
An-Najah National University

Faculty of Graduated Studies

Decoding Turbo Codes with Linear

Programming

By

Hisham Hamed Abdel-Raouf Salahat

Supervisor

Dr. Mohammad Assa`d

Co supervisor

Dr. Mohammad Omran

This Thesis is Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Mathematics, Faculty of Graduate Studies,

An-Najah National University, Nablus, Palestine.

2013

III

Dedication

To my parents and sisters.

To the souls of the martyrs of Palestine.

IV

Acknowledgments

My first thanks go to my adviser Dr. Mohammad Assa`d. As I reflect on

the past two years, I see that his efforts have had the goal of training me not

only how to conjecture and prove, but also how to be a better colleague,

and mathematical citizen. He had inspired me to the idea and methods of

research and construction in order to reach the goals that we have set

together. I am certain that his example will be one that I turn to in the years

to come.

 Second, I would like to thank Dr. Mohammad Omran for his Supervision

of encouragement and guidance. He introduced me to the field of coding

theory.

Thanks to Dr. Mohammad Assa`d and Mohammad Omran, both had made

it easy and possible for me to accomplish this work successfully, with

yours supervision, evaluations and encouragement.

A special thank-you goes to all my friends at An-Najah National

University, who have been my second family during my time in

Mathematics Department.

Thanks to the members of the committee discussion: Dr. Dr. Loai Malhees,

Dr. Sameer Matar and Dr. Saed Mallak.

I give my final thanks to my parents. Although they may not understand the

finer points of my work, their support and encouragement were essential to

the completion of this dissertation. Thank you so much – I love you.

V

 الإقرار

 : العنوان تحمل التي الرسالة مقدم أدناه الموقع أنا

Decoding Turbo Codes with Linear

Programming

أقز بأى ها اشخولج عليَ ُذٍ الزسالت ئًوا ُي ًخاج جِذي الخاص, باسخثٌاء ها حن الإشارة ئليَ

حيثوا ّرد, ّأى ُذٍ الزسالت ككل, أّ أي جزء هٌِا لن يقذم لٌيل أي درجت أّ لقب علوي أّ

 حثي لذٓ أيت هإسست حعليويت أّ بحثيت أخزٓ. ب

Declaration

The work provided in this thesis, unless otherwise referenced, is the

researcher's own work, and has not been submitted elsewhere for any

other degree or qualification.

