables, such as blood 

pressure, cholesterol, and weight. In this example, we may let eating habits 

and playing sports be the explanatory variables (independent variables) and 

let blood pressure, cholesterol, and weight be the responses (dependent 

variables). The regression model used to relate these variables in such cases 

is called multivariate multiple linear regression model. Before we introduce 

the multivariate multiple regression model we should take a look at the 

multivariate regression model. 

3.1  Multivariate Linear Regression Model 

In this section we present multivariate regression model, in which we 

consider the relationship between more than one dependent variable and 

one independent variable. This model is similar to the multiple regression 

model in  solving the normal equations and estimate the regression 

parameters. These parameters are easily estimated using matrix form. 
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Suppose that the number of response variables is m, so we have n 

observations for each yi, i = 1,2,…,m. The general formula for the 

multivariate regression model is given by:  

yi = β0i + β1i x1 + εi 

             ŷi = β̂0i + β̂1i x1 ,   i = 1,2,…, m 

  There are two parameters for each response to be estimated when the 

linear model includes the intercept β0.  

  Four matrices are needed to express the linear  model in matrix notation:  

Y : the n×m matrix of observations on the dependent variable y . 

X: the n × 2 matrix consisting of a column of ones, which is labeled 1, 

followed by the column vector of the observations on the independent 

variable. 

β: the 2 × m matrix of parameters to be estimated. 

ε: the n × m matrix of random errors. 

 

 

 

 

   

 y11       y12   . . .  y1m                                    1     x11                                                

 y21         y22   . . .  y2m                           1     x21         β01     β 2  . . .  β p                   

 y31        y32   . . .  y3m     =                1     x31        β11     β12   . . .  β₁p      + ε (nxm)   

   .          .      . . .     .                            .      .                                          (2 x m)                 

   .          .      . . .     .                            .      .                                          

 yn1         yn2    . . .  ynm                          1     xn1                                                          

                        (n x m)                                                (n x 2)                                                  
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  If  X
T
X  has an inverse, then the normal equations have a unique solution 

given by                        

β̂ =( X
T
X)

-1
 X

T
Y 

Example (3.1) 

Given the following data in table 3.1, find the multivariate regression 

equations. 

 Table 3.1 

x1 y1 y2 

0 1 -1 

 1 4 -1 

2 3 2 

3 8 3 

4 9 2 

Solution:  

 The regression equations takes the form:  

                 ŷ = β̂01 + β̂  x  

                  ε 11     ε 12     . . .    ε 1m      

                  ε 21     ε 22    . . .    ε 2m 

   ε  =         ε 31      ε 32     . . .    ε 3m 

                   .        .  .  .           . 

                   .        .       . . .     . 

                  ε n1     ε n2     . . .    ε nm       

                                                       (nxm) 
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                 ŷ2= β̂02 + β̂ 2  x  

 Write the data in matrix form 

  

 

 

 

 

 

 

Thus, the estimated multivariate linear regression equations:  

  ŷ =  1 + 2 x1,   and     ŷ2 = -1 +  x1 

  The following is Stata output for the estimated multivariate regression 

model of example 3.1 by just using the command 

. mvreg y1 y2 = c.x 

Equation          Obs   Parms         RMSE           "R-sq"              F               P 

----------------------------------------------------------------------------------------------------- 

y1                    5       2           1.414214          0.8696            20          0.0208 

y2                    5       2           1.154701          0.7143           7.5          0.0714 

----------------------------------------------------------------------------------------------------- 

(X
T
X)

-1    
=      0.6     -0.2      ,      and     β̂ = (X

T
X)

-1 
X

T
Y 

                      -0.2      0.1                     β̂  =        1     -1 

                                                                           2     1 

 

            1     -1                        1      0                       

            4     -1                        1      1     X
T
X  =     5      10 

Y =      3      2     ,        X =    1      2    ,                10     30 

            8      3                        1      3 

            9      2                        1      4                
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|   Coef.        Std. Err.        t          P>|t|              [95% Conf. Interval] 

-------------+-------------------------------------------------------------------------------------- 

y1   | 

x1 |     2         .4472136       4.47       0.021           .5767667       3.423233 

_cons |     1         1.095445       0.91       0.429           -2.486195      4.486195 

-------------+--------------------------------------------------------------------------------------- 

y2   | 

x1 |      1         .3651484       2.74       0.071           -.1620651      2.162065 

_cons |    -1         .8944272      -1.12       0.345           -3.846467      1.846467 

-------------------------------------------------------------------------------------------------------- 

The estimated regression equations are given by: 

ŷ1=  1 + 2x1 

ŷ2= -1 +  x1     which are exactly the equations found before. 

According to the p- values, we can say that y1 is affected by x1, but y2 is not 

affected by x1. 

3.2  Multivariate Multiple Linear Regression Model 

In multivariate multiple linear regression model we consider the 

relationship between more than one dependent variable and more than one 

independent variable. That is, we extend the regression model to the 

situation where we have measured m responses y1, y2, …, ym and the same 

set of k predictors x1, x2, …, xk is used in a sample of size n, then each 

response variable follows its own regression model: 
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  y1 = β01 + β11 x1 + β21 x2 +…+  βk1 xk + ε1    

  y2 = β02 + β12 x1 + β22 x2 +…+  βk2 xk + ε2 

  . 

  . 

  ym = β0m + β1m x1 + β2m x2 +…+  βkm xk + εm  

The error term ε
T 

= [ε1, ε2, …, εm] has E(ε) = 0 and var(ε) = Σ. Thus the 

error terms associated with different responses may be correlated [17]. 

βij, i= 1,2,…,k and  j= 1,2,…,m, is the estimated regression coefficient of 

the j
th

 response in the effect of the i
th

 predictor. β0j is the intercept parameter 

of the j
th

 response.  

To represent the model in matrix form, we need four types of matrices:  

Y: the n × m matrix consisting of m column vectors of the observations on 

each of the dependent variables;  

X: the n × (k+1) matrix consisting of a column of ones followed by the k 

column vectors of the observations on the independent variables;   

β: the (k+1)×m  matrix consisting of column vectors of parameters to be 

estimated. 

ε: the n × m matrix consisting of column vectors of random errors.  

The linear model can be written as:  
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Y(n×m) =  X(n× (k+1))β((k+1) × m) + ε (n×m) 

 with  E(ε j) = 0 and cov(ε j, ε k) = σjk .I ;  j,k = 1,2,…,m 

  Note also that the m observed responses on the j
th
 trial have covariance 

matrix     Σ = { σjk } but observations from different trials are uncorrelated. 

Here β and σjk are unknown parameters.  

  The matrix of responses, 

 

   

 

 

 

 

 

 

  

 

 

 

  The design matrix X: 

                            1     x11      x12   . . .     x1k 

                            1     x21      x22   . . .     x2k 

X(n × (k+1))   =          .       .                           . 

                             .                  .    . . .       . 

                             1     xn1      xn2   . . .     xnk 

                     y11     y12   . . .  y1m 

                          y21    y22    . . .  y2m            

Yn×m =           .        .               .                =      y(1)     y(2)   . . .   y(m) 

                      .         . . .       . 

                     yn1     yn2   . . .  ynm                  

 

where y(j) is the column vector of n measurements of the j
th

 variable,  j= 

1,2,...,m. That is,  

                                  y(j)  =           yij                for i= 1,2,…,n            
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Note that the rows of X correspond to observations, the columns to 

independent variables.   

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

                           β01     β02  . . .   β0m 

                           β11     β12  . . .   β1m                          

β ((k+1) × m)  =         .        .              .              =       β(1)      β(2)    …   β(m) 

                             .              . . .    . 

                           βk1     βk2  . . .   βkm             

 

  where  β(j) are the (k+1) regression coefficients in the model for the j
th
 

variable,   j= 1,2,…,m. That is 

      β(j)   =        βij               for i= 0,1,2,…,k. 

                       ε 11     ε 12   . . .   ε 1m  

                       ε 21     ε 22    . . .   ε 2m                 

ε (n × m)  =          .        .                .           =      ε (1)     ε (2)   . . .   ε (m) 

                        .               . . .     . 

                       ε n1    ε n2    . . .   ε nm               

where each ε (j) vector represents the residuals for each of the m response 

variables. That is,  

                  ε (j)  =      ε ij 
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Also the m observed responses on the j
th

 trial have covariance matrix  

 

 

 

 

Because the covariance of the i
th
 random variable with itself is simply the 

random variable's variance, so, each element on the principal diagonal of 

the covariance matrix is the variance of one of the random variables. Also, 

because the covariance of the i
th
 random variable with the j

th
 one is the 

same as the covariance of the j
th

 random variable with the i
th

 one, every 

covariance matrix is symmetric. In addition, every covariance matrix is 

positive semi-definite. That is, for every non-zero column vector z of n real 

numbers, z
T
Σ z ≥ 0 [2]. 

The strategy in the least squares is the same as in the simple and multiple 

linear regression models. First, we calculate the sum of squared residuals 

and, second, find a set of estimators that minimize the sum 

SSE= Σεi² = ε
T
ε 

  By solving the normal equation 

X
T
X β̂ = X

T
Y 

we get the solution in the form 

                  σ11       σ12   . . .   σ1m 

Σ  =         σ21       σ22   . . .   σ2m 

                 .           .               . 

               σm1       σm2  . . .   σmm   
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β̂ = (X
T
X)

-1 
X

T
Y        [17] 

  Using the least squares estimator for β, we can obtain predicted values: 

Ŷ = Xβ̂ 

  Note that β̂ is unbiased estimator for β, i.e.  E(β̂) = β 

E(β̂) = E((X
T
X)

-1 
X

T
Y) = (X

T
X)

-1 
X

T 
E(X β + ε) = (X

T
X)

-1 
X

T
X β = I. β = β  

One might ask what the advantage is of doing all m regressions at once 

rather than doing m separate ones. The main reason is to gather strength 

from having several variables. For example, suppose one has an analysis of 

variance comparing drugs on a number of health-related variables. It may 

be that no single variable shows significant differences between drugs, but 

the variables together show strong differences. Using the overall model can 

also help deal with multiple comparisons, e.g., when one has many 

variables, there is a good chance at least one shows significance even when 

there is nothing going on. 

To illustrate the estimation of multivariate multiple regression using the 

method of least squares, let us consider the following example. 

Example 3.2 

Suppose we had the following six sample observations, as shown in Table 

3.2, on two independent variables (palatability and texture) and two 

dependent variables (purchase intent and overall quality) for some product. 
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 Table 3.2 Data on six sample observation 

Palatability (x1) Texture (x2) Overall quality  (y1) Purchase intent (y2) 

65 71 63 67 

72 77 70 70 

77 73 72 70 

68 78 75 72 

81 76 89 88 

73 87 76 77 

Use the data to estimate the multivariate multiple linear regression model. 

Solution: 

 We have two dependent variables and two independent variables, so 

we had to find the estimated coefficients β̂  , β̂ 2, β̂11, β̂12, β̂21 and β̂22 

for the regression model: 

 ŷ1 =  β̂01 + β̂   x1 + β̂21 x2 

 ŷ2 =  β̂02 + β̂12 x1  + β̂22 x2  

 First, we have to write the data in matrix form: 

 

 

  

 

 

 Now, we find the (3x3) X
T
X matrix:  (using matlab ) 

                                    

 

                       63       67                                       1       65        71 

                       70       70                                       1       72        77 

Y (6×2)  =          72       70        ,      X (6×3)  =          1       77        73 

                       75       72                                        1       68        78 

                       89       88                                        1       81        76  

                       76       77                                        1       73        87 
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 Find the inverse of the matrix X
T
X 

 

 

 

 The estimated regression coefficients is given by:  

β̂ = (X
T
X)

-1 
X

T
Y 

 

 

 

 So now, we get the multivariate multiple regression equations: 

              ŷ  =  -37.5012 + 1.1346 x1 + 0.3795 x2 

and        ŷ2 =  -21.4323 + 0.9409 x1 + 0.3514 x2  

Using this estimated regression model, we can find the predicted values 

of ŷ1 and ŷ2 for specific values of x1 and x2. For example, suppose we 

randomly select a product which has a palatability 68 and a texture of 

78, that is, x1= 68 and x2 = 78. Then the predicted value of the overall 

quality for this product is:   

                               6           436          462 

        X
T
X  =         436       31852       33591 

                                       462       33591       35728 

 

                             62.5606       -0.3783          -0.4533 

(X
T
X)

-1
   =            -0.3783        0.0060          -0.0007 

                             -0.4533       -0.0007           0.0066 

                   -37.5012       -21.4323 

β̂ (3×2) =            1.1346         0.9409 

                       0.3795         0.3514 
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ŷ  =  -37.5012 + 1.1346 (68) + 0.3795 (78) = 69.2526 

and the predicted value of the purchase intent is: 

ŷ2 =  -21.4323 + 0.9409 (68) + 0.3514 (78) = 69.9581 

 We can write the matrix of estimated values  

     

 

 

 

 

 

 

 Also, we can write the residuals matrix: 

 

 

 

 

 

Note that each column sums in the residuals matrix is approximately zero, 

which is agree with the theory. That is, the sum of errors is always equal to 

zero, and in the form of matrices, the sum of each column is zero.  

                             63.1912      64.6779 

                             73.4103      73.3727 

 Ŷ =   Xβ̂  =         77.5652       76.6714 

                             69.2514       69.9607 

                             83.2420       81.4892 

                             78.3399       77.8281 

 

                            -0.1912           2.3221 

                            -3.4103          -3.3727 

ε = Y – Ŷ =         -5.5652           -6.6714 

                             5.7486            2.0393 

                             5.7580            6.5108 

                            -2.3399           -0.8281 
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 We can obtain the covariance matrix for the two observed responses 

by using Matlab 

 

 

 

 

The elements on the diagonal of the covariance matrix 74.1667, and 58 are 

the variances of y1(overall quality  ) and y2 (purchase intent), respectively. 

And the off diagonal value (63) is the covariance between y1 and y2.   

 3.3 Assessing Multivariate Multiple Models using MANOVA 

After fitting the multivariate multiple model we have to show how good the 

model is? In simple and multiple regression models we use ANOVA to test 

the goodness of the model. Here we will use MANOVA for assessing the 

multivariate multiple regression models. 

The MANOVA or multivariate analysis of variance is a way to test the 

hypothesis that one or more independent variables, or factors, have an 

effect on a set of two or more dependent variables. We do  MANOVA 

instead of a series of one-at-a-time ANOVAs. 

Why MANOVA? 

 Supposedly to reduce the experiment-wise level of Type I error 

(rejecting the null hypothesis when it is in fact true) .  The so-called 

overall test or omnibus test protects against this inflated error 

            

Σ =        74.1667        63.0000 

              63.0000       58.0000  
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probability only when the null hypothesis is true.  If you follow up a 

significant multivariate test with a bunch of ANOVAs on the 

individual variables without adjusting the error rates for the 

individual tests, there‟s no “protection”.  (probability of any type I 

errors increases with number of variables) 

 Another reason to do MANOVA: none of the individual ANOVAs 

may produce a significant main effect on the response variables, but 

in combination they might, which suggests that the variables are 

more meaningful taken together than considered separately. 