Student's Name: :اسن الطالب

Signature :التوقيع

Date: :التاريخ

VI

List of Content

No subject page

 Dedication III

 Acknowledgments IV

 Declaration V

 List of Contents VI

 List of Figures VIII

 List of Tables IX

 Abstract X

 Preface 1

1 Coding Theory Background 5

1.1 Introduction 5

1.2 Components of an Error-Correcting Code 6

1.3 Channels 10

1.3.1 Channels Decoding Methods 10

1.3.2 Channels Types 11

1.4 Examples of Block codes 12

1.5 Non "linear Block Codes" 17

1.5.1 Convolutional Codes 17

1.5.2 Turbo Codes: Encoding with Interleaving 21

1.5.3 Concatenated Code 26

1.5.4 Block Turbo Code 27

1.6 System of Model Decoding 28

1.6.1 Basic System Model 28

1.6.2 Decoding conventions 28

1.6.3 Maximum likelihood decoding (MLD) 29

2 Decoding Block Turbo Codes (BTC) 30

2.1 Likelihood Functions 30

2.1.1 The Two Signal Class Case 31

2.1.2 Log-Likelihood Ratio 33

2.1.3 Principles of Iterative (Turbo) Decoding 35

2.2 Log-Likelihood Algebra 37

2.2.1 Single Parity Check Product Code (Example) 38

2.2.2 Iterative Decoding Algorithm for Product Codes 39

2.2.3 Two-Dimensional Single-Parity Code Example 40

2.2.4 Extrinsic Likelihoods 43

2.2.5 Computing the Extrinsic Likelihoods 44

2.3 Modification 49

2.4 Encoding with Recursive Systematic Codes(RSC) 51

 Example: Recursive Encoders and Their Trellis Diagrams 54

2.4.2 Concatenation of RSC Codes 58

2.5 A Feedback Decoder 61

VII

2.5.1 Decoding with a Feedback Loop 64

3
Linear Programming (LP) Decoding of Low Density

Parity Check Codes (LDPC)
66

3.1 Introduction 66

3.2 Maximum Likelihood Decoding for LP 68

3.3 Linear Programming Formulation 69

3.3.1 Problem Formulation 69

3.4 Alternative Formulation 73

3.4.1 Exemplification of the Alternative Formulation 74

3.4.2 The Alternative Formulation in General 75

3.4.3 Special Properties for a Degree 3 Check Equation 79

3.5 Multiple Optima in the BSC 80

4 The Method of LP Decoding 83

4.1 Linear Programming Relaxation 83

4.2 An LP Relaxation of ML Decoding 84

4.3 The LP Relaxation as a Decoder 86

4.3.1 Noise as a perturbation of the LP objective 88

4.4 Success Conditions for LP Decoding 90

4.5 Vertices, Codewords and Pseudocodewords 90

4.6 The Fractional Distance 91

5 LP Decoding of Turbo Codes 95

5.1 Trellis-Based Codes 95

5.1.1 Finite State Machine Codes and the Trellis 95

5.1.2 Decoding Trellis-Based Codes 99

5.1.3 Convolutional Codes 99

5.2 LP Formulation of Trellis Decoding 102

5.3 A Linear Program for Turbo Codes 104

5.3.1 Turbo-Code Linear Program (TLCP) 106

6 Conclusions and Future Work 109

 References 112

Appendix A : Matlab program for Additive White Gaussian

Noise channel
116

Appendix B: Matlab program for a channel using Logistic

Distribution with variance one
118

 ب الملخص

VIII

List of Figures

No Subject page

Figure (1) The high-level model of an error-correcting code 8

Figure (2) The BSC with cross over probability 11

Figure (3) The BEC with erasure probability 11

Figure (4) The normalized BI-AWGNC 12

Figure (5)
A binary nonsystematic feedforward convolutional

encoder
18

Figure (6) A systematic encoder 21

Figure (7) A rate=2/3 encoder 21

Figure (8) The generic turbo encoder 23

Figure (9) Interleaver designs 24

Figure (10) Principle of Concatenated codes 26

Figure (11) Construction of product code P = 27

Figure (12) Likelihood function 32

Figure (13) soft input/soft output decoder (for a systematic code) 37

Figure (14) Product code 39

Figure (15) Product code example 43

Figure (16) Nonsystematic convolutional (NSC) code 53

Figure17(a) Recursive systematic convolutional (RSC) code 53

Figure17(b) Trellis structure for the RSC code in Figure 17(a) 54

Figure (18) Parallel concatenation of two RSC codes 60

Figure (19) Feedback decoder 63

Figure (20) the 4 half-spaces defining the tetrahedron 75

Figure (21) Half-space 2 (hs2) with the normal n 76

Figure (22) overview of multiple optima and MOSEK solution 82

Figure (22) A decoding polytope and the convex hull 86

Figure (23) A state machine code with a rate-1/2 96

Figure (24) A trellis for the rate-1/2 FSM code in figure (23) 97

Figure (25)
The actions of a convolutional encoder for a rate-1/2

convolutional code
101

Figure (26) A circuit diagram for a classic rate-1/3 Turbo code 104

IX

List of Tables

No Tables Page

Table 1 Validation of the figure 17(b) Trellis Section 56

Table 2 Encoding a Bit Sequence with the Figure 17 (a) Encoder 58

X

Decoding Turbo Codes with Linear Programming

By

Hisham Hamed Abdel-Raouf Salahat

Supervisor

Dr. Mohammad Assa`d

Co supervisor

Dr. Mohammad Omran

Abstract

In this thesis we investigate the application of Linear Programming LP

relaxation to the problem of decoding an error-correcting code. LP

relaxation is a standard technique in approximation algorithms and

operation research, and it is used to find good suboptimal solution to very

difficult optimization problems.

The method of a posteriori probability and iterative decoding algorithm is

used to decode product codes (a special type of turbo codes). We

investigate a program using Matlab to make computations to our algorithm.

The logistic distribution with variance one is used. We compare the results

of our computations to those of other authors; we find that our results are

the best all over the others.

The LP method has its place in the generic turbo code, which is made up of

asset of simpler" trellis-based" codes, we formulate the LP for a single

trellis-based code as a min-cost flow problem, using the trellis as a directed

flow. We extend this formulation to any turbo codes by applying

constraints between the LP variables used in each component code.

One of the most advantages for LP decoding is that whenever the decoder

output a result it is guaranteed to be the optimal solution, the most likely

(ML) information sent over the channel, we refer to this property as the ML

certificate property.

1

Preface

History of Coding Theory

Coding theory originated with the arrival of computers. Early

computers were based on large banks of mechanical relays and their

reliability was very low compared to the computers of today. If a

single relay failed to work the entire calculation was in error. The

engineers of that time developed ways to detect faulty relays so that

they could be replaced. While working for Bell Labs, R.W.

Hamming [25] had the idea that if the machine was capable of

knowing there was an error, maybe it is also possible for the

machine to correct that error. Based on this concept, he developed a

way of encoding information so that if an error was detected, it

could also be corrected. Based in part on this work, Claude Elwood

Shannon developed the theoretical framework for the science of

coding theory [13].

Shannon is considered as the founding father of electronic

communications age. Shannon joined Bell Telephone Laboratories

as a research mathematician in 1941 and has spent many years

teaching at MIT. Shannon's most famous paper was the theory of

communication which established the basis of the today’s

communications [5]. Shannon's creation in the 1940's of the

information theory is considered one of the great intellectual

achievements of the twentieth century. As a mathematician, whose

work pioneered digital communication and artificial intelligence

2

and was influential in cryptography and probability, he was one of

the most important people of the 20
th

 century.

The other vital figure in the history of coding theory was Richard

Hamming, who set the basis of error correcting codes. After the end of

World War II, Hamming joined the Bell Telephone Laboratories in 1946,

where he was able to work with Shannon. Hamming is best known for his

work on error- detecting and error- correcting codes. Hamming codes are

of fundamental significance in coding theory.

Early days of Error Correcting Codes

When transmitting a message along a channel (such as a telephone

line) in which errors occur randomly, we need to transmit more bits

than there are in the original message in order to be able to detect

and correct errors which occur in the transmission. One of the

simplest methods for detecting errors in binary message (a message

consisting only of 0’s and 1’s) is the parity code which transmits an

extra "parity" bit after every 7 bits from the source message.