 MANOVA takes into account the intercorrelations among the 

responses [15]. 

MANOVA is a generalization of ANOVA allowing multiple dependent 

variables. Where sums of squares appear in univariate analysis of variance, 

in multivariate analysis of variance certain positive-definite matrices 

appear. The diagonal entries are the same kinds of sums of squares that 

appear in univariate ANOVA. The off-diagonal entries are corresponding 

sums of products. 

The multiplication X
T
X generates a (k+1)×(k+1) matrix where the diagonal 

elements are sums of squares of each of the independent variables and the 

off-diagonal elements are the sums of product between independent 

variables. The general form of X
T
X is 
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The elements of the matrix product X
T
Y are the sums of products between 

each independent variable and the dependent variables: 

 

 

 

 

 

The first row is the sum of products between the vector of ones (the first 

column of X) and Y.  

The null hypothesis in MANOVA is that the predictor variables (or 

sometimes we test for a particular predictor variables) do not influence the 

response variables. That is, all the coefficients β̂j, j = 1,2,…,m as column 

vectors are equal to zero.   

 

                n       Σxi1     Σxi2       . . .   Σxik 

           Σxi1     Σxi1
2 
   Σxi1xi2  . . .   Σxi1xik           summation in all cases is over 

           Σxi2     Σxi1xi2  Σxi2
2
     . . .   Σxi2xik          i =1 to n, the n observations of 

             .           .          .                    .              the data. 

             .           .          .                    . 

           Σxik     Σxi1xik   Σxi2xik   . . .    Σxik
2
 

 

                            Σ yi1          Σyi2      . . .  Σyim 

      X
T
Y  =           Σxi1yi1       Σxi1yi2   . . .  Σ xi1yim 

                               .                .                  . 

                               .                .                  . 

                           Σxikyi1        Σxikyi2  . . .   Σxikyim 
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In most of the statistical programs used to calculate MANOVAs there are 

four multivariate measures used for assessing the multivariate multiple 

regression model: Wilks‟ lambda, Pillai‟s trace, Lawley–Hotelling trace, 

and Roy‟s largest root [7]. 

  Popular computer-package programs routinely calculate four multivariate 

test statistics such as Matlab, Minitab, Stata, and SAS. To understand these 

multivariate test statistics and how they are computed, we need to find two 

matrices, E, the m×m error sum of squares and cross product matrix 

E = n ̂ 

where   ̂ = 
 

 
 ε

T
 ε = 

 

 
 (Y- Xβ̂)

T
 (Y- Xβ̂) 

  The second matrix is H, the m×m hypothesis sum of squares and cross 

product matrix 

H= n ( ̂1 -  ̂)     

where  ̂1 varies according to the null hypothesis [17]. 

MANOVA is based on these two matrices or on the eigenvalues (λi) of the 

product matrix (HE
-1

).  

The first statistic is Wilks„ lamda, it is computed using the formula:  

WiIks' lambda =  ∏
 

   λ 

 
    = 

   

     
 

The second statistic is Pillai's trace (the trace of an n×n-matrix is defined to 

be the sum of the elements on the main diagonal),  
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PilIai's trace = ∑
λ 

   λ 

 
    = trace [ H(H + E)

-1 
] 

  The third test statistic is Hotelling-Lawley's trace and it is given by the 

formula:  

Hotelling-Lawley trace = ∑    
    = trace [ HE

-1 
] 

  The fourth statistic is Roy's largest root.  

Roy's greatest root =       λ   

Now, we will use the data in example 3.2 to compute the four multivariate 

test statistics to test the null hypothesis that the two predictor variables do 

not influence the responses. In other words, the responses do not depend on 

any one of the predictor variables x1, x2.  

         H0: β1 = β2 = 0     versus         H1: at least one of βj‟s  not equal to zero 

    First, we need to find the matrices E and H 

E= ε
T
 ε = (Y- Xβ̂)

T
 (Y- Xβ̂) 

  Under the null hypothesis, the design matrix X will be reduced to (6x1) 

matrix, the column vector of ones, call it Xnew. So, we find the new matrix 

of estimated parameters β̂new under H0 using the formula 

β̂new  = (Xnew
 T

 Xnew)
-1

 Xnew
 T

Y 

Then ,  ̂1 = 
 

 
 (Y- Xnew β̂new )

T
 (Y- Xnew β̂new ) 

H= n ( ̂1 -  ̂) 
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  Now, we find the matrix HE
-1

 

   

 

  The eigenvalues of the matrix HE
-1 

are:  

 λ =  2.2533, and   λ2 = 0.0078 

  So, the multivariate test statistics are: 

      WiIks'lambda =  ∏
 

   λ 

 
    = 

   

     
 = 0.3050 

   PilIai's trace = ∑
λ 

  λ 

 
    = trace [ H(H + E)

-1 
]= 0.7004 

  Hotelling-Lawley trace = ∑ λ 
 
   = trace [ HE

-1 
] = 2.2611 

  And Roy's greatest root =       λ   = 2.2533 

  In the same way we can  test that the responses do not depend on the 

variable x1 that is: 

           H0: β1 = 0     versus         H1: β1 ≠ 0 

Under the null hypothesis, the regression model become Ŷ= X2β̂2, that  is 

the second column of the design matrix will be deleted. The error sum of 

 

HE
-1

  =      2.5277      -0.3265 

                  2.1183      -0.2666 

 

H  =      256.5203       215.6649     ,     E  =      114.3130       99.3351  

             215.6649       181.4906                          99.3351      108.5094     
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squares and cross product matrix E is the same one which was computed 

before, but the hypothesis sum of squares and cross product matrix will be 

H= n ( ̂1 -  ̂) 

where   ̂1= 
 

 
 (Y- X2 β̂2)

T
 (Y- X2 β̂2) 

and      β̂2 = (X2
T
X2)

-1
X2

T
Y 

 

 

The eigenvalues of the matrix HE
-1 

are:  

 λ =  1.8957, and   λ2 = 0.0000 

   The multivariate test statistics are: 

      WiIks'lambda =  ∏
 

   λ 

 
    = 

   

     
 = 0.3453 

   PilIai's trace = ∑
λ 

   λ 

 
    = trace [ H(H + E)

-1 
]= 0.6547 

  Hotelling-Lawley trace = ∑ λ 
 
   = trace [ HE

-1 
] = 1.8957 

  And Roy's greatest root =       λ   = 1.8957 

  Finally, under the null hypothesis that the responses do not depend on the 

variable x2, the regression model become Ŷ= X1β̂1, that  is the third column 

of the design matrix will be deleted. The error sum of squares and cross 

product matrix E is the same one which was computed before, but the 

hypothesis sum of squares and cross product matrix will be 

 H  =      214.9619      178.2623   ,       HE
-1

 =        2.2147     -0.3846  

            178.2623       147.8282                               1.8366     -0.3189 
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H= n ( ̂1 -  ̂) 

where   ̂1=  
 

 
 (Y- X1 β̂1)

T
 (Y- X1 β̂1) 

and      β̂1 = (X1
T
X1)

-1
X1

T
Y 

 

 

The eigenvalues of the matrix HE
-1 

are:  

 λ =  0.1945, and   λ2 = 0.0000 

   The multivariate test statistics are: 

      WiIks'lambda =  ∏
 

   λ 

 
    = 

   

     
 = 0.8371 

   PilIai's trace = ∑
λ 

  λ 

 
    = trace [ H(H + E)

-1 
]= 0.1629 

  Hotelling-Lawley trace = ∑ λ 
 
   = trace [ HE

-1 
] = 0.1945 

  And Roy's greatest root =       λ   = 0.1945 

  The following is MANOVA output for the same example (3.2) using Stata 

                                         Number of obs =       6 

                           W = Wilks' lambda          L = Lawley-Hotelling trace 

                            P = Pillai's trace             R = Roy's largest root 

            Source |  Statistic         df        F(df1,    df2) =     F             Prob>F 

          -----------+---------------------------------------------------------------------------- 

             Model | W  0.3050        2        4.0       4.0        0.81         0.5781 e 

                        | P   0.7004                  4.0       6.0        0.81         0.5626 a 

 H  =      21.8720      20.2554       ,        HE
-1

 =        0.1424      0.0563  

              20.2554      18.7583                                   0.1319     0.0521 
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                        | L    2.2611                 4.0       2.0        0.57         0.7184 a 

                        | R   2.2533                  2.0       3.0        3.38         0.1704 u 

                        |----------------------------------------------------------------------------- 

         Residual |                         3 

          -----------+----------------------------------------------------------------------------- 

                   x1 | W   0.3453       1         2.0      2.0        1.90         0.3453 e 

                        | P    0.6547                  2.0      2.0        1.90         0.3453 e 

                        | L    1.8957                   2.0      2.0        1.90        0.3453 e 

                        | R   1.8957                   2.0       2.0        1.90        0.3453 e 

                        |------------------------------------------------------------------------------ 

                   x2 | W   0.8371       1          2.0      2.0        0.19        0.8371 e 

                        | P   0.1629                    2.0      2.0        0.19        0.8371 e 

                        | L    0.1945                   2.0      2.0        0.19        0.8371 e 

                         | R   0.1945                   2.0      2.0        0.19        0.8371 e 

                         |---------------------------------------------------------------------------- 

          Residual |                        3 

           -----------+---------------------------------------------------------------------------- 

                Total |                       5 

          ------------------------------------------------------------------------------------------ 

                           e = exact, a = approximate, u = upper bound on F 

  Explanation for MANOVA output: 

 Source : this indicates the predictor variable in question. In our 

model, we are looking for palatability, and texture (x1, x2, 

respectively). 

 Statistic : this is the test statistic for the given source listed in the 

prior column and the multivariate statistic indicated with the letter 
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(W, P, L or R). For each independent variable, there are four 

multivariate test statistics calculated. 

 df : this is the number degrees of freedom. Here, we have 2 

predictors and our dataset has 6 observations, so we have 2 degrees 

of freedom for the hypothesis, 3 residual degrees of freedom, and 5 

total degrees of freedom. 

 F(df1, df2), F : the first two columns (df1 and df2) list the degrees 

of freedom used in determining the F statistics. The third column 

lists the F statistic for the given source and multivariate test. 

 Prob > F : this is the p-value associated with the F statistic of a 

given effect and test statistic. The null hypothesis that a given 

predictor has no effect on either of the outcomes is evaluated with 

regard to this p-value.  For a given alpha level, if the p-value is less 

than alpha (usually 0.05), the null hypothesis is rejected. If not, then 

we fail to reject the null hypothesis.  

 e = exact, a = approximate, u = upper bound on F : this indicates 

how the F statistic was calculated (whether it was an exact 

calculation, an approximation, or an upper bound) for each of the 

multivariate tests. 

The null hypothesis that we want to test in MANOVA is 

H0: β(1)  = β(2)  = …= β (m)  = 0 

versus the alternative hypothesis H1 that at least one of the β(j)  is different 

from zero.     
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where β (j)  is the vector of regression coefficient for the j
th
 dependent 

variable for j= 1,2,…,m.  

i-e  H0: β (1)  = β (2)  = 0          vs      H1: at least one of the β (j)  is different 

from zero.     

In our example, based on the last column of MANOVA output, we do not 

reject the null hypothesis because the p-values given are greater than the 

significance level (0.05). That is, palatability and texture have no effect on 

the overall quality and the purchase intent for a product. 

3.4 Generating Data Using Simulation 

Simulation is the imitation of the operation of a real-world process or 

system over time. It is used with scientific modeling of natural systems or 

human systems. Simulation is also used when the real system cannot be 

engaged, because it may not be accessible. Or it may be dangerous or 

unacceptable to engage. Or it is being designed but not yet built. Or it may 

simply not exist [24]. 

A computer simulation is an attempt to model a real-life or hypothetical 

situation on a computer so that it can be studied to see how the system 

works. By changing variables in the simulation, predictions may be made 

about the behavior of the system. It is a tool to virtually investigate the 

behavior of the system under study. Computer simulation has become a 

useful part of modeling many natural systems in physics, chemistry, 

biology, and human systems in economics and social.  
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Traditionally, the formal modeling of systems has been via a mathematical 

model, which attempts to find analytical solutions enabling the prediction 

of the behavior of the system from a set of parameters and initial 

conditions. There are many different types of computer simulation. The 

common feature they all share is the attempt to generate a sample of 

representative scenarios for a model in which a complete enumeration of all 

possible states would be prohibitive or impossible. Several software 

packages exist for running computer-based simulation such as Monte Carlo 

simulations, stochastic simulations, and multiscale simulations that make 

the modeling almost effortless [31]. 

The term simulation is used in different ways by different people. As we 

used here, simulation is defined as the process of creating a model of an 

existing or proposed system in order to identify and understand those 

factors which control the system and to predict (forecast) the future 

behavior of the system. Almost any system which can be quantitatively 

described using equations or rules can be simulated.  

Simulation is a powerful and important tool because it provides a way in 

which alternative designs, plans and policies can be evaluated without 

having to experiment on a real system, which may be prohibitively costly, 

time-consuming, or simply impractical to do. That is, it allows you to ask 

"What if?" questions about a system without having to experiment on the 

actual system itself. 
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  In this section, we will use simulation to generate data from different 

distributions such as normal distribution, logistic distribution and 

exponential distribution. Then the data will be used to fit multivariate 

multiple regression models. We are interested in generating data from 

various distributions using Matlab. Then, we will analyze the data and 

compare the results. 

3.4.1 Simulation Using Normal Distribution  

A hypothetical dataset of 20 high school students was drawn from a normal 

distribution using Matlab. The data was on three psychological variables 

(locus of control, self concept, and motivation) and four academic variables 

(standardized test scores in reading, writing, science, and art). We were 

interested in how the set of psychological variables is related to the 

academic variables.  

  The symbols : 

y1: Locus of control 

y2: self concept 

y3: motivation 

x1: read 

x2: write 

x3: science  
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x4: art 

 (The simulated data is given in appendix I)   

Stata software was used to get the estimated coefficients, the test statistic 

for each estimated parameter, standard errors, confidence intervals, the p-

values and MANOVA output. 

      Equation      Obs  Parms        RMSE       "R-sq"             F                     P 

  -------------------------------------------------------------------------------------------------- 

  locus_of_c~l      20      5          1.123921      0.1953       0.9100091         0.4831 

  self_concept       20     5           0.7086149    0.3057       1.651137          0.2134 

   motivation        20      5           0.7560022    0.3623      2.130425          0.1273                         

  -------------------------------------------------------------------------------------------------- 

       |      Coef.         Std. Err.          t         P>|t|          [95% Conf. Interval] 

 -------------+------------------------------------------------------------------------------------

locus_of_control  

  x1 |   .0874673      .0680478       1.29      0.218        -.0575731      .2325077 

  x2 |   .033673        .0710768       0.47      0.642        -.1178236      .1851696 

             x3 |  -.0611048      .059823       -1.02      0.323        -.1886145      .0664048 

             x4 |   .0459898      .1041279      0.44       0.665        -.1759537     .2679333 

       _cons |   -8.032441     10.02414      -0.80       0.435         -29.3984      13.33352 
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--------------+-------------------------------------------------------------------------------------- 

self_concept     

  x1 |   -.0884473     .0429031      -2.06      0.057        -.1798931      .0029985 

            x2 |    -.006916       .0448128      -0.15      0.879        -.1024323      .0886003 

 x3 |     .0659879      .0377175       1.75      0.101         -.014405       .1463809 

            x4 |     .0291023       .0656511       0.44      0.664         -.1108296     .1690343 

       _cons |     .7964386       6.320071       0.13      0.901         -12.67447      14.26735 

 ------------+---------------------------------------------------------------------------------------- 

motivation       

           x1 |     -.0325539      .0457722      -0.71      0.488         -.130115       .0650071 

           x2 |     -.0766052      .0478096      -1.60      0.130         -.178509       .0252986 

x3 |     -.0706611       .0402398      -1.76      0.099         -.1564301     .015108 

           x4 |      .0263419       .0700414       0.38      0.712         -.1229478     .1756316 

      _cons |      11.86579       6.742714       1.76      0.099         -2.505961      26.23755 

---------------------------------------------------------------------------------------------------------- 

From the results above, we can write the estimated multivariate multiple 

regression model as following: 

ŷ1 = -8.032441 + 0.0874673 x1+ 0.033673 x2  - 0.0611048 x3+ 0.0459898 x4 
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ŷ2 = 0.7964386 - 0.0884473 x1 – 0.006916 x2+ 0.0659879 x3+ 0.0291023 x4 

ŷ3 =11.86579 -  0.0325539 x1 - 0.0766052 x2  - 0.0706611 x3 +0.0263419 x4 

From this system of three equations we can see that: 

 As the test score of read increases by one grade, the student‟s locus 

of control is expected to increase by 0.0875, keeping the other 

variables fixed.   

 When the test score of read increases by one grade, the student‟s self 

concept is expected to decrease by 0.0884, keeping the other 

variables fixed.   

 The student‟s motivation is expected to decrease by 0.0766 as the 

test score of write increases by one grade, keeping the other variables 

fixed 

MANOVA Output : In Stata, MANOVA output includes four multivariate 

test statistics for each predictor variable. The four tests are listed above the 

output table. For each of the four test statistics, an F statistic and associated 

p-value are also displayed.   

 

 

 

 

                      



82 

  W = Wilks' lambda      L = Lawley-Hotelling trace 

                      P = Pillai's trace         R = Roy's largest root 

   Source |     Statistic       df       F(df1,    df2) =       F         Prob>F 

  -----------+----------------------------------------------------------------------------- 

     Model | W   0.3630       4       12.0       34.7       1.35       0.2369 a 

     | P    0.7938                 12.0      45.0       1.35       0.2259 a 

     | L    1.3391                 12.0       35.0      1.30       0.2611 a 

     | R    0.9259                  4.0       15.0       3.47       0.0338 u 

     |------------------------------------------------------------------------------ 

 Residual |                        15 

  -----------+------------------------------------------------------------------------------ 

           x1 | W   0.7421       1         3.0       13.0      1.51        0.2595 e 

     | P    0.2579                  3.0        13.0     1.51        0.2595 e 

     | L    0.3475                   3.0       13.0     1.51         0.2595 e 

     | R    0.3475                  3.0       13.0      1.51        0.2595 e 

     |--------------------------------------------------------------------------------                               

x2 | W   0.8535        1         3.0       13.0      0.74         0.5450 e 

     | P    0.1465                   3.0       13.0      0.74         0.5450 e 

     | L    0.1716                   3.0        13.0      0.74        0.5450 e 

     | R    0.1716                   3.0       13.0      0.74         0.5450 e 

     |-------------------------------------------------------------------------------- 

x3 | W   0.6226        1         3.0        13.0      2.63          0.0945 e 

     | P    0.3774                   3.0        13.0      2.63          0.0945 e 

     | L    0.6062                   3.0        13.0      2.63          0.0945 e 

     | R   0.6062                    3.0        13.0      2.63          0.0945 e 

     |-------------------------------------------------------------------------------- 

x4 | W   0.9524        1         3.0        13.0      0.22          0.8833 e 

     | P    0.0476                   3.0        13.0      0.22          0.8833 e 

     | L    0.0499                    3.0       13.0      0.22          0.8833 e 

     | R   0.0499                     3.0       13.0      0.22          0.8833 e 

     |--------------------------------------------------------------------------------   

Residual |                          15 

 -----------+--------------------------------------------------------------------------------  

     Total |                          19 

 --------------------------------------------------------------------------------------------- 

              e = exact, a = approximate, u = upper bound on F 
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  We can test the null hypothesis that the coefficients for the variable x1 

(read) are equal to zero in all three equations.    

(1) [locus_of_control]x1= 0 

(2) [self_concept]x1 =0 

(3) [motivatiion] x1 = 0 

          F( 3, 15) =  1.74          Prob > F = 0.2022 

Because the p-value is greater than the significance level 0.05, we don‟t 

reject the null hypothesis.  The coefficients for the variable x1 (read) are 

equal to zero in all three equations. The same test can be done for the other 

explanatories (write, science and art). 

  For the variable write, 

(1) [locus_of_control]x2= 0 

(2)[self_concept]x2 =0 

    (3)[motivatiion] x2 = 0 

           F( 3, 15) =  0.86          Prob > F = 0.4842 

Again the p-value is greater than the significance level 0.05, so we don‟t 

reject the null hypothesis. The coefficients for the variable x2 (write) are 

equal to zero in all three equations. 

Test for science 

(1) [locus_of_control]x3 = 0 
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(2) [self_concept]x3 = 0 

(3) [motivation] x3 = 0 

                  F( 3, 15) =  3.03                 Prob > F = 0.0621 

The result is to not reject the null hypothesis. That is, the coefficients for 

the variable x3 (science) are equal to zero in all three equations. 

  Finally, for the variable art: 

(1) [locus_of_control]x4 = 0 

(2) [self_concept]x4 = 0 

(3) [motivation]x4 = 0 

            F( 3, 15) =  0.25          Prob > F = 0.8603 

The p-value indicates that we don‟t reject the null hypothesis. That is, the 

coefficients for the variable x4 (art) are equal to zero in all three equations.       

3.4.2 Simulation Using Logistic Distribution  

In probability theory and statistics, the Logistic distribution is a continuous 

probability density function that is symmetric and uni-modal. It resembles 

the normal distribution in shape but has heavier tails. In practical 

applications, the two distributions cannot be distinguished from one 

another.   

The probability density function (p.d.f.) of the logistic distribution is given 

by: 
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f(x) = 
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  , -∞ < x < ∞ ; -∞ <   < ∞ ; σ > 0 

mean =      and     variance = 
    

 
 

Compared with the Normal distribution, N( ,σ ), the variance of the 

Logistic is different from the variance of the normal only by the scaling 

value   of     
  

 
   [26].  

One of the most common applications is in logistic regression, which is 

used for modeling categorical dependent variables (e.g., yes-no choices or a 

choice of more than two possibilities), much as standard linear regression is 

used for modeling continuous variables [16]. 

Suppose we have a hypothetical data set of 20 high school students drawn 

from Logistic distribution. The data is on the three psychological variables 

(locus of control, self concept and motivation) and four academic variables 

(standardized test scores in reading, writing, science and art). 

  (The simulated data is given in appendix II). 

Equation          Obs  Parms     RMSE        "R-sq"             F                 P 

------------------------------------------------------------------------------------------------------ 

locus_of_c~l     20      5         2.182174      0.3271      1.823242        0.1769 

self_concept     20      5         1.557655      0.4208      2.724891        0.0691 

motivation         20      5         1.573219      0.5215      4.086314       0.0195 

----------------------------------------------------------------------------------------------------- 

                 |      Coef.      Std. Err.         t        P>|t|        [95% Conf. Interval] 

--------------+-------------------------------------------------------------------------------------

locus_of_control  
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            x1 |  -.0516         .0923795     -0.56    0.585    -.2485023    .1453022 

            x2 |  -.1094598   .1006543     -1.09    0.294    -.3239992    .1050797 

            x3 |   .2879711   .1184109      2.43    0.028      .0355843    .540358 

            x4 |  -.063793     .0894625     -0.71    0.487    -.2544779    .1268918 

       _cons | -3.195589    11.87159     -0.27    0.791    -28.49928      22.1081 

-------------+--------------------------------------------------------------------------------------- 

self_concept      

           x1 |   .0170904    .0659413      0.26    0.799    -.1234602     .157641 

           x2 |   -.059127     .0718479     -0.82    0.423    -.2122671    .0940132 

           x3 |   .2136971    .0845228      2.53    0.023     .0335412     .3938531 

           x4 |  -.0184996    .0638591     -0.29    0.776    -.1546122    .1176129 

      _cons | -11.30352    8.474044     -1.33    0.202     -29.36551    6.758481 

-------------+---------------------------------------------------------------------------------------- 

motivation       

           x1 |  -.0643461    .0666002     -0.97    0.349    -.2063011    .0776088 

           x2 |   .1165073    .0725658      1.61    0.129    -.038163      .2711776 

           x3 |   .0886091    .0853673      1.04    0.316    -.093347      .2705652 

           x4 |   .1926915    .0644972      2.99    0.009     .0552189    .3301641 

      _cons |  -23.46869   8.558716     -2.74    0.015    -41.71117    5.226223 

------------------------------------------------------------------------------------------------------ 

The estimated multivariate multiple regression model is:  

ŷ1 = -3.195589 - 0.0516 x1 - 0.1094598 x2 + 0.2879711x3 - 0.063793 x4 

ŷ2 = -11.30352 + 0.0170904 x1 - 0.059127 x2+ 0.2136971x3 - 0.0184996 x4 

ŷ3 = -23.46869 -0.0643461 x1 + 0.1165073 x2+ 0.0886091 x3 +0.1926915 x4 
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Output for MANOVA,  

                                   Number of obs =      20 

                        W = Wilks' lambda         L = Lawley-Hotelling trace 

                         P = Pillai's trace            R = Roy's largest root 

 

  Source |   Statistic         df       F(df1,    df2) =        F          Prob>F 

 -----------+------------------------------------------------------------------------------ 

   Model | W   0.2039        4       12.0      34.7         2.38      0.0229 a 

              | P   1.1071                  12.0      45.0         2.19      0.0287 a 

              | L    2.4180                 12.0       35.0         2.35     0.0244 a 

              | R   1.4086                   4.0       15.0         5.28     0.0074 u 

               |------------------------------------------------------------------------------- 

Residual |                         15 

  -----------+------------------------------------------------------------------------------ 

          x1 | W   0.9211        1        3.0       13.0          0.37      0.7752 e 

               | P    0.0789                  3.0       13.0          0.37      0.7752 e 

               | L    0.0856                  3.0       13.0          0.37      0.7752 e 

               | R   0.0856                  3.0       13.0          0.37      0.7752 e 

               |-------------------------------------------------------------------------------- 

           x2 | W   0.7514       1       3.0        13.0         1.43       0.2781 e 

                 | P   0.2486                3.0       13.0          1.43       0.2781 e 

                 | L   0.3308                3.0       13.0          1.43       0.2781 e 

                 | R   0.3308               3.0        13.0          1.43      0.2781 e 

                 |------------------------------------------------------------------------------- 

             x3 | W   0.5091     1       3.0       13.0          4.18     0.0282 e 

                  | P   0.4909               3.0       13.0          4.18     0.0282 e 
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                  | L   0.9642               3.0       13.0          4.18     0.0282 e 

                  | R   0.9642               3.0      13.0           4.18    0.0282 e 

                  |------------------------------------------------------------------------------- 

             x4 | W  0.6032      1       3.0      13.0           2.85     0.0784 e 

                  | P   0.3968               3.0      13.0           2.85     0.0784 e 

                  | L   0.6577               3.  0    13.0           2.85     0.0784 e 

                  | R   0.6577              3.0      13.0           2.85      0.0784 e 

                  |------------------------------------------------------------------------------- 

    Residual |                     15 

      -----------+----------------------------------------------------------------------------- 

          Total |                     19 

      ----------------------------------------------------------------------------------------- 

                       e = exact, a = approximate, u = upper bound on F 

We can test the null hypothesis that the coefficients for the variable x1 

(read) are equal to zero in all three equations.    

(1)[locus_of_control]x1= 0 

(2)[self_concept]x1 =0 

(3)[motivatiion] x1 = 0 

            F( 3, 15) =  0.43          Prob > F = 0.7357   

Because the p-value is greater than the significance level 0.05, we don‟t 

reject the null hypothesis. That is, the coefficients for the variable x1 (read) 

are equal to zero in all three equations.  

  For the variable write, 
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(1) [locus_of_control]x2= 0 

(2)[self_concept]x2 =0 

    (3)[motivatiion] x2 = 0 

           F( 3, 15) =  1.65            Prob > F = 0.2193 

The p-value is greater than the significance level 0.05, so we don‟t reject 

the null hypothesis. That is, the coefficients for the variable x2 (write) are 

equal to zero in all three equations. 

Test for science 

(1)[locus_of_control]x3 = 0 

(2)[self_concept]x3 = 0 

(3)[motivation] x3 = 0 

         F( 3, 15) =  4.82           Prob > F = 0.0152 

The p-value is less than the significance level 0.05, so we reject the null 

hypothesis. That is, the coefficients for the variable x3 (science), taken for 

all three outcomes together, are statistically significant. 

  Finally, for the variable art: 

(1)[locus_of_control]x4 = 0 

    (2)[self_concept]x4 = 0 

(3)[motivation]x4 = 0 
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            F( 3, 15)  =  3.29            Prob > F = 0.0499 

The p-value indicates that we reject the null hypothesis. That is, the 

coefficients for the variable x4 (art) taken for all three outcomes together 

are statistically significant. 

3.4.3 Simulation Using Exponential Distribution  

Suppose we have a hypothetical dataset of 20 high school students drawn 

from Exponential distribution. The data is on the three psychological 

variables (locus of control, self concept and motivation) and four academic 

variables (standardized test scores in reading, writing, science and art). 

  (The simulated data is given in appendix III). 