However, this method can only detect errors and the only way to

correct them is to ask for the data to be transmitted again, and also

it can detect only up to one error.

A simple way to correct as well as detect errors is to repeat each bit

several times. The decoder checks which value occurs more often

and assumes it as the intended value. Each block of repeated

symbols is called a codeword, i.e., a codeword is what is

transmitted in place of one piece of information in the original

3

message. The set of all codewords is called a Code. If all the

codewords in a code have the same length, then the code is called a

Block Code. The repeat code is a block code. For example in

transmitting the message: 01001100 over a noisy channel, using 5

repetitions for each bit the transmitted message would be: (00000

11111 00000 00000 11111 11111 00000 00000 00000 is a

Codeword). Even if the message is altered in the transmission and

the decoder receives the following message: 00100 11101 10000

00000 10011 01111 00000 011000, through a process of majority

decoding the original message could be recovered. In the case of

more than 2 errors per 5 consecutive bits the information would be

decoded incorrectly (1 encoded and transmitted as 11111 and

received as 00101 would be decoded as 0). The repeat code with

codewords having length 5 can always detect from 1 to 4 errors

made in the transmission of a codeword, and it can correct up to 2,

and therefore it is called 2-error correcting and 4-error detecting

code. If the received codeword is 11110 and 1 is sent then we have

1 error, it is detecting and correcting to 11111 which is the sent

codeword but if 11110 is received and 0 is sent then it is detecting

but not correcting.

Remark: It can be seen that if the number of repetitions is

increased so is the number of errors capable of being detected and

corrected. But there is a heavy price paid for this, and that is the

efficiency of the transmission. The increased the length of the

4

transmitted code, the more time and energy is required to transmit

it and to decode the message correctly. The efficiency of a coding

procedure depends upon the coding scheme used in encoding and

decoding and this is where advanced coding algorithms play an

essential role. The disadvantage of the repetition scheme is that it

multiplies the number of bits transmitted by a factor which is

unacceptably high.

In 1948, Shannon, working at Bell Laboratories, showed that it was

possible to encode messages in such a way that the number of extra

bits transmitted was as small as possible using explicit error-

correcting codes with information transmission rates more efficient

than simple repetition.

5

Chapter One

Coding Theory Background

1.1 Introduction:

Coding theory is the branch of mathematics concerned with accurate and

efficient transfer of data across noisy channels as well as the recovery of

the message sent. A transmission channel is the physical medium through

which the information is transmitted, such as telephone lines, or

atmosphere in the case of wireless communication. Undesirable

disturbances (noise) can occur across the communication channel, causing

the received information to be different from the original information sent.

Coding theory deals with detection and correction of the transmission

errors caused by the noise in the channel. The primary goal of coding

theory is efficient encoding of information, easy transmission of encoded

messages, fast decoding of received information and correction of errors

introduced in the channel. Coding Theory is used all the time: in reading

CDs, receiving transmissions from satellites, or in cell phones. Coding

theory should not be confused with cryptography, which is the art of

encrypting messages (making them secure and thus hard to read for the

unintended listeners).

The purpose of the transmission environment is communication, transfer of

information from one place to another (phone conversation, data transfer

over the internet, radio transmission, wireless data transfer etc.).

6

1.2 Components of an Error-Correcting Code

Error-correcting codes are the basic tools used to transmit digital

information over an unreliable communication channel. The channel can

take on a variety of different forms. For example, if you are sending voice

information over a cellular phone, the channel is the air; this channel is

unreliable because the transmission path varies, and there is interference

from other users.

A common abstraction of channel noise works as follows. We first assume

that the information is a block of k bits (a block of k 0s and 1s). When the

sending party transmits the bits over the channel, some of the bits are

flipped; some of the 0s are turned into 1s, and vice-versa. The receiving

party must then try to recover the original information from this corrupt

block of bits.

In order to counter the effect of the "noise" in the channel, we send more

information. For example, we can use a repetition code: for each bit we

want to send, we send it many times, say five times. This longer block of

bits we send is referred to as the codeword. The receiving party then uses

the following process to recover the original information: for every group

of five bits received, if there are more 0s than 1s, assume a 0 was

transmitted, otherwise assume a 1 is transmitted. Using this scheme, as

long as no more than two out of every group of five bits are flipped, the

original information is recovered.

7

Below we list the components of an Error-Correcting Code to familiarize

the reader with the terminology used throughout this thesis, and in all

coding theory references.

 The information word is a block of symbols that the sending party

wishes to transmit. This information could be a sound, a picture of

Mars, or some data on a disk. For our purposes, the information

word x is simply an arbitrary binary word of k bits.

There are some error-correcting codes built on information streams

of arbitrary (infinite) length, but we will restrict ourselves to block

codes in this thesis (codes defined for some finite length n). With a

block code, in order to send more than k bits of information, multiple

blocks are transmitted. It is assumed that each block is independent

with respect to information content, and the effect of noise;

therefore, we concentrate on sending a single block over the channel.

We also note that some codes use non-binary alphabets; i.e., the

symbols of the information word are not just bits, but are symbols

from a larger alphabet. We restrict ourselves to binary codes in this

thesis; those built on the alphabet .

8

Figure (1): The high-level model of an error-correcting code. An information word x of

length k is encoded into a longer code word y = enc(x) of length n > k. This code word y

is sent over a noisy channel, and a corrupt word ̃ is received at the other end. This

corrupt word is then decoded to a word x' = dec(̃), which hopefully is equal to the

original information x.

 The encoder is the process the sending party uses to build

redundancy into the information word. The encoder is simply a

function enc: that given an information word,

outputs a longer binary word y of length n > k. In our repetition code

example, the encoder is the function that repeats every bit five times,

and so n = 5k. For example, if x = 101, then our encoder would

output y = enc(101) = 111110000011111.

 The codeword is the binary word output by the encoder. This is the

word that is transmitted over the channel.

 The code C is the set of codewords that could possibly be

transmitted, i.e., they are the binary words that are encodings of

some information word. Formally, C ={y: y= enc(x), x . In

our repetition code example, the code is exactly the set of binary

9

words of length n where the first five bits are the same, and the next

five bits are the same, etc.

 The (block) length of the code is equal to n, the length of the

codewords output by the encoder. The parameter k, the length of the

information word, is often referred to as the dimension of the code.

This term is used for linear codes, when the code is a vector space.

 The rate r of the code is the ratio between the dimension and the

length. More precisely, r = k/n. The rate of our example code is 1/5.

It is desirable to have a high rate, since then information can be

transmitted more efficiently. One of the main goals in the study of

error-correcting codes is to transmit reliably using a code of high rate

(close to 1).

 The channel is the model of the communication medium over which

the transmissions sent. We have already described a channel that

flips bits of the codeword arbitrarily. Another common model is

called the binary symmetric channel (BSC), where each bit is flipped

independently with some fixed crossover probability p. There are

many other models, some of which we will discuss in later parts of

this chapter.

 The received word ̃ is the output of the channel, the corrupted form

of the codeword y. Each symbol ̃ of the received word is drawn

from some alphabet . In the BSC, = {0, 1}. In the additive white

Gaussian noise(AWGN) channel (the details of which we review in

11

Section 1.3.2), each symbol of the received word is a real number, so

 = R.

 The decoder is the algorithm that receiving party uses to recover the

original information from the received word ̃. In the repetition code

example, the decoder is the following algorithm:

1. Examine every five bits of the codeword.

2. For each set of five bits, if there are more 0s than 1s, output a 0,

otherwise output a 1. We can think of the decoder as a function:

dec:

Which takes as input the corrupt code word ̃ and outputs a decoded

information word x'.

Usually the difficulty of the decoding process is not in translating

from codewords back into information words, but rather in finding a

codeword that was likely sent, given the received word ̃. In most

codes used in practice, and in all the codes of this thesis, given a

codeword y C, finding the information word x such that enc(x) = y

is straightforward. Thus, in the discussion we will simply talk about

a decoder finding a codeword, rather than an information word.

1.3 Channels

1.3.1 Channels Decoding Methods

The task of channel coding is to encode the information sent over a

communication channel in such a way that in the presence of channel noise,

errors can be detected and/or corrected. We distinguish between two coding

methods:

11

Method 1: Backward Error Correction (BEC)

This method requires only error detection: if an error is detected, the sender

is requested to retransmit the message. While this method is simple and sets

lower requirements on the code’s error-correcting properties, it on the other

hand requires duplex communication and causes undesirable delays in

transmission.

Method 2: Forward Error Correction (FEC)

This method requires that the decoder should also be capable of correcting

a certain number of errors, i.e. it should be capable of locating the positions

where the errors occurred. Since FEC codes require only simplex

communication, they are especially attractive in wireless communication

systems, helping to improve the energy efficiency of the system.

1.3.2 Channels Types

We consider the following three channels, the Binary Symmetric Channel

(BSC), the Binary Erasure Channel (BEC) and the Binary Input Additive

White Gaussian Noise Channel (BI-AWGNC).

 Figure (2): The BSC with cross over Figure (3): The BEC with erasure

 probability . probability .

12

For the BSC in Figure (2) some input values are with probability flipped

at the output, Y {0, 1}. In the BEC Figure (3) the input values can be

erased () with probability , mapping X into Y {0, 1}.

For the (normalized) BI-AWGNC in Figure (4), the input X is mapped into

 {0, 1} which is added with Gaussian white noise, resulting in the

output Y = +W, where W (0, /2). The conditional distribution

of Y is

Pr(Y| Pr W(Y -

√
 exp (

) (1)

Figure (4): The normalized BI-AWGNC.

Definition 1.1: if the length of the output codewords is finite and

stay the same for all codewords "say n" then the code is called a

Block Code.

1.4 Examples of Block codes

 1-Linear Block Codes

Some of the most important error correcting codes are the linear

codes

Definition 1.2: A binary block code is said to be linear provided

that the sum of arbitrary two codewords is a codeword.

Linear block codes form a vector space. A vector space is a

collection of vectors, here codewords, which is closed under vector

13

addition and scalar multiplication, in other words contains all the

possible linear combinations of its codewords.

Definition 1.3: If the vector space of all codewords is n

dimensional and the subspace formed by the codewords of a code is

k dimensional then the code is described as an (n, k)-linear code.