Equation          Obs  Parms     RMSE         "R-sq"            F                    P 

------------------------------------------------------------------------------------------------------ 

locus_of_c~l     20      5         .7524345      0.3562       2.074457        0.1351 

self_concept     20      5         .7979952      0.1790      .8174282         0.5337 

motivation       20      5         .9459599      0.1845      .8486324         0.5162 

-------------------------------------------------------------------------------------------------------       

  |       Coef.            Std. Err.         t           P>|t|          [95% Conf. Interval] 

----------+------------------------------------------------------------------------------------------ 

locus_of_control  

        x1 |  -.0002182       .0038171      -0.06      0.955      -.0083543       .0079178 

        x2 |  -.0033952       .0039473     -0.86       0.403     -.0118087        .0050183 

        x3 |  -.003846         .0022943     -1.68       0.114     -.0087362        .0010442 

        x4 |  -.0072875       .0045457     -1.60       0.130     -.0169764        .0024013 

  _cons |  1.839243        .3930391       4.68       0.000        1.0015           2.676986 
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----------+------------------------------------------------------------------------------------------ 

self_concept  

        x1 |  -.0015016       .0040483     -0.37       0.716      -.0101303       .0071271 

        x2 |   .0019333       .0041863      0.46       0.651       -.0069896      .0108563 

        x3 |  -.0012859       .0024332     -0.53       0.605       -.0064722     .0039004 

        x4 |  -.0083373       .0048209     -1.73       0.104       -.0186128     .0019382 

  _cons | 1.475811         .4168381      3.54        0.003        .5873419      2.364281 

----------+------------------------------------------------------------------------------------------ 

motivation       

        x1 |  -.0044473       .0047989     -0.93       0.369        -.014676       .0057813 

        x2 |   .0087889       .0049626       1.77       0.097        -.0017886    .0193663 

        x3 |   .0007853       .0028844       0.27       0.789        -.0053626    .0069333 

        x4 |   -.004499        .0057148      -0.79       0.443        -.0166798    .0076818 

  _cons |    1.04685        .4941284        2.12       0.051        -.00636         2.10006 

------------------------------------------------------------------------------------------------------ 

The estimated multivariate multiple regression model is:  

ŷ1 = 1.839243 - 0.0002182 x1 - 0.0033952 x2 - 0.003846x3 - 0.0072875 x4 

ŷ2 = 1.475811 - 0.0015016 x1 + 0.0019333 x2- 0.0012859x3 - 0.0083373 x4 

ŷ3 = 1.04685 -0.0044473 x1 + 0.0087889 x2+ 0.0007853 x3 -0.004499x4 

MANOVA output: 

                           Number of obs =      20 

                   W = Wilks' lambda        L = Lawley-Hotelling trace 

                    P = Pillai's trace           R = Roy's largest root 

   Source |    Statistic         df      F(df1,    df2) =     F          Prob>F 
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  -----------+--------------------------------------------------------------------------- 

     Model | W   0.4027       4       12.0     34.7      1.19      0.3308 a 

                | P    0.6961                12.0     45.0      1.13      0.3589 a 

                | L    1.2402                12.0      35.0      1.21     0.3177 a 

                | R   1.0020                  4.0      15.0       3.76     0.0261 u 

                |---------------------------------------------------------------------------- 

 Residual |                        15 

  -----------+---------------------------------------------------------------------------- 

           x1 | W   0.9448       1        3.0      13.0       0.25      0.8576 e 

                | P   0.0552                  3.0      13.0       0.25      0.8576 e 

                | L   0.0585                  3.0      13.0       0.25      0.8576 e 

                | R   0.0585                 3.0      13.0       0.25       0.8576 e 

                |---------------------------------------------------------------------------- 

           x2 | W   0.7822       1        3.0      13.0      1.21       0.3463 e 

                | P   0.2178                  3.0      13.0      1.21       0.3463 e 

                | L   0.2784                  3.0      13.0      1.21       0.3463 e 

                | R   0.2784                 3.0      13.0      1.21       0.3463 e 

                |---------------------------------------------------------------------------- 

           x3 | W  0.7825        1       3.0       13.0     1.20       0.3470 e 

                | P   0.2175                 3.0       13.0     1.20       0.3470 e 

                | L   0.2779                 3.0       13.0     1.20       0.3470 e 

                | R  0.2779                 3.0        13.0     1.20      0.3470 e 

                |---------------------------------------------------------------------------- 

           x4 | W  0.6747         1       3.0      13.0      2.09     0.1512 e 

                | P   0.3253                  3.0      13.0      2.09     0.1512 e 

                | L   0.4821                  3.0      13.0      2.09      0.1512 e 
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                | R   0.4821                  3.0      13.0     2.09       0.1512 e 

                |---------------------------------------------------------------------------- 

 Residual |                         15 

  -----------+---------------------------------------------------------------------------- 

      Total |                          19 

  ----------------------------------------------------------------------------------------- 

We can test the null hypothesis that the coefficients for the variable x1 

(read) are equal to zero in all three equations.    

(1)[locus_of_control]x1= 0 

(2)[self_concept]x1 =0 

(3)[motivatiion] x1 = 0 

            F( 3, 15) =  0.29          Prob > F = 0.8303 

Because the p-value is greater than the significance level 0.05, we don‟t 

reject the null hypothesis. That is, the coefficients for the variable x1 (read) 

are equal to zero in all three equations.  

  For the variable write, 

(1) [locus_of_control]x2= 0 

(2)[self_concept]x2 =0 

    (3)[motivatiion] x2 = 0 

           F( 3, 15) =  1.39            Prob > F = 0.2837 
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The p-value is greater than the significance level 0.05, so we don‟t reject 

the null hypothesis. That is, the coefficients for the variable x2 (write) are 

equal to zero in all three equations. 

Test for science 

(1)[locus_of_control]x3 = 0 

(2)[self_concept]x3 = 0 

(3)[motivation] x3 = 0 

           F( 3, 15) =  1.39                 Prob > F = 0.2844 

Here we do not reject the null hypothesis because the p-value is greater 

than the significance level 0.05. That is, the coefficients for the variable x3 

(science) are equal to zero in all three equations. 

  Finally, for the variable art: 

(1)[locus_of_control]x4 = 0 

    (2)[self_concept]x4 = 0 

(3)[motivation]x4 = 0 

            F( 3, 15) =  2.41          Prob > F = 0.1075 

The p-value indicates that we  do not have to reject the null hypothesis. 

That is, the coefficients for the variable x4 (art) taken for all three outcomes 

together, are not statistically significant. 
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After fitting the three regression models of data from the three 

distributions, normal, logistic, and exponential, the results showed that the 

regression model which was obtained from the logistic distribution was the 

best. The decision was according to the p-values as we seen from the 

hypothesis tests. Also, the explanatory power of the model which was 

obtained from the logistic distribution was the highest.   
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Chapter Four 

Application 

  In this chapter real data set will be analyzed to study the relationships 

among variables. Data was collected on some variables such as tawjihi 

average, English score level exam, daily budget and number of absents per 

semester, and the objective of the case study was to show how these 

variables affect or control some other  variables such as self concept, 

achievement motivation and cumulative average. Data for these variables 

was collected using standardized questionnaires on 350 university students 

from three universities: An-Najah National University, Arab American 

University and Alquds Open University.  

The data was analyzed using Stata 13 software. Stata's capabilities include 

data management, statistical analysis, graphics, simulations, regression 

analysis and custom programming. The name Stata is a syllabic 

abbreviation of the words statistics and data [30]. 

Before analyzing the data we have to test the normality of the responses. 

Here the SPSS output for test of normality followed by normality plots. 

Table 4.1 Test of normality for the response variables 
 

Tests of Normality 

 

Kolmogorov-Smirnov Shapiro-Wilk 

Statisti

c Df Sig. 

Statisti

c Df Sig. 

self_concept .069 350 .000 .966 350 .000 

motivation .031 350 .200
*
 .996 350 .494 

cumavg4 .045 350 .083 .985 350 .001 
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Figure 4.1: Normal Q-Q plot of self_concept 

 

 

Figure 4.2: Normal Q-Q plot of motivation 
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 Figure 4.3: Normal Q-Q plot of cumulative average 

                                                    

 

Figure 4.4: Box plot of self_concept 
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Figure 4.5: Box plot of motivation 

 

Figure 4.6: Box plot of cumulative average 
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4.1 Case Study 1: Analysis of Real Data Set with Continuous predictor 

variables 

In this section, a sample of the 350 students were considered regardless the 

university or college that the student belongs to. As said before, seven 

variables were considered; three responses (self concept, achievement 

motivation, and cumulative average), and four predictors (tawjihi average, 

English score level exam, daily budge,t and number of absents per 

semester).  

  The following is a summary for the data 

. summarize  self_concept  motivation cumavrg  tawjihi  english budget absents 

         Variable |       Obs            Mean              Std. Dev.             Min              Max 

       ------------+--------------------------------------------------------------------------------- 

   self_concept|       350           2.881286           0.271814              1.6               4.06 

     motivation|       350           2.6774               0.4787392            1.31             4.07 

        cumavrg|        350           2.656343          0.5458484             1.55             3.99  

       -----------+---------------------------------------------------------------------------------- 

         tawjihi |        350          81.774               10.74564                55.6             99.5 

         english |        350           61.86                16.52749                23                98 

         budget |        350           32.94571            20.5946                  5                 200 

        absents |        350           4.614286            6.282036                 0                 35 

      ----------------------------------------------------------------------------------------------- 

In Stata, two commands are needed to get a multivariate multiple 

regression, manova and mvreg. The manova command will indicate if all of 

the equations, taken together, are statistically significant. And the mvreg 
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command gives the coefficients, standard errors, etc., for each of the 

predictors in each part of the model. When running manova command, it is 

necessary to use the c. in front of the predictors to identify them as 

continuous variables, because, by default, the manova command assumes 

all predictor variables are categorical. 

. manova self_concept motivation cumavrg= c.tawjihi c.english c.budget c.absents 

Number of obs =     350 

                            W = Wilks' lambda                L = Lawley-Hotelling trace 

                             P = Pillai's trace                   R = Roy's largest root 

 

          Source |   Statistic           df         F(df1,    df2) =               F             Prob>F 

         -----------+-------------------------------------------------------------------------------- 

           Model |  W  0.6736        4           12.0       907.8          12.19          0.0000 a 

                      |  P   0.3323                     12.0      1035.0         10.74          0.0000 a 

                      |  L   0.4759                      12.0     1025.0         13.55          0.0000 a 

                      |  R  0.4571                         4.0       345.0         39.43         0.0000 u 

                      |----------------------------------------------------------------------------------- 

        Residual |                          345 

         -----------+--------------------------------------------------------------------------------- 

           tawjihi |  W  0.8244          1            3.0        343.0         24.36          0.0000 e 

                      |  P   0.1756                        3.0        343.0         24.36          0.0000 e 

                      |  L   0.2130                        3.0        343.0         24.36          0.0000 e 

                      |  R  0.2130                        3.0         343.0         24.36          0.0000 e 

                      |----------------------------------------------------------------------------------- 

         english |  W  0.9369           1           3.0         343.0          7.70           0.0001 e 

                      |  P  0.0631                        3.0         343.0          7.70           0.0001 e 
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                      |  L  0.0674                        3.0          343.0          7.70           0.0001 e 

                      |  R  0.0674                       3.0          343.0          7.70           0.0001 e 

                      |----------------------------------------------------------------------------------- 

          budget | W  0.9543            1         3.0          343.0          5.47           0.0011 e 

                      | P   0.0457                       3.0          343.0          5.47           0.0011 e 

                      | L   0.0478                       3.0           343.0          5.47          0.0011 e 

                      | R  0.0478                       3.0            343.0          5.47          0.0011 e 

                      |----------------------------------------------------------------------------------- 

         absents | W  0.9535             1        3.0            343.0          5.58          0.0010 e 

                      | P  0.0465                        3.0           343.0           5.58          0.0010 e 

                      | L  0.0488                        3.0            343.0           5.58         0.0010 e 

                      | R   0.0488                        3.0           343.0          5.58          0.0010 e 

                      |----------------------------------------------------------------------------------- 

       Residual |                            345 

       -------------+-------------------------------------------------------------------------------- 

             Total |                           349 

       ----------------------------------------------------------------------------------------------- 

                           e = exact, a = approximate, u = upper bound on F 

The test for the overall model, shown in the section labeled Model (under 

source), indicates that the model is statistically significant, regardless of the 

type of multivariate criteria that is used (i.e. all of the p-values are less than 

0.05). Below the overall model tests are the multivariate tests for each of 

the predictor variables. And we see from the last column of p-values that 

each of predictors is statistically significant.  

We use mvreg to obtain estimates of the coefficients in our model.  
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. mvreg 

   Equation           Obs   Parms        RMSE          "R-sq"               F                     P 

---------------------------------------------------------------------------------------------------- 

self_concept       350        5          .2669567        0.0465        4.203963          0.0025 

motivation           350        5          .4793062        0.0091        0.7936825        0.5299 

cumavrg              350        5          .467025          0.2763        32.93712          0.0000 

---------------------------------------------------------------------------------------------------- 

                |     Coef.          Std. Err.          t             P>|t|              [95% Conf. Interval] 

  ------------+------------------------------------------------------------------------------------- 

self_concept  

     tawjihi |   .0042879       .0013811     3.10        0.002           .0015715       .0070043 

     english |   .0001206       .0008938      0.13       0.893          -.0016373      .0018785 

      budget |  -.0014926      .0006999     -2.13       0.034          -.0028693      -.000116 

     absents |   .0001949      .0022901      0.09       0.932          -.0043094       .0046992 

        _cons |   2.571464      .1190967     21.59      0.000           2.337217       2.805711 

-------------+---------------------------------------------------------------------------------------- 

motivation    

    tawjihi |     .00152         .0024797       0.61       0.540         -.0033572        .0063972 

    english |    -.0028165    .0016047       -1.76      0.080         -.0059728        .0003398 

     budget |    -.000028      .0012567       -0.02      0.982         -.0024997       .0024438 

   absents |     .0003267    .0041117         0.08      0.937         -.0077605      .0084138 

      _cons |     2.726749    .2138316       12.75      0.000          2.306172       3.147327 

 -------------+---------------------------------------------------------------------------------------- 

cumavrg       

      tawjihi |    .0184153     .0024161        7.62       0.000          .0136631       .0231675 

     english |    .0068497     .0015636       4.38       0.000           .0037743       .0099251 
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     budget |   -.0038057     .0012245       -3.11      0.002          -.0062141      -.0013973 

   absents |   -.0163848      .0040064      -4.09      0.000           -.0242648     -.0085048 

      _cons |    .9277133      .2083526       4.45      0.000            .5179121       1.337514 

----------------------------------------------------------------------------------------------------------

The first table gives the number of observations, number of parameters, 

RMSE, R-squared, F-ratio, and p-value for each of the three models. 

 According to the column labeled P, each of the self concept and 

cumulative average models are statistically significant. But the 

model of motivation is not.  

 In the column labeled by R-sq, we see that the four predictor 

variables explain approximately 5%, 0.9%, and 28% of the variance 

in the outcome variables self concept, motivation, and cumulative 

average, respectively.  