 The dimension of a vector space is given by the number of vectors

in the basis of the vector space; a basis for a vector space or

subspace is a minimum collection of linearly independent vectors

which generate the entire vector space; linearly independent vectors

are vectors such that none of them can be expressed as a linear

combination of the others).

There are two ways of describing a linear code C.

1- Using a generator matrix G which has as its rows a set of basis

vectors of the linear subspace C. For every linear code there is an

equivalent code which has a generator matrix of the form G = [P],

where is the k by k identity matrix and P is a k by n-k matrix.

2- Description of a linear code C consists in specifying not vectors in C

but rather the vectors orthogonal to C (orthogonal vectors are vectors

whose inner or dot product is 0). The orthogonal complement of C is

a subspace and in fact is another code called the dual code of C

denoted by C
┴
.

Definition 1.4: If P is a generator matrix for C
┴
 then P is called a parity

check matrix for C. In general the rows of the parity check matrix for a

code C are orthogonal to all codewords of C and any matrix P is a parity

14

check matrix if the rows of P generate the dual code of C. Therefore, a code

C is defined by such a parity check matrix in the following way:

C = { x | x.P
T
 = 0 }.

The parity check matrix can be obtained from the null space of the

generator matrix and the generator matrix can be obtained by

finding the null space of the parity check matrix, (the null space of a

matrix is the collection of all the orthogonal vectors to the vector

space generated by the rows of the matrix, also known as the row

space)

2-Hamming Codes

Discovered by Richard Hamming in 1950, the Hamming codes are

the most famous of all error-correcting codes. Hamming code is an

error-detecting and error-correcting code. We restrict to binary

Hamming codes in this discussion, which is used in data

transmission, and can detect all single-bit and double-bit errors and

correct all single-bit errors. For a linear (n, k)-code C, the parity-

check matrix for C is the generator matrix P of the dual code C
┴
.

Furthermore, we can use P to determine the codewords of C by all c

such that Pc
t
 = 0.

A Hamming codeword is generated by multiplying the data bits by

a generator matrix G using mod 2 arithmetic (in mod 2 arithmetic

0+0=0, 0+1=1, 1+0=1, 1+1=0, 0*0=0, 0*1=0, 1*0=0, and 1*1=1).

The result of this multiplication is called the codeword vector [c1 c2

15

c3cn], consisting of the original data bits and the additional bits

used for error correcting. The generator matrix G used in

constructing Hamming codes can be written as I (the identity

matrix) and a parity generation matrix A:

An example of Hamming (7, 4) code generator matrix:

 G = [

]

If a 4-bit message vector (d1 d2 d3 d4) is multiplied by G, the result

is a 7-bit codeword of the form (d1 d2 d3 d4 p1 p2 p3). It can be seen

that each codeword contains the original message and three

additional check bits, which are a linear combination of the

message bits based on the columns of A. Validating the received

codeword r, involves multiplying it by a parity check matrix P, to

form s, the parity check vector.

P = []

We can either multiply r * P
T
, or equivalent P * r

T
. We choose to do

the latter, for instance if r = (1 0 0 1 0 0 1) then s = P * r
T
 =

16

s =[

] *

[

]

 = [

]

If all elements of s are zero, the codeword assumed to be received

correctly. If s contains non-zero elements, the bit in error can be

determined by analyzing which check bits have failed, as long as

the error involves only a single bit. For instance if r=[1011001], s

computes to [101]
T
, which matches the third column in P that

corresponds to the third bit of r - the bit in error.

Using the Hamming (7, 4) code we can detect up to two errors and

correct up to one error, with only three additional bits for every four

bits of data.

3-Cyclic Codes

One of the most important classes of linear codes is the class of

cyclic codes. In general these codes are much easier to implement

and have great practical value. Cyclic codes have the property that

there exists a generator of the entire code. There are two approaches

to describe such codes. A code, as mentioned above, is cyclic if

whenever [c1 c2 …cn] is in the code, so is the shift [cn c1 …cn-1]. A

more indirect way is to use polynomials, which we will illustrate

briefly. If C is an ideal in Rn (ring Rn being a principal ideal

domain, Rn= Fq[x] / <x
n
 – 1>), then there is a monic polynomial

g(x) of minimal degree in C, such that g(x) generates C, C=<g(x)>.

17

Such code C is called cyclic code and g(x) is called the generator

polynomial.

4-BCH Codes

Discovered independently by R.C.Bose, D.K. Ray-Chaudhuri in

1960 and by A. Hocquenghem in 1959, BCH codes are one of the

most important classes of cyclic codes, with good error correcting

capabilities and a relatively fast and easy encoding and decoding

procedure. BCH codes are a generalization of Hamming codes, but

a lot more efficient since the designed distance of the BCH codes

can be d=2 or greater, which allows correcting up to two errors. A

kind of BCH code is used in reading CDs. BCH codes are best

explained using polynomials, as in the case of cyclic codes.

In this section we define a Block Code and give some examples, in the

following section we will introduce two types of code which is not a Block

Code.

1.5 Non "linear Block Codes"

1.5.1 Convolutional Codes

One important difference between convolutional codes and block codes is

that the encoder contains memory. Encoders of convolutional codes can

also be divided into two categories, namely feedforward and feedbackward.

In both of these categories the encoder can be systematic or nonsystematic.