 The second table contains the coefficients, their standard errors, test 

statistics (t), p-values, and 95% confidence interval, for each 

predictor variable in the model. The coefficients are interpreted in 

the same way that coefficients of simple or multiple regression are 

interpreted. For example, looking at the top of the table, a one unit 

increase in tawjihi average is associated with 0.00428 unit increase 

in the predicted value of self concept for a student.  

The test command can be applied to test different hypothesis.  

 For the first test, the null hypothesis is that the coefficients for the variable 

tawjihi are equal to zero in all three equations.  

  . test tawjihi 
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 ( 1)  [self_concept]tawjihi = 0 

 ( 2)  [motivation]tawjihi = 0 

 ( 3)  [cumavrg]tawjihi = 0 

 F ( 3, 345 ) = 24.50, Prob > F =    0.0000 

The result of this test is to reject the null hypothesis that the coefficients for 

tawjihi across the three equations are simultaneously equal to zero, in other 

words, the coefficients for tawjihi, taken for all three outcomes together, 

are statistically significant. 

The same test can be done for the other three predictors, English, budget, 

and absents.  

. test english 

 ( 1)  [self_concept]english = 0 

 ( 2)  [motivation]english = 0 

 ( 3)  [cumavrg]english = 0 

 F ( 3, 345 ) = 7.75, Prob > F =    0.0001 

. test budget 

 ( 1)  [self_concept]budget = 0 

 ( 2)  [motivation]budget = 0 

 ( 3)  [cumavrg]budget = 0 
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 F ( 3, 345 ) = 5.50,   Prob > F =    0.0011 

  . test absents 

 ( 1)  [self_concept]absents = 0 

 ( 2)  [motivation]absents = 0 

 ( 3)  [cumavrg]absents = 0 

 F ( 3, 345 ) = 5.61,  Prob > F =    0.0009 

The results of these tests indicate that we must reject the null hypothesis. 

That is, the coefficients for English, taken for all three outcomes together, 

are statistically significant. And the coefficients for budget, taken for all 

three outcomes together, are statistically significant. And the coefficients 

for absents, taken for all three outcomes together, are statistically 

significant. 

We can also test the null hypothesis that the coefficient for the variable 

English in the equation with cumulative average as the outcome is equal to 

the coefficient for English in the equation with motivation as the outcome. 

Another way of stating this null hypothesis is that, the effect of English 

score on the cumulative average is equal to the effect of English score on 

motivation.  

  . test[cumavrg]english= [motivation]english 

 ( 1)  - [motivation]english + [cumavrg]english = 0 
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 F ( 1, 345) = 17.64,  Prob > F =    0.0000 

The result of this test indicates that the difference between the coefficients 

of English with cumulative average and motivation as the outcome is 

significantly different from 0. In other words, the coefficients are 

significantly different. 

Now, we will test the null hypothesis that the coefficient for the variable 

tawjihi in the equation with cumulative average as the outcome is equal to 

the coefficient for tawjihi in the equation with self concept as the outcome.  

  . test[cumavrg]tawjihi= [self_concept]tawjihi 

 ( 1)  - [self_concept]tawjihi + [cumavrg]tawjihi = 0 

 F ( 1, 345) = 23.76,            Prob > F =    0.0000 

The result indicates that the difference between the coefficients of tawjihi 

with cumulative average and self concept as the outcome is significantly 

different from 0. 

4.2 Case Study 2: Analysis of Real Data Set with Categorical Predictor 

Variable (program) 

In this section, the same sample of 350 observations would be considered 

but, we would be interested in the collage or the program that the student 

belongs to regardless at which university he is studying. Our interest is on 

three programs (or specializations); economics, engineering, and science. 

We have three response variables (self concept, motivation, and cumulative 
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average), and five predictors (tawjihi average, English score level exam, 

daily budget, number of absents per semester, and the program that the 

student belongs to).    

  . summarize self_concept motivation cumavrg tawjihi english budget absents 

       Variable |    Obs           Mean             Std. Dev.          Min           Max 

  ----------------+--------------------------------------------------------------------------------- 

self_concept|    350          2.881286         0.271814           1.6            4.06 

   motivation |    350          2.6774            0.4787392          1.31          4.07 

      cumavrg |   350         2.656343         0.5458484          1.55          3.99 

          tawjihi |   350           81.774            10.74564           55.6          99.5 

        english |    350           61.86              16.52749            23             98 

-----------------+--------------------------------------------------------------------------------- 

        budget |    350          32.94571         20.5946               5             200 

      absents |    350          4.614286          6.282036             0              35 

. tabulate prog 

             prog |      Freq.       Percent             Cum. 

      ------------+---------------------------------------------------- 

     economic |      144           41.14               41.14 

 engineering |      108           30.86                72.00 

        science |       98             28.00             100.00 

       -----------+---------------------------------------------------- 

           Total |       350           100.00 

. manova  self_concept motivation cumavrg= c.tawjihi c.english c.budget c.absents prog 

                                     Number of obs =     350 

                           W = Wilks' lambda             L = Lawley-Hotelling trace 

                            P = Pillai's trace                R = Roy's largest root 



109 

      Source |  Statistic         df         F(df1,    df2) =            F            Prob>F 

--------------+------------------------------------------------------------------------------------ 

       Model | W 0.6556         6       18.0        965.0           8.63          0.0000 a 

                 | P 0.3550                   18.0       1029.0          7.67          0.0000 a 

                 | L  0.5092                   18.0       1019.0          9.61          0.0000 a 

                 | R  0.4762                    6.0         343.0         27.22         0.0000 u 

                 |------------------------------------------------------------------------------------- 

  Residual |                      343 

--------------+------------------------------------------------------------------------------------ 

      tawjihi | W  0.8308        1          3.0          341.0        23.14         0.0000 e 

                 | P  0.1692                     3.0          341.0        23.14         0.0000 e 

                 | L 0.2036                      3.0          341.0         23.14         0.0000 e 

                 | R 0.2036                     3.0          341.0          23.14        0.0000 e 

                  |------------------------------------------------------------------------------------ 

      english | W 0.9376        1           3.0         341.0          7.56         0.0001 e 

                   | P 0.0624                      3.0        341.0           7.56        0.0001 e 

                   | L 0.0665                      3.0        341.0           7.56         0.0001 e 

                   | R   0.0665                   3.0         341.0          7.56         0.0001 e 

                   |----------------------------------------------------------------------------------- 

       budget | W 0.9544        1         3.0        341.0         5.43            0.0012 e 

                   | P 0.0456                    3.0        341.0         5.43            0.0012 e 

                   | L  0.0478                   3.0         341.0         5.43           0.0012 e 

                   | R 0.0478                   3.0         341.0          5.43           0.0012 e 

                   |----------------------------------------------------------------------------------- 

     absents |W 0.9610          1        3.0         341.0         4.61            0.0035 e 

                   | P 0.0390                    3.0         341.0         4.61           0.0035 e 
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                   | L 0.0405                    3.0         341.0          4.61           0.0035 e 

                   | R 0.0405                   3.0         341.0          4.61           0.0035 e 

                   |----------------------------------------------------------------------------------- 

           prog |W 0.9733         2        6.0         682.0          1.55           0.1604 e 

                    |P 0.0268                   6.0         684.0          1.55           0.1604 a 

                    | L 0.0273                   6.0         680.0          1.55           0.1604 a 

                    |R 0.0225                   3.0         342.0           2.57          0.0543 u 

                    |---------------------------------------------------------------------------------- 

     Residual |                       343 

    -------------+---------------------------------------------------------------------------------- 

            Total |                      349 

         -------------------------------------------------------------------------------------------- 

                           e = exact , a = approximate  ,  u = upper bound on F 

. mvreg 

  Equation         Obs   Parms     RMSE           "R-sq"            F                 P 

---------------------------------------------------------------------------------------------------- 

self_concept     350      7         0.2672918      0.0496      2.984838     0.0074 

motivation         350      7         0.478601        0.0178      1.033593     0.4031 

 cumavrg           350     7         0.4643145       0.2889       23.2218      0.0000 

------------------------------------------------------------------------------------------------------ 

              |     Coef.           Std. Err.       t          P>|t|         [95% Conf. Interval] 

------------+---------------------------------------------------------------------------------------- 

self_concept  

   tawjihi |  .0038579       .001539      2.51     0.013       .0008308     .0068851 

 english |   .0001651       .000898      0.18     0.854      -.0016012    .0019314 

 budget |  -.0015163       .0007073   -2.14     0.033      -.0029075   -.0001251 
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 absents|  -.00017          .0023185   -0.07      0.942      -.0047303    .0043903 

     prog | 

         2  |   .0269295       .0387385    0.70      0.487     -.0492654    .1031244 

         3  |   -.0139693      .0368504   -0.38      0.705    -.0864506    .0585119 

  _cons |  2.601938        .125458     20.74     0.000      2.355174    2.848702 

-----------+----------------------------------------------------------------------------------------- 

motivation    

 tawjihi |  -.0005721       .0027557    -0.21     0.836     -.0059924    .0048482 

english |  -.0028728       .001608      -1.79     0.075     -.0060355    .0002899 

budget |   .0001402       .0012665      0.11     0.912     -.0023508    .0026312 

absents| -.0004423       .0041514     -0.11     0.915     -.0086077    .0077232 

prog  

       2  |    .1204565       .0693634      1.74     0.083     -.0159747    .2568876 

       3  |    .0521768       .0659827      0.79     0.430     -.077605      .1819585 

_cons |   2.847534        .2246396     12.68    0.000      2.40569      3.289379 

---------+------------------------------------------------------------------------------------------- 

cumavrg       

 tawjihi |   .0203167      .0026735       7.60     0.000      .0150582    .0255752 

english |  .0066932       .00156           4.29     0.000     .0036249    .0097615 

budget | -.0037428       .0012286      -3.05     0.002    -.0061594   -.0013261 

absents| -.0149192      .0040275      -3.70      0.000    -.02284      -.0069975 

    prog | 

        2  |  -.1175353     .0672929       -1.75      0.082    -.2498939   .0148234 

        3  |   .0440806     .0640131        0.69       0.492   -.0818271    .1699883 

  _cons |   .7969961    .217934           3.66      0.000     .3683408   1.225651 

-------------------------------------------------------------------------------------- 
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Notes from tables: 

 A one unit increase in tawjihi average is associated with a  

0.0203167   increase in the predicted value of cumulative average. 

 If the budget increases by one unit, the cumulative average is 

expected to decrease by  0.0037428 .         

 As the absents increases by one unit, the predicted value of 

motivation will decrease  by 0.0004423.         

For the first test, the null hypothesis is that the coefficients for the variable 

tawjihi are equal to zero in all three equations.  

. test tawjihi 

 ( 1)  [self_concept]tawjihi = 0 

 ( 2)  [motivation]tawjihi = 0 

 ( 3)  [cumavrg]tawjihi = 0 

 F ( 3, 343) = 23.28,         Prob > F =    0.0000 

The result of this test is to reject the null hypothesis.  That is, the 

coefficients for tawjihi, taken for all three outcomes together, are 

statistically significant.  

The same test is done for the variables English, budget, and absents 

. test english 

 ( 1)  [self_concept]english = 0 
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 ( 2)  [motivation]english = 0 

 ( 3)  [cumavrg]english = 0 

 F ( 3, 343) = 7.60,  Prob > F =    0.0001, 

. test budget 

 ( 1)  [self_concept]budget = 0 

 ( 2)  [motivation]budget = 0 

 ( 3)  [cumavrg]budget = 0  

 F ( 3, 343) = 5.46,          Prob > F =    0.0011 

. test absents 

 ( 1)  [self_concept]absents = 0 

 ( 2)  [motivation]absents = 0 

 ( 3)  [cumavrg]absents = 0 

 F ( 3, 343) = 4.64,  Prob > F =    0.0034 

Second, we can test the null hypothesis that the coefficients for  the 

variable tawjihi in the equation of cumulative average as the outcome is 

equal to the coefficient for tawjihi in the equation of motivation as the 

outcome. 

. test[cumavrg]tawjihi= [motivation]tawjihi 

 ( 1)  - [motivation]tawjihi + [cumavrg]tawjihi = 0 
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 F ( 1, 343) = 28.27, Prob > F =    0.0000 

The  result of this test indicates that the difference between the coefficients 

for tawjihi with  cumulative average and motivation as the outcome is 

significantly  different  from 0, in other words, the coefficients are 

significantly different. 

. test[self_concept]budget= [motivation]budget 

 ( 1)  [self_concept]budget - [motivation]budget = 0 

 F ( 1, 343) = 2.04, Prob > F =    0.1545 

Here the decision is not to reject the null hypothesis. That is, the 

coefficients of budget are not significantly  different in the two equations. 

In other words, that the effect of budget on the self concept is equal to the 

effect of budget on motivation. 

. test[cumavrg]absents= [motivation]absents 

 ( 1)  - [motivation]absents + [cumavrg]absents = 0 

 F ( 1, 343) = 5.98, Prob > F =    0.0149 

The test indicates to reject the null hypothesis. That is, the effect of absents 

on the motivation is different from the effect of absents on cumulative 

average. 

We can test the null hypothesis that the coefficients  for prog=2  and 

prog=3  are simultaneously equal to zero in the equation of cumulative 
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average. When used to test the coefficients  for dummy variables that form 

a single categorical predictor, this type of test is sometimes called an 

overall test  for the effect of the categorical predictor .  

 . test[cumavrg]2.prog [cumavrg]3.prog 

( 1)  [cumavrg]2.prog = 0 

 ( 2)  [cumavrg]3.prog = 0 

 F ( 2, 343) = 3.02, Prob > F =    0.0501 

The result indicates that the two coefficients together are not significantly 

different from 0. In other words, the overall effect of program on 

cumulative average is not statistically  significant.  

. test[self_concept]2.prog [self_concept]3.prog 

( 1)  [self_concept]2.prog = 0 

 ( 2)  [self_concept]3.prog = 0 

 F ( 2, 343) = 0.57, Prob > F =    0.5674 

. test[motivation]2.prog [motivation]3.prog 

( 1)  [motivation]2.prog = 0 

 ( 2)  [motivation]3.prog = 0 

 F ( 2, 343) = 1.51, Prob > F =    0.2227 
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Achievement motivation and self concept are not affected by the study 

program of the student.  

In general, the estimated multivariate multiple regression model was good. 

We saw that the self concept, achievement motivation, and the cumulative 

average for a university student is affected by the four predictor variables 

(tawjihi average, English score, budget, and absents). Moreover, the study 

program has no effect on student‟s self concept and his achievement 

motivation, the p-values were 0.5674, and 0.2227, respectively. The 

student‟s cumulative average is affected by the study program. The p-value 

was 0.0501.   

4.3 Case Study 3: Analysis of Real Data Set with Categorical Predictor 

Variable (university) 

In this section, the same sample of 350 observations would be considered. 