Definition 1.5: systematic encoder is an encoder in which one of the

outputs is equal to the input.

18

Definition 1.6: nonsystematic encoder is an encoder in which no one of

the outputs is equal to the input values.

Figure (5) : A binary nonsystematic feedforward convolutional encoder

Figure (5) shows how a simple convolutional encoder with rate R = 1/2

might work. The figure can be viewed as a shift register with u as input,

and and as output. The information sequence u = (u0, u1, u2, . . .)

enters an encoder, one bit at the time. From the figure the reader can see

that the encoder holds memory. This encoder actually contains memory of

order m = 3, which is shown by the boxes in the figure. The circle with a

plus inside XORs the bits from the boxes. It is often easier to represent the

encoder figure as generator sequences instead. From the figure the

generator sequences, and , will be:

 and are prescribed by the connections shown in figure(5).

(We have lines join after u and now it is clear that it

corresponds to similarly see).

Computing the outputs, and is done by performing discrete

19

convolution, denoted as defined below. All the operations are modulo-2.

The two output sequences will then be denoted by the following encoding

equations:

Now, Let us consider a finite case, say u = (…), =(…)

and v =(…), where k is the length of the message, m is the

number of the memories the encoder contains.

Then discrete convolution can be written as a sum of products, it is defined

as follows, for all l we have:

 = ∑

 =

 +
 + … +

 , j=0 , 1

Example: Let us pick a random message, namely u = (1 0 1 0 1). Thus

encoding this message can be expressed as follows:

 = (1 0 1 0 1) (1 0 1 1) = (1 0 0 1 0 1 1 1), (6)

 = (1 0 1 0 1) (1 1 0 1) = (1 1 1 0 1 0 0 1), (7)

One can verify this easily for example in we have:

 =

 +
 +

 +

 = 1.1 + 0.0 + 1.1 = 0

The transmitted coded signal is then the concatenated of

defined by v = (

 ,

 , … ,

)

 So v = (1 1, 0 1, 0 1, 1 0, 0 1, 1 0, 1 0, 1 1). (8)

21

The matrix form:

It is sometimes convenient to represent the two generator sequences by a

matrix. This matrix, denoted G, is constructed by interlacing the generator

sequences, in this case and Every interleaved row in G will be

exactly the same as the first row of G, the only difference being a shift of

length l, where l is the number of generator sequences. So in this example

each shift will be 2. The number of rows of G will be the same as the

length of the information sequence u.

G =

[

]

The codeword can now be defined as a matrix-vector multiplication,

v = uG =(1 0 1 0 1)

[

]

 = (1 1, 0 1, 0 1, 1 0, 0 1, 1 0, 1 0, 1 1)

which is exactly the same as found in (8).

The general form of the matrix G when the encoder has m memories and k

generator sequences is: G=

[

]

Convolutional encoders can be constructed in many different ways. The

previous example was a code with rate R = 1/2. Other encoders with rate

2/3 might have for instance two input sequences and three output

sequences.

21

Figure (6) :A systematic encoder

Figure (7) : A rate=2/3 encoder

The encoder in figure (6) is systematic since one of its outputs is equal to

the input i.e. u(t). The rate R of this code is 1/2, its memory M =3.

For every k = 2 binary input symbols the encoder in figure (7) produces n =

3 binary output symbols. Therefore its rate R = k/n = 2/3. The memory M

of this encoder is 1 since only u1(t-1) and u2(t-1) are used to produce ,

 and , in addition to u1(t) and u2(t).

1.5.2 Turbo Codes: Encoding with Interleaving

The first turbo code, based on convolutional encoding, was introduced in

1993 by Berrou. Since then, several schemes have been proposed and the

term―turbo codes‖ has been generalized to cover block codes as well as

convolutional codes. Simply put,

22

Definition 1.7: a Turbo Code is formed from the parallel concatenation

of two codes separated by an interleaver.

The generic design of a turbo code is depicted in Figure (8). Although the

general concept allows for free choice of the encoders and the interleaver,

most designs follow the ideas presented in [26].

• The two encoders used are normally identical;

• The code is in a systematic form, i.e. the input bits also occur in the

output (see Figure (8)).

• The interleaver reads the bits in a pseudo-random order.

The choice of the interleaver is a crucial part in the turbo code design. The

task of the interleaver is to ―scramble‖ bits in a (pseudo-)random, albeit

predetermined fashion. This serves two purposes. Firstly, if the input to the

second encoder is interleaved, its output is usually quite different from the

output of the first encoder. This means that even if one of the output code

words has low weight, the other usually does not, and there is a smaller

chance of producing an output with very low weight. Higher weight, as we

saw above, is beneficial for the performance of the decoder. Secondly,

since the code is a parallel concatenation of two codes, the divide-and-

conquer strategy can be employed for decoding. If the input to the second

decoder is scrambled, also its output will be different, or ―uncorrelated‖

from the output of the first encoder. This means that the corresponding two

decoders will gain more from information exchange.

23

Figure (8) : The generic turbo encoder

We now briefly review some interleaver design ideas, stressing that the list

is by no means complete. The first three designs are illustrated in Figure (9)

with a sample input size of 15 bits.

1. A “row-column” interleaver: data is written row-wise and read

column wise. While very simple, it also provides little randomness.

2. A “helical” interleaver: data is written row-wise and read

diagonally.

3. An “odd-even” interleaver: first, the bits are left uninterleaved and

encoded, but only the odd-positioned coded bits are stored. Then,

the bits are scrambled and encoded, but now only the even-

positioned coded bits are restored. Odd-even encoders can be used,

when the second encoder produces one output bit per one input bit.

4. A pseudo-random interleaver defined by a pseudo-random number

generator or a look-up table.

24

Figure (9): Interleaver designs

There is no such thing as a universally best interleaver. For short block

sizes, the odd-even interleaver has been found to outperform the pseudo-

random interleaver, and vice versa. The choice of the interleaver has a key

part in the success of the code and the best choice is dependent on the code

design. For further reading, several articles on interleaver design can be

found for example at [26].

Some Notes on Decoding

In the traditional decoding approach, the demodulator makes a ―hard‖

decision of the received symbol, and passes to the error control decoder a

discrete value, either a 0 or a 1. The disadvantage of this approach is that

25

while the value of some bits is determined with greater certainty than that

of others, the decoder cannot make use of this information.

A soft-in-soft-out (SISO) decoder receives as input a ―soft‖ (i.e. real) value

of the signal. The decoder then outputs for each data bit an estimate

expressing the probability that the transmitted data bit was equal to one. In

the case of turbo codes, there are two decoders for outputs from both

encoders. Both decoders provide estimates of the same set of data bits,

albeit in a different order. If all intermediate values in the decoding process

are soft values, the decoders can gain greatly from exchanging information,

after appropriate reordering of values. Information exchange can be iterated

a number of times to enhance performance. At each round, decoders re-

evaluate their estimates, using information from the other decoder, and

only in the final stage will hard decisions be made, i.e. each bit is assigned

the value 1 or 0. Such decoders, although more difficult to implement, are

essential in the design of turbo codes.

Turbo codes can be achieved by serial or parallel concatenation of two (or

more) codes called the constituent codes. The constituent codes can be

either block codes or convolutional codes. Currently, most of the work on

turbo codes has essentially focused on convolutional Turbo Code (CTC)'s

and Block Turbo Code (BTC)'s have been partially neglected.

Remark 1.1:

1. BTC resulted from the combination of three ideas that were known

to all in the coding community.

26

2. The utilization of block codes instead of commonly used

nonsystematic or systematic convolutional codes.

3. The utilization of soft input soft output decoding instead of using

hard decisions, the decoder uses the probabilities of the received

data to generate soft output which also contain information about

the degree of certainty of the output bits.

4. Encoders and decoders working on permuted versions of the same

information. This is achieved by using an interleaver.

1.5.3 Concatenated Codes

The power of Forward Error Correction codes can be enhanced by using

the concatenated codes, which are shown in Figure (10). Concatenated

codes were first introduced by Elias in 1954 [3]. The principle is to feed the

output of one encoder (called the outer encoder) to the input of another

encoder, and so on, as required. The final encoder before the channel is

known as the inner encoder. The resulting composite code is clearly much

more complex than any of the individual codes. However it can readily be

decoded: we simply apply each of the component decoders in turn, from

the inner to the outer.

Figure (10): Principle of Concatenated codes

27

1.5.4 Block Turbo Code

Block Turbo Codes (or product codes) are serially concatenated codes [4]

which were introduced by Elias in 1954 [3]. The concept of product codes

is very simple and relatively efficient for building very long block codes by

using two or more short block codes. Let us consider two systematic linear

block codes with parameters (, ,) and with parameters (,

 ,), where , and stand for codeword length, number of

information bits, and Minimum Hamming Distance, respectively. The

product code is obtained (as shown in Figure (11)) by:

1. Placing () information bits in an array of rows and

columns;

2. Coding the rows using code ;

3. Coding the columns using code .

Figure (11): Construction of product code P =

The parameters of the product code P are n = x , k = x ,

 x and the code rate R is given by R = x , where is the

code rate of code . Thus, we can build very long block codes with

large minimum Hamming distance by combining short codes with small

minimum Hamming distance. Given the procedure used to construct the

product code, it is clear that the (last columns of the matrix are

28

codewords of . By using the matrix generator [13], one can show that the

(last rows of matrix P are codewords of .

Hence, all of the rows of matrix P are codewords of and all of the

columns of matrix P are codewords of .

1.6 System of Model Decoding

Now we consider the system model and different channel models

that are used throughout this thesis. Moreover, we introduce

commonly used assumptions and definitions that will be used in our

work.

1.6.1 Basic System Model

One may be given the message x
 , then ideal observer

decoding generates the codeword y .The process results in this

solution:

P(y sent | x received)

For example, a person can choose the codeword y that is most likely

to be received as the message x after transmission.

1.6.2 Decoding conventions

Each codeword does not have an expected possibility: there may be more

than one codeword with an equal likelihood of mutating into the received

message. In such a case, the sender and receiver(s) must agree ahead of

time on a decoding convention. Popular conventions include:

1. Request that the codeword be resent – automatic repeat-request.

2. Choose any random codeword from the set of most likely codewords

which is nearer to that.

29

1.6.3 Maximum likelihood decoding (MLD)

Given a received codeword x
 maximum likelihood decoding

picks a codeword y to maximize:

P(x received | y sent)

i.e. choose the codeword y that maximizes the probability that x was

received, given that y was sent. Note that if all codewords are

equally likely to be sent then this scheme is equivalent to ideal

observer decoding. In fact, by Bayes Theorem we have:

P(x received | y sent) =

 = | .