But, we would be interested in the university that the student is studying in 

regardless the study program. Our interest is on three universities; An-

Najah National University, Arab American University, and Alquds Open 

University.  We have three response variables (self concept, motivation, 

and cumulative average), and five predictors (tawjihi average, English 

score level exam, daily budget, number of absents per semester, and the 

university that the student studying in).   
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. summarize self_concept motivation cumavrg tawjihi english budget absents 

      Variable |    Obs          Mean              Std. Dev.           Min           Max 

     -------------+-------------------------------------------------------------------------------- 

self_concept |   350        2.881286           .271814             1.6            4.06 

    motivation |   350        2.6774               .4787392           1.31          4.07 

       cumavrg |   350        2.656343          .5458484            1.55          3.99 

          tawjihi |    350         81.774             10.74564            55.6          99.5 

         english |    350         61.86               16.52749             23            98 

      -------------+------------------------------------------------------------------------------- 

          budget |   350        32.94571            20.5946              5             200 

        absents |   350          4.614286           6.282036            0              35 

. tabulate univ 

             univ |     Freq.         Percent              Cum. 

       -----------+--------------------------------------------------- 

         alquds |      91              26.00                26.00 

arbamerican |    111              31.71                57.71 

           najah |    148              42.29              100.00 

       -----------+--------------------------------------------------- 

           Total |     350            100.00 

. manova self_concept motivation cumavrg= c.tawjihi c.english c.budget c.absents univ 

Number of obs =     350 

                           W = Wilks' lambda              L = Lawley-Hotelling trac e 

                           P = Pillai's trace                  R = Roy's largest root 

     Source |   Statistic         df            F(df1,    df2) =               F              Prob>F 

    -----------+------------------------------------------------------------------------------------- 

      Model | W   0.5777        6          18.0        965.0           11.48           0.0000 a 
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                 | P    0.4491                    18.0      1029.0           10.07           0.0000 a 

                 | L    0.6848                    18.0       1019.0           12.92          0.0000 a 

                 | R   0.6111                      6.0         343.0           34.93          0.0000 u 

                 |---------------------------------------------------------------------------------------- 

  Residual |                       343 

    -----------+-------------------------------------------------------------------------------------- 

      tawjihi | W   0.7595        1            3.0        341.0            35.99          0.0000 e 

                 | P   0.2405                       3.0        341.0            35.99          0.0000 e 

                 | L   0.3166                       3.0        341.0             35.99         0.0000 e 

                 | R   0.3166                      3.0        341.0             35.99         0.0000 e 

                 |---------------------------------------------------------------------------------------- 

     english | W  0.9618         1           3.0        341.0              4.51          0.0040 e 

                  | P  0.0382                       3.0       341.0               4.51         0.0040 e 

                  | L  0.0397                       3.0        341.0               4.51        0.0040 e 

                  | R 0.0397                       3.0        341.0               4.51        0.0040 e 

                  |------------------------------------------------------------------------------------ 

      budget | W 0.9590         1           3.0         341.0              4.86        0.0025 e 

                  | P  0.0410                      3.0         341.0              4.86        0.0025 e 

                  | L  0.0427                       3.0         341.0              4.86        0.0025 e 

                  | R 0.0427                       3.0         341.0              4.86        0.0025 e 

                  |------------------------------------------------------------------------------------ 

    absents | W 0.9767          1          3.0         341.0              2.71        0.0448 e 

                  | P  0.0233                       3.0        341.0              2.71        0.0448 e 

                  | L   0.0239                       3.0       341.0              2.71        0.0448 e 

                  | R   0.0239                      3.0       341.0               2.71       0.0448 e 

                   |----------------------------------------------------------------------------------- 
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            univ | W 0.8577         2          6.0       682.0               9.06       0.0000 e 

                    | P  0.1424                     6.0       684.0               8.74       0.0000 a 

                    | L   0.1657                     6.0      680.0               9.39       0.0000 a 

                    | R  0.1645                     3.0      342.0              18.75      0.0000 u 

                    |------------------------------------------------------------------------------------- 

     Residual |                       343 

       -----------+----------------------------------------------------------------------------------- 

           Total |                       349 

              ------------------------------------------------------------------------------------------ 

. mvreg 

Equation           Obs    Parms    RMSE          "R-sq"                F                     P 

----------------------------------------------------------------------------------------------------- 

self_concept      350       7       .2666633        0.0541         3.268718          0.0039 

motivation          350       7      .4795371         0.0139          .8065809         0.5653 

cumavrg             350       7     .4383563         0.3662        33.02444            0.0000 

---------------------------------------------------------------------------------------------------- 

               |        Coef.          Std. Err.           t           P>|t|            [95% Conf. Interval] 

-------------+------------------------------------------------------------------------------------- 

self_concept  

     tawjihi |   .0023985      .0017954        1.34       0.182       -.0011329       .0059299 

    english |   .0005523     .0009302         0.59       0.553       -.0012773       .0023819 

    budget |  -.0015061     .0007052        -2.14       0.033       -.0028932      -.0001191 

  absents |  -.0008609     .0023968        -0.36       0.720       -.0055753        .0038534 

        univ | 

            2  |  .0501958      .0414407         1.21       0.227        -.031314         .1317056 

            3  |  .0797626      .048241           1.65       0.099        -.0151228       .1746479 
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     _cons |  2.654934      .1302952        20.38      0.000         2.398655        2.911212 

-------------+---------------------------------------------------------------------------------------- 

motivation    

     tawjihi |  .003846        .0032287         1.19       0.234        -.0025044       .0101965 

    english | -.0033581     .0016728        -2.01       0.045         -.0066483      -.000068 

    budget |  .0000665      .0012681         0.05       0.958         -.0024278       .0025607 

   absents |   .0014272     .0043102         0.33       0.741          -.0070506      .009905 

        univ | 

            2  |  -.0892385     .0745222       -1.20       0.232           -.2358165     .0573395 

            3  |  -.1000668     .0867511       -1.15       0.250           -.2706979     .0705643 

      _cons |  2.632467      .2343082       11.24       0.000           2.171605      3.093329 

-------------+---------------------------------------------------------------------------------------- 

cumavrg       

     tawjihi | .0298896       .0029514       10.13      0.000            .0240845      .0356948 

   english |  .004178        .0015291          2.73      0.007           .0011704       .0071856 

    budget | -.003339        .0011592        -2.88      0.004          -.0056191      -.001059 

   absents | -.0109577      .0039401        -2.78      0.006          -.0187074      -.0032079 

        univ | 

            2  | -.4404709      .0681225        -6.47      0.000          -.5744614      -.3064805 

            3  | -.4936445      .0793012        -6.22      0.000          -.6496225      -.3376666 

      _cons |  .4627001      .2141867          2.16      0.031           .0414154       .8839848 

------------------------------------------------------------------------------------------------------- 

. test tawjihi 

 ( 1)  [self_concept]tawjihi = 0 

 ( 2)  [motivation]tawjihi = 0 
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 ( 3)  [cumavrg]tawjihi = 0 

 F ( 3, 343) = 36.20,         Prob > F =    0.0000 

. test english 

 ( 1)  [self_concept]english = 0 

 ( 2)  [motivation]english = 0 

 ( 3)  [cumavrg]english = 0 

 F ( 3, 343) = 4.54,   Prob > F =    0.0039 

. test budget 

 ( 1)  [self_concept]budget = 0 

 ( 2)  [motivation]budget = 0 

 ( 3)  [cumavrg]budget = 0 

 F ( 3, 343) = 4.88, Prob > F =    0.0024 

. test absents 

 ( 1)  [self_concept]absents = 0 

 ( 2)  [motivation]absents = 0 

 ( 3)  [cumavrg]absents = 0 

 F ( 3, 343) = 2.73, Prob > F =    0.0438 
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The four tests indicate that the coefficients for the tawjihi, english, budget, 

and absents, taken for all three outcomes together, are statistically 

significant.    

Now, we want to test the overall effect for the university on the three 

responses, cumulative average, self concept, and achievement motivation.  

test[cumavrg]2.univ [cumavrg]3.univ 

 ( 1)  [cumavrg]2.univ = 0 

 ( 2)  [cumavrg]3.univ = 0 

 F ( 2, 343) = 24.30,  Prob > F =    0.0000 

The null hypothesis is rejected. That is, the cumulative average is affected 

by the university that the student belong to.  

. test[motivation]2.univ [motivation]3.univ 

 ( 1)  [motivation]2.univ = 0 

 ( 2)  [motivation]3.univ = 0 

 F ( 2, 343) = 0.83, Prob > F =    0.4352 

. test[self_concept]2.univ [self_concept]3.univ 

 ( 1)  [self_concept]2.univ = 0 

 ( 2)  [self_concept]3.univ = 0 

 F ( 2, 343) = 1.38, Prob > F =    0.2530 
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Achievement motivation and self concept were not affected by the 

university that the student is studying in.  

In this model, all the predictors we used were useful in predicting the 

responses. We saw that the self concept, achievement motivation, and the 

cumulative average for a university student is determined by the tawjihi 

average, English score, budget, and absents per semester. The variable 

university affects the cumulative average for the student, but is has no 

effect on his achievement motivation or his self concept. 

4.4 Case Study 4: Data Analysis of An-Najah National University 

In this section we are interested in studying the effect of tawjihi average, 

English score level exam, budget per day, number of absents per semester, 

and the program that the student belongs to on the responses self concept, 

achievement motivation, and cumulative average of a student. Data for 148 

students from An- Najah National University has been collected and 

analyzed. 

. summarize self_concept motivation cumavrg tawjihi english budget absents 

       Variable |   Obs           Mean              Std. Dev.        Min            Max 

     -------------+--------------------------------------------------------------------------------- 

self_concept |   148         2.928378           .241934         1.94           4.06 

    motivation |   148         2.67973             .4470279       1.57           4.04 

       cumavrg |   148         2.687297          .5534095        1.65           3.82 

           tawjihi |   148         88.3223            7.087277        69.1          99.5 

         english |    148        60.74324          18.35631          23             98 

       ------------+-------------------------------------------------------------------------------- 
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          budget |   148         30.48649          15.09088           5            100 

        absents |   148          6.722973          6.853988           0             30 

. tabulate prog 

          prog |      Freq.       Percent          Cum. 

    ------------+------------------------------------------------ 

   economic |      32             21.62          21.62 

engineering |     62              41.89          63.51 

       science |     54              36.49        100.00 

        ----------+----------------------------------------------- 

            Total |    148            100.00 

. manova self_concept motivation cumavrg= c.tawjihi c.english c.budget c.absents prog 

                           W = Wilks' lambda          L = Lawley-Hotelling trace 

                           P = Pillai's trace              R = Roy's largest root 

  Source |   Statistic             df            F(df1,    df2) =             F             Prob>F 

 -----------+----------------------------------------------------------------------------------------- 

    Model | W   0.6625          6          18.0         393.6           3.43          0.0000 a 

               | P   0.3544                       18.0         423.0           3.15          0.0000 a 

               | L   0.4840                       18.0         413.0            3.70         0.0000 a 

                 | R   0.4269                       6.0          141.0         10.03         0.0000 u 

                 |--------------------------------------------------------------------------------------- 

  Residual |                         141 

     ----------+------------------------------------------------------------------------------------- 

      tawjihi | W   0.7683         1           3.0           139.0         13.97         0.0000 e 

                 | P   0.2317                       3.0           139.0         13.97         0.0000 e 

                 | L   0.3015                       3.0           139.0         13.97         0.0000 e 

                 | R   0.3015                      3.0            139.0         13.97         0.0000 e 
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                 |--------------------------------------------------------------------------------------- 

    english | W   0.9857          1          3.0            139.0          0.67          0.5717 e 

                | P   0.0143                       3.0            139.0          0.67          0.5717 e 

                | L   0.0145                       3.0             139.0         0.67          0.5717 e 

                | R   0.0145                      3.0             139.0         0.67           0.5717 e 

                |--------------------------------------------------------------------------------------- 

    budget | W   0.9750           1         3.0            139.0          1.19           0.3173 e 

                | P   0.0250                       3.0            139.0          1.19           0.3173 e 

                | L   0.0256                       3.0            139.0          1.19           0.3173 e 

                | R   0.0256                      3.0             139.0         1.19            0.3173 e 

                |--------------------------------------------------------------------------------------- 

   absents | W   0.9768           1        3.0             139.0         1.10            0.3514 e 

                 | P   0.0232                      3.0             139.0         1.10            0.3514 e 

                 | L   0.0237                      3.0              139.0         1.10           0.3514 e 

                 | R   0.0237                     3.0              139.0          1.10           0.3514 e 

                 |--------------------------------------------------------------------------------------- 

         prog | W   0.9111           2        6.0             278.0          2.21           0.0425 e 

                   | P   0.0905                     6.0             280.0          2.21          0.0421 a 

                   | L   0.0958                     6.0              276.0         2.20          0.0430 a 

                   | R   0.0706                    3.0              140.0         3.29          0.0225 u 

                   |------------------------------------------------------------------------------------- 

    Residual |                        141 

     -----------+------------------------------------------------------------------------------------ 

          Total |                        147 

              ------------------------------------------------------------------------------------------ 

                           e = exact, a = approximate, u = upper bound on F 
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. mvreg 

Equation          Obs    Parms       RMSE          "R-sq"                F                    P 

----------------------------------------------------------------------------------------------------- 

self_concept      148      7          .2430859        0.0317         .7683536          0.5960 

motivation          148      7         .4478248         0.0374         .912881            0.4876 

cumavrg            148      7          .4751208         0.2930        9.739242           0.0000  

------------------------------------------------------------------------------------------------------- 

                 |    Coef.             Std. Err.           t            P>|t|              [95% Conf. Interval] 

 -------------+--------------------------------------------------------------------------------------- 

self_concept  

     tawjihi |   .0050275       .0035389        1.42         0.158        -.0019686         .0120235 

    english |   .0000777      .0011186         0.07        0.945         -.0021338         .0022892 

    budget |  -.0004821      .001355          -0.36        0.723         -.0031609         .0021966 

  absents |   .0010951       .0030215         0.36        0.718         -.0048781         .0070684 

       prog | 

            2  |   .0334322       .0589287          0.57         0.571        -.0830658        .1499303 

            3  |   .0272275       .0556512          0.49         0.625        -.0827911        .1372461 

     _cons |   2.463017       .3205536           7.68         0.000        1.829305         3.09673 

-------------+---------------------------------------------------------------------------------------- 

motivation    

     tawjihi |   .0012794      .0065195            0.20         0.845        -.0116092       .0141679 

    english |  -.0023383      .0020608          -1.13         0.258        -.0064124       .0017358 

    budget |   .0027088       .0024963          1.09          0.280        -.0022261       .0076438 

  absents |  -.0005061       .0055663         -0.09          0.928        -.0115104       .0104981 

       prog | 

           2  |   .1679357       .1085614           1.55          0.124        -.0466827       .3825541 
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           3  |   .1796755       .1025234           1.75          0.082        -.0230062       .3823573 

     _cons |   2.493681       .5905397          4.22          0.000        1.326224         3.661137 

-------------+---------------------------------------------------------------------------------------- 

cumavrg       

     tawjihi |   .0442983      .0069168           6.40          0.000         .0306242        .0579724 

    english |   .0017713     .0021864            0.81         0.419         -.0025511       .0060937 

    budget |   -.003879      .0026484           -1.46         0.145         -.0091148       .0013568 

  absents |  -.0102067      .0059056           -1.73         0.086        -.0218817        .0014682 

       prog | 

           2  |  -.1888269       .1151785           -1.64        0.103         -.4165268       .0388731 

           3  |   .1500583       .1087725            1.38         0.170        -.0649773       .365094 

    _cons |  -1.121599       .6265346           -1.79         0.076        -2.360215       .1170174 

------------------------------------------------------------------------------------------------------- 

. test tawjihi 

 ( 1)  [self_concept]tawjihi = 0 

 ( 2)  [motivation]tawjihi = 0 

 ( 3)  [cumavrg]tawjihi = 0 

 F ( 3, 141) =  14.17,      Prob > F =    0.0000 

. test english 

 ( 1)  [self_concept]english = 0 

 ( 2)  [motivation]english = 0 

 ( 3)  [cumavrg]english = 0 
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 F ( 3, 141) = 0.68, Prob > F =    0.5658 

. test budget 

 ( 1)  [self_concept]budget = 0 

 ( 2)  [motivation]budget = 0 

 ( 3)  [cumavrg]budget = 0 

 F ( 3, 141) = 1.20,           Prob > F =    0.3108 

. test absents 

 ( 1)  [self_concept]absents = 0 

 ( 2)  [motivation]absents = 0 

 ( 3)  [cumavrg]absents = 0 

 F ( 3, 141) = 1.12,  Prob > F =    0.3448 

Note that the three responses are controlled by only one explanatory 

variable which is tawjihi average, and they are not affected by english score 

or budget or absents. 

Now, we want to test the overall effect of the study program on the three 

responses. 

  . test[cumavrg]2.prog [cumavrg]3.prog 

 ( 1)  [cumavrg]2.prog = 0 

 ( 2)  [cumavrg]3.prog = 0 
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 F ( 2, 141) = 4.79, Prob > F =    0.0098 

. test[self_concept]2.prog[self_concept]3.prog 

 ( 1)  [self_concept]2.prog = 0 

 ( 2)  [self_concept]3.prog = 0 

 F ( 2, 141) = 0.19,           Prob > F =    0.8301 

. test[motivation]2.prog[motivation]3.prog 

 ( 1)  [motivation]2.prog = 0 

 ( 2)  [motivation]3.prog = 0 

 F ( 2, 141) = 1.81, Prob > F =    0.1675 

Note that the cumulative average for a student from An-Najah university 

depends on the student‟s program (economics, engineering, or science). 

But his self concept and achievement motivation is not related with the 

program. 

4.5 Case Study 5: Data Analysis of Arab American University 

In this section we will do similar analysis as in section 4.4, but here we 

collect data from Arab American University. The same set of dependent 

and independent variables will be used. Data for 111 students from Arab 

American University has been collected and analyzed. 
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. summarize self_concept motivation cumavrg tawjihi english budget absents 

      Variable |     Obs          Mean            Std. Dev.          Min          Max 

   ---------------+------------------------------------------------------------------------------ 

self_concept |    111        2.874234         .2357331         2.23          3.37 

  motivation |    111        2.655045         .4615663         1.31          4.07 

      cumavrg |   111         2.531622        .6612475          1.55          3.99 

         tawjihi |   111       80.79009          9.563747           60             99 

         english |   111      61.47748           15.24279           34             98 

   ----------------+------------------------------------------------------------------------------ 

           budget |  111       36.88288          22.85637            5             160 

         absents |  111        3.567568         5.941566             0              35 

. tabulate prog 

           prog |     Freq.        Percent           Cum. 

     ------------+----------------------------------------------- 

   economic |      55             49.55            49.55 

engineering |      33             29.73           79.28 

      science |       23            20.72          100.00 

     -----------+------------------------------------------------ 

          Total |     111           100.00 

. manova self_concept motivation cumavrg= c.tawjihi c.english c.budget c.absents prog 

                           W = Wilks' lambda      L = Lawley-Hotelling trace 

                           P = Pillai's trace     R = Roy's largest root 

  Source |    Statistic          df           F(df1,    df2) =             F             Prob>F 

 -----------+------------------------------------------------------------------------------------------- 

    Model | W   0.3656        6          18.0        289.0            6.86         0.0000 a 

               | P   0.6824                     18.0        312.0            5.10         0.0000 a 
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               | L   1.6059                     18.0       302.0             8.98         0.0000 a 

                | R   1.5233                      6.0        104.0           26.40        0.0000 u 

                 |------------------------------------------------------------------------------------------ 

  Residual |                       104 

    -----------+----------------------------------------------------------------------------------------- 

       tawjihi | W   0.7638       1            3.0        102.0          10.52         0.0000 e 

                  | P   0.2362                      3.0        102.0          10.52         0.0000 e 

                  | L   0.3093                      3.0        102.0           10.52         0.0000 e 

                  | R   0.3093                     3.0         102.0           10.52        0.0000 e 

                  |----------------------------------------------------------------------------------------- 

     english | W  0.8933         1            3.0        102.0            4.06         0.0090 e 

                 | P    0.1067                       3.0       102.0            4.06         0.0090 e 

                 | L    0.1195                        3.0       102.0            4.06         0.0090 e 

                 | R   0.1195                        3.0        102.0           4.06         0.0090 e 

                 |------------------------------------------------------------------------------------------- 

     budget | W   0.9600         1            3.0        102.0           1.42         0.2426 e 

                 | P   0.0400                        3.0        102.0           1.42         0.2426 e 

                 | L   0.0416                        3.0         102.0          1.42         0.2426 e 

                 | R   0.0416                       3.0          102.0         1.42         0.2426 e 

                 |------------------------------------------------------------------------------------------- 

    absents | W   0.9632         1           3.0          102.0          1.30        0.2784 e 

                  | P   0.0368                       3.0          102.0          1.30       0.2784 e 

                  | L   0.0383                       3.0          102.0          1.30       0.2784 e 

                  | R   0.0383                      3.0           102.0         1.30       0.2784 e 

                  |------------------------------------------------------------------------------------------ 

         prog | W   0.9569          2          6.0           204.0         0.76        0.6047 e 
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                   | P   0.0435                     6.0           206.0         0.76        0.5990 a 

                    | L   0.0445                     6.0            202.0        0.75        0.6104 a 

                    | R   0.0258                    3.0            103.0        0.89        0.4508 u 

                    |------------------------------------------------------------------------------------------ 

     Residual |                      104 

      -----------+----------------------------------------------------------------------------------- 

          Total |                       110 

              ------------------------------------------------------------------------------------------ 

. mvreg 

Equation            Obs   Parms        RMSE             "R-sq"               F                     P 

---------------------------------------------------------------------------------------------------- 

self_concept      111       7           .2324416          0.0808         1.522901          0.1779 

motivation          111       7           .4665309          0.0341          .6118812         0.7203 

cumavrg             111       7           .4492732         0.5636          22.38111          0.0000 

---------------------------------------------------------------------------------------------------- 

             |        Coef.          Std. Err.           t            P>|t|            [95% Conf. Interval] 

-----------+--------------------------------------------------------------------------------------- 

self_concept  

   tawjihi |   .0012131      .0034369        0.35        0.725           -.0056025      .0080286 

  english |   .0020039      .0020537        0.98        0.331           -.0020687      .0060766 

  budget |  -.0009854      .0010534       -0.94        0.352           -.0030744      .0011036 

 absents |  -.0073005     .0039917       -1.83        0.070           -.0152162      .0006153 

      prog | 

          2  |   -.041195      .0592177        -0.70        0.488           -.1586258      .0762359 

           3  |   -.105489      .0692771         -1.52      0.131           -.242868          .03189 

     _cons |   2.74953       .2242891        12.26      0.000            2.304756       3.194303 
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-------------+---------------------------------------------------------------------------------------- 

motivation    

     tawjihi |   .0028553     .0068982         0.41       0.680           -.0108241      .0165347 

    english |  -.004791       .004122         -1.16       0.248           -.0129652      .0033831 

    budget |  -.0007213     .0021144        -0.34       0.734           -.0049141      .0034716 

  absents |  -.0037589     .0080118        -0.47       0.640           -.0196465      .0121287 

       prog | 

           2  |  -.0028096     .1188551         -0.02      0.981            -.2385038     .2328846 

           3  |  -.1162751     .1390452         -0.84      0.405            -.3920071     .1594568 

    _cons |   2.783846      .4501682          6.18      0.000            1.891146       3.676547 

------------+----------------------------------------------------------------------------------------- 

cumavrg       

    tawjihi |   .0362646      .006643           5.46       0.000             .0230911      .049438 

   english |   .0102503     .0039696          2.58       0.011             .0023785     .0181221 

   budget |  -.0032896     .0020361         -1.62       0.109            -.0073273     .0007482 

 absents |  -.0026304     .0077154          -0.34      0.734            -.0179303     .0126695 

      prog | 

          2  |  -.1143693      .1144585          -1.00      0.320            -.3413448     .1126062 

          3  |   .0672728      .1339017            0.50     0.616             -.1982593     .332805 

   _cons |  -.8775826      .4335158           -2.02     0.045            -1.737261     -.0179045 

------------------------------------------------------------------------------------------------------- 

. test tawjihi 

 ( 1)  [self_concept]tawjihi = 0 

 ( 2)  [motivation]tawjihi = 0 

 ( 3)  [cumavrg]tawjihi = 0 
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 F ( 3, 104) = 10.72,  Prob > F =    0.0000 

. test english 

 ( 1)  [self_concept]english = 0 

 ( 2)  [motivation]english = 0 

 ( 3)  [cumavrg]english = 0 

 F ( 3, 104) = 4.14,       Prob > F =    0.0081 

. test budget 

 ( 1)  [self_concept]budget = 0 

 ( 2)  [motivation]budget = 0 

 ( 3)  [cumavrg]budget = 0 

 F ( 3, 104) = 1.44,         Prob > F =    0.2345 

. test absents 

 ( 1)  [self_concept]absents = 0 

 ( 2)  [motivation]absents = 0 

 ( 3)  [cumavrg]absents = 0 

 F ( 3, 104) = 1.33,    Prob > F =    0.2700 
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Note that the three responses are controlled by two explanatory variables 

which are tawjihi average, and English score. And they are not affected by 

budget or absents. 

  . test[cumavrg]2.prog [cumavrg]3.prog 

   ( 1)  [cumavrg]2.prog = 0 

   ( 2)  [cumavrg]3.prog = 0 

 F ( 2, 104) = 1.04,  Prob > F =    0.3575 

. test[self_concept]2.prog [self_concept]3.prog 

 ( 1)  [self_concept]2.prog = 0 

 ( 2)  [self_concept]3.prog = 0 

 F ( 2, 104) = 1.16 Prob > F =    0.3175 

. test[motivation]2.prog [motivation]3.prog 

 ( 1)  [motivation]2.prog = 0 

 ( 2)  [motivation]3.prog = 0 

 F ( 2, 104) = 0.42, Prob > F =    0.6578 

These tests show that the self concept, the achievement motivation, and the 

cumulative average for a student in Arab American University is not 

affected by his program or specialization.   

. test[motivation]tawjihi= [cumavrg]tawjihi 
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 ( 1)  [motivation]tawjihi - [cumavrg]tawjihi = 0 

 F ( 1, 104) = 11.87,  Prob > F =    0.0008 

This test indicates that the tawjihi average doesn‟t influence achievement 

motivation in the same way that it influences cumulative average. 

4.6  Case Study 6: Data Analysis of Alquds Open University 

In this section we will analyze data which has been collected from Alquds 

Open University. The same set of dependent and independent variables will 

be used. Our sample is of 91 students. 

. summarize self_concept motivation cumavrg tawjihi english budget absents 

      Variable |     Obs            Mean               Std. Dev.             Min             Max 

     -------------+------------------------------------------------------------------------------------ 

self_concept |     91          2.813297           .3385231               1.6              3.87 

    motivation |     91          2.700879           .5484415               1.57            4.04 

      cumavrg |     91           2.758132           .2991763               1.65            3.46 

          tawjihi |     91          72.32418             9.588029              55.6            95.7 

        english |      91          64.14286            14.74492                36               92 

    -------------+------------------------------------------------------------------------------------ 

        budget |      91         32.14286             24.58707                10             200 

      absents |      91           2.461538             4.450487                 0              28 

    --------------------------------------------------------------------------------------------------- 

. tabulate prog 

     program |      Freq.       Percent         Cum. 

     ------------+--------------------------------------------- 

   economic |         57          62.64           62.64 
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engineering |        13           14.29           76.92 

      science |         21           23.08          100.00 

     ------------+---------------------------------------------- 

           Total |        91           100.00 

. manova self_concept motivation cumavrg= c.tawjihi c.english c.budget c.absents prog 

                                          Number of obs =      91 

                            W = Wilks' lambda            L = Lawley-Hotelling trace 

                             P = Pillai's trace                R = Roy's largest root 

     Source |     Statistic          df            F(df1,    df2) =                F             Prob>F 

    -----------+--------------------------------------------------------------------------------------- 

       Model | W   0.5561         6           18.0          232.4            2.98          0.0001 a 

                  | P   0.4955                       18.0          252.0            2.77          0.0002 a 

                  | L   0.7082                       18.0           242.0           3.17          0.0000 a 

                  | R   0.5618                        6.0             84.0           7.86          0.0000 u 

                  |---------------------------------------------------------------------------------------- 

   Residual |                          84 

      ----------+-------------------------------------------------------------------------------------- 

       tawjihi | W  0.6969         1              3.0            82.0         11.89          0.0000 e 

                  | P   0.3031                         3.0            82.0         11.89          0.0000 e 

                  | L   0.4350                         3.0             82.0         11.89         0.0000 e 

                  | R   0.4350                        3.0             82.0          11.89         0.0000 e 

                  |---------------------------------------------------------------------------------------- 

      english | W  0.9548         1             3.0             82.0            1.29         0.2822 e 

                  | P   0.0452                        3.0             82.0            1.29         0.2822 e 

                  | L   0.0473                        3.0              82.0           1.29         0.2822 e 

                  | R   0.0473                        3.0              82.0          1.29          0.2822 e 



138 

                  |---------------------------------------------------------------------------------------- 

      budget | W   0.9383          1            3.0             82.0           1.80         0.1540 e 

                  | P   0.0617                         3.0             82.0           1.80         0.1540 e 

                  | L   0.0658                         3.0             82.0           1.80          0.1540 e 

                  | R   0.0658                        3.0             82.0           1.80          0.1540 e 

                  |---------------------------------------------------------------------------------------- 

    absents | W   0.9761            1          3.0             82.0           0.67         0.5742 e 

                   | P   0.0239                         3.0            82.0           0.67         0.5742 e 

                   | L   0.0244                         3.0             82.0          0.67         0.5742 e 

                   | R   0.0244                         3.0            82.0          0.67         0.5742 e 

                   |--------------------------------------------------------------------------------------- 

           prog | W   0.9475          2            6.0          164.0          0.75         0.6124 e 

                   | P   0.0528                         6.0          166.0          0.75         0.6101 a 

                   | L   0.0551                          6.0         162.0          0.74         0.6149 a 

                   | R   0.0490                          3.0           83.0         1.36         0.2620 u 

                   |--------------------------------------------------------------------------------------- 

                Residual |                84 

                  -----------+---------------------------------------------------------------------------- 

                      Total |                90 

              ------------------------------------------------------------------------------------------- 

                           e = exact, a = approximate, u = upper bound on F 

. mvreg 

Equation            Obs  Parms     RMSE           "R-sq"                F                   P 

----------------------------------------------------------------------------------------------------- 

self_concept       91     7          .3393834         0.0619         .9240481        0.4820 

motivation          91     7          .5409383         0.0920        1.419006         0.2170 
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cumavrg              91     7          .2524411         0.3355        7.068105         0.0000 

----------------------------------------------------------------------------------------------------- 

                |      Coef.          Std. Err.          t             P>|t|            [95% Conf. Interval] 

-------------+-------------------------------------------------------------------------------------- 

self_concept  

     tawjihi |   .0012982      .003942        0.33          0.743         -.006541       .0091374 

     english |   .0006519       .002601       0.25          0.803         -.0045205      .0058243 

      budget |  -.0024512      .0014657    -1.67          0.098         -.0053659      .0004636 

     absents |   .0031719      .0082124     0.39          0.700         -.0131593      .0195031 

          prog | 

              2  |   .1308551       .1050235     1.25          0.216         -.0779957      .3397058 

              3  |  -.0060587       .0890248    -0.07          0.946         -.1830943      .1709769 

       _cons |   2.731275        .2888951     9.45          0.000           2.156775      3.305774 

-------------+---------------------------------------------------------------------------------------- 

motivation    

     tawjihi |    .0088431        .0062832     1.41           0.163         -.0036517      .0213378 

    english |  -.0054313        .0041457    -1.31           0.194         -.0136755      .0028129 

    budget |   -.000708         .0023362    -0.30           0.763          -.0053538      .0039378 

  absents |   .0177188         .0130896     1.35           0.179          -.0083113      .0437488 

       prog | 

           2  |    .3296563        .1673954     1.97            0.052          -.0032279     .6625405 

           3  |    .0942573        .1418953     0.66            0.508          -.1879171     .3764317 

     _cons |   2.319986        .4604657     5.04            0.000           1.404299      3.235672 

-------------+----------------------------------------------------------------------------------------- 

cumavrg       

     tawjihi |   .0164738       .0029322      5.62           0.000            .0106429      .0223048 
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    english |   .0021727      .0019347       1.12          0.265            -.0016746      .00602 

    budget |  -.0014283      .0010902      -1.31          0.194            -.0035964      .0007397 

  absents |   .0007444       .0061086       0.12          0.903            -.0114031     .0128919 

       prog | 

           2   |   -.048863        .0781189      -0.63         0.533             -.2042109     .106485 

             3  |  -.0378827       .0662187      -0.57        0.569            -.1695658       .0938004 

       _cons |  1.487113       .2148867        6.92        0.000             1.059787       1.914439 

-------------------------------------------------------------------------------------------------------- 

. test tawjihi 

 ( 1)  [self_concept]tawjihi = 0 

 ( 2)  [motivation]tawjihi = 0 

 ( 3)  [cumavrg]tawjihi = 0 

 F ( 3, 84) = 12.18, Prob > F =    0.0000 

. test english 

 ( 1)  [self_concept]english = 0 

 ( 2)  [motivation]english = 0 

 ( 3)  [cumavrg]english = 0 

 F ( 3, 84) = 1.33, Prob > F =    0.2717 

. test budget 

 ( 1)  [self_concept]budget = 0 
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 ( 2)  [motivation]budget = 0 

 ( 3)  [cumavrg]budget = 0 

 F ( 3, 84) = 1.84, Prob > F =    0.1458 

. test absents 

 ( 1)  [self_concept]absents = 0 

 ( 2)  [motivation]absents = 0 

 ( 3)  [cumavrg]absents = 0 

 F ( 3, 84) = 0.68, Prob > F =    0.5642 

Note that the three responses are controlled by one explanatory variable 

which is tawjihi average. And they are not affected by English score or 

budget or absents. 

  . test[cumavrg]2.prog [cumavrg]3.prog 

 ( 1)  [cumavrg]2.prog = 0 

 ( 2)  [cumavrg]3.prog = 0 

 F ( 2, 84) = 0.29,  Prob > F =    0.7457 

. test[self_concept]2.prog [self_concept]3.prog 

 ( 1)  [self_concept]2.prog = 0 

 ( 2)  [self_concept]3.prog = 0 
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 F ( 2, 84) = 0.84 Prob > F =    0.4360 

. test[motivation]2.prog [motivation]3.prog 

 ( 1)  [motivation]2.prog = 0 

 ( 2)  [motivation]3.prog = 0 

 F ( 2, 84) = 1.97, Prob > F =    0.1463 

Note that the cumulative average, self concept, and achievement motivation 

for a student from Alquds Open University do not depend on student‟s 

program (economics, engineering, or science).  

Conclusion 

This thesis addresses the multivariate multiple linear regression model, in 

which a set of dependent variables are controlled or affected by a set of 

independent variables. The method of least squares has been used for 

estimating the multivariate multiple  regression model. This method is one 

of the most commonly used prediction techniques. The main objective of 

this method is to find the m vectors of parameters which minimize the error 

sum of squares  

SSE = Σεi  = Σε
T
ε 

  where m represents the number of dependent variables. After estimating 

the regression model, multivariate analysis of variance (MANOVA) was 

used to test the usefulness of our estimated model. 
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The multivariate multiple regression model was applied to simulated data 

from different distributions, such as normal, logistic, and exponential 

distribution. Also, a case study was constructed to study the effect of some 

independent variables (tawjihi average, English score level exam, budget, 

and absents) on three response variables (self concept, achievement 

motivation, and the cumulative average) for university students from three 

collages or specializations; economics, engineering, and science. Data were 

collected from three universities in Palestine: An-Najah National 

University, Arab American University and Alquds University. The case 

study was divided into six sub-cases: 

Case 1: We studied the relationship among the explanatory and response 

variables regardless the study program of the student and the university he 

is studying in. And we found that the four predictors, tawjihi average, 

English score, budget, and absents affect the responses well.  

Case 2: We studied the relationship among the explanatory and response 

variables but here we were interested in the study program regardless the 

university. The results showed that the program affects the cumulative 

average but not too much, and it has no effect on self concept or 

achievement motivation for a student. The other four predictors had more 

effect and control the responses very well. 

Case 3: We studied the relationship among the explanatory and response 

variables but here we were interested in the university that the student is 

studying in regardless the study program. The results showed that the 
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university affect the cumulative average, but has no effect on his self 

concept or achievement motivation for students. 

Case 4: We studied the relationship among the explanatory and response 

variables for a sample from An-Najah National University students who 

study economics, engineering, and science. The results showed that only 

the tawjihi average controls the responses, the other predictors had no 

effect. Also, the cumulative average for a student from An-Najah 

University depends on the study program. But his/her self concept and 

achievement motivation was not related with the study program. 

Case 5: We studied the relationship among the explanatory and response 

variables for a sample from Arab American University students who study 

economics, engineering, and science. The results showed that the three 

responses were controlled by two predictors which were tawjihi average, 

and English score. And they were not affected by budget or absents. We 

found, also, that self concept, achievement motivation, and cumulative 

average for a student from The Arab American University were not 

affected by the study program.  

Case 6: We studied the relationship among the explanatory and response 

variables for a sample from Alquds University students who study 

economics, engineering, and science. The results showed that just the 

tawjihi average affect the response variables. And the English score, 

budget, and absents had no effect on the three responses. Also, we found 

that the cumulative average, self concept, and achievement motivation for a 

student from Alquds University do not depend on the study program.  
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Appendix I 

Simulated data from normal distribution 

We generate the variables y1,y2,y3,x1,x2,x3,and x4 for a sample of 20 

observation using the following command 

Variable= random('Normal',mean,st.deviation,20,1) 

x=[x1 x2 x3 x4] 

y= [y1 y2 y3] 

 

x=                                            y=     

83.6957   71.0379   78.0973   66.9688      -0.4140    0.4136    0.4759 

81.0677   70.3079   60.5619   67.7441      -0.4383   -0.5771    1.4122 

82.5666   68.0983   67.9601   72.2206       2.0034    0.1440    0.0226 

81.7019   76.1529   64.7135   67.7729       0.9510   -1.6387   -0.0479 

74.7411   68.6233   67.4555   66.4195      -0.4320   -0.7601    1.7013 

78.3344   75.4409   71.2714   68.3627       0.6489   -0.8188   -0.5097 

84.8988   78.1483   70.5522   69.3565      -0.3601    0.5197   -0.0029 

79.8257   74.9911   67.1571   71.6373       0.7059   -0.0142    0.9199 

82.3297   75.3724   73.1080   66.1895       1.4158   -1.1555    0.1498 

75.9740   73.4874   72.4896   71.2693      -1.6045   -0.0095    1.4049 

80.2581   69.0693   72.5895   70.312        1.0289   -0.6898    1.0341 

82.4012   74.8247   68.2975   75.2975       1.4580   -0.6667    0.2916 

74.5539   78.8433   74.1943   69.1473       0.0475    0.8641   -0.7777 

81.3904   81.9530   72.6428   69.4621       1.7463    0.1134    0.5667 

79.2726   73.2792   80.0351   65.3146       0.1554    0.3984   -1.3826 

76.2419   68.4907   74.2538   64.4589      -1.2371    0.8840    0.2445 
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79.8499   75.6654   74.6277   71.2420      -2.1935    0.1803    0.8084 

72.4148   76.5051   70.2119   69.0020      -0.3334    0.5509    0.2130 

71.4881   74.0922   64.8465   72.0150       0.7135    0.6830    0.8797 

75.2923   70.4044   68.5151   66.4294       0.3174    1.1706    2.0389 
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Appendix II 

Simulated data from logistic distribution 

We generate the variables y1,y2,y3,x1,x2,x3,and x4 for a sample of 20 

observation using the following command 

Variable= random('logistic',mean,st.deviation,20,1) 

x=[x1 x2 x3 x4] 

y= [y1 y2 y3] 

 

x=                                            y=   

84.3162   75.7953   74.1845   69.7516       4.4466    2.3400   -0.1762 

61.7533   74.7636   65.2750   63.1192       0.1603   -2.1534   -2.1788 

68.0895   83.3824   74.0797   75.1078       0.8805    1.0750    5.3748 

82.7951   80.5192   83.9875   61.2380       7.5838    1.0267   -0.6987 

81.6797   79.0670   77.4963   66.4971      -0.9059    0.2487   -0.8600 

80.4180   63.3330   60.5580   65.3315      -0.3453   -1.4882   -2.7158 

83.9726   64.8272   67.8099   70.4946      -0.1409    0.3939   -0.8557 

83.5283   65.6730   67.8574   60.8181       1.1745   -0.8476   -3.0240 

85.0948   80.5041   73.1079   68.4665       1.5042   -1.8650    0.0217 

76.3791   86.2247   71.5876   61.4220      -2.1948   -1.3093    1.1605 

83.2479   78.0836   75.2844   61.7295      -1.5292    2.1422    0.5368 

80.9106   67.4693   67.8308   75.1666      -0.5769   -2.5646   -2.3150 

78.3201   78.8321   64.6039   66.4489      -2.8115   -1.1391   -2.4307 

69.1053   66.6515   60.5799   71.6808       0.0876   -2.8681    1.2497 

85.0668   66.9344   74.8771   83.1993      -0.6818   -0.2342    2.2556 

77.3037   77.3139   64.5952   68.9131      -1.5460   -4.3079    0.1353 
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81.7534   72.1458   68.1817   73.2897      -1.3313    2.1664   -2.0994 

84.2100   77.5434   70.8314   74.5691       2.2558   -1.4073    1.5562 

71.4206   79.3759   65.1431   68.9157       0.7327   -2.2732   -0.6718 

72.3210   76.3435   72.3352   72.5732      -0.1263   -0.8125   -0.8762 
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Appendix III 

Simulated data from exponential distribution 

We generate the variables y1,y2,y3,x1,x2,x3,and x4 for a sample of 20 

observation using the following command 

Variable= random('exponential',mean,20,1) 

x=[x1 x2 x3 x4] 

y= [y1 y2 y3] 

 

x =                                         y =  

1.7840    6.5873   24.4613   51.6007        2.4080    1.2329    2.0113 

180.4220  114.8770   40.7676   95.1524      1.1365    0.1621    0.3983 

37.2888   58.6935   19.5216   69.7697       0.6706    0.0925    0.5604 

61.7514   20.2162    0.3170   28.8991       2.8034    0.4474    1.7733 

82.1781   226.7630    2.6805  124.1980      0.3206    1.3650    1.9129 

93.2705    3.8618   43.7754   89.4123       0.5860    2.4229    0.7422 

19.3243   18.8731    2.5759  113.2860       0.6361    0.1764    0.0964 

0.3357    40.7349  151.0180  114.4070      0.1864    0.5366    0.5939 

117.5260  118.5570  207.7020   78.2800      0.1523    0.0533    3.4131 

17.2896   48.8081   83.2706    8.9215       0.2370    2.7964    2.9213 

114.1470   46.0655   38.1078   52.6877      1.1462    0.5368    0.2168 

0.5369    0.4042   44.3142   63.4491        0.7936    1.2549    0.7955 

15.4224   10.9779    7.2813  120.3350       0.2847    0.1891    0.9606 

60.0241    2.6825   43.0617    2.2098       2.2085    1.6556    0.2362 

22.1388   27.1055   58.7562   62.8476       2.2096    0.8152    1.0098 

48.7512   63.5303   42.7882   11.8318       1.3098    0.9329    0.6305 
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14.8378    4.7062   23.7366   33.9923       0.6450    0.1905    0.3402 

72.1977   51.4531  286.5700   68.3580       0.0277    0.3903    0.1376 

182.9780  102.3340   15.5395    9.172       0.3419    1.5721    1.1126 

36.8168   64.7926  136.3840   16.9582       1.1652    1.1454    0.4306 
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  ب

(MANOVA)

Stata, SPSS, Minitab, 

Matlab, SAS . 
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