Upon fixing , x is restructured and is

constant as all codewords are equally likely to be sent. Therefore

P(x received | y sent) is maximized as a function of the variable y

precisely when | is maximized, and the claim

follows.

As with ideal observer decoding, a convention must be agreed to

for non-unique decoding.

The ML decoding problem can also be modeled as an integer

programming problem.

http://en.wikipedia.org/wiki/Integer_programming
http://en.wikipedia.org/wiki/Integer_programming

31

Chapter 2

Decoding Block Turbo Codes (BTC)

2.1 Likelihood Functions

Most of the different iterative decoding algorithms used on turbo

codes uses log-likelihood algebra in the decoding process. This is a

brief introduction on the subject required.

The mathematical foundations of hypothesis testing rest on Bayes’

theorem. For communications engineering, where applications

involving an AWGN channel are of great interest, the most useful

form of Bayes’ theorem expresses the a posteriori probability

(APP) of a decision in terms of a continuous-valued random

variable x in the following form:

P(d = i | x) =
 |

 , i = 1, … , M (1)

and

P(x) = ∑ |
 (2)

Where P(d = i | x) is the APP, and d = i represents data d belonging

to the ith signal class from a set of M classes. Further, p(x | d = i)

represents the probability density function (pdf) of a received

continuous-valued data-plus-noise signal x, conditioned on the

signal class d = i. Also, P(d = i), called the a priori probability, is

the probability of occurrence of the ith signal class. Typically x is

an ―observable‖ random variable or a test statistic that is obtained at

the output of a demodulator or some other signal processor.

31

Therefore, p(x) is the pdf of the received signal x, yielding the test

statistic over the entire space of signal classes. In Equation (1), for a

particular observation, p(x) is a scaling factor, since it is obtained

by averaging over all the classes in the space. Lowercase p is used

to designate the pdf of a continuous-valued random variable, and

uppercase P is used to designate probability (a priori and APP).

Determining the APP of a received signal from Equation (1) can be

thought of as the result of an experiment. Before the experiment,

there generally exists (or one can estimate) an a priori probability

P(d = i). The experiment consists of using Equation (1) for

computing the APP, P(d = i | x), which can be thought of as a

―refinement‖ of the prior knowledge about the data, brought about

by examining the received signal x.

2.1.1 The Two Signal Class Case

Let the binary logical elements 1 and 0 be represented electronically

by voltages +1 and -1, respectively. The variable d is used to

represent the transmitted data bit, whether it appears as a voltage or

as a logical element. Sometimes one format is more convenient than

the other; the reader should be able to recognize the difference from

the context. Let the binary 0 (or the voltage value -1) be the null

element under addition. For signal transmission over an AWGN

channel, Figure (12) shows the conditional pdfs referred to as

likelihood functions. The rightmost function, P(x| d = +1), shows

the pdf of the random variable x conditioned on d = +1 being

32

transmitted. The leftmost function, P(x | d = -1), illustrates a similar

pdf conditioned on d = -1 being transmitted. The abscissa represents

the full range of possible values of the test statistic x generated at

the receiver. In Figure (12), one such arbitrary value xk is shown,

where the index denotes an observation in the k
th

 time interval. A

line subtended from xk intercepts the two likelihood functions,

yielding two likelihood values ℓ1 = P(xk | dk= +1) and ℓ2 = P(xk | dk=

-1). A well-known hard decision rule, known as maximum

likelihood (ML), is to choose the data dk=+1 or dk= -1 associated

with the larger of the two intercept values, ℓ1 or ℓ2, respectively.

For each data bit at time k, this is tantamount to deciding that dk=

+1 if xk falls on the right side of the decision line labeled γ0,

otherwise deciding that dk= -1.

Figure (12) : Likelihood function

A similar decision rule, known as maximum a posteriori (MAP),

which can be shown to be a minimum probability of error rule,

33

takes into account the a priori probabilities of the data. The general

expression for the MAP rule in terms of APPs is as follows:

 H0

 P (d = +1 | x)

 P (d = -1 | x) (3)

 H1

Equation (3) states that you should choose the hypothesis H0, (d =

+1), if the APP P(d = +1 | x), is greater than the APP P(d = -1 | x).

Otherwise, you should choose hypothesis H1, (d = -1). Using the

Bayes’ theorem of Equation (1), the APPs in Equation (3) can be

replaced by their equivalent expressions, yielding the following:

 H0

 P (x |d = +1) P(d = +1)

 P (x |d = -1) P(d = -1) (4)

 H1

where the pdf p(x) appearing on both sides of the inequality in

Equation (1) has been canceled. Equation (4) is generally expressed

in terms of a ratio, yielding the so-called likelihood ratio test, as

follows:

 H0 H0

 |

 |

 or

 |

 |

 1 (5)

 H1 H1

2.1.2 Log-Likelihood Ratio

By taking the logarithm of the likelihood ratio developed in

Equations (3) through (5), we obtain a useful metric called the log-

likelihood ratio (LLR). It is a real number representing a soft

decision out of a detector, designated by as follows:

34

L(d | x) = log*
 |

 |
+ = log*

 |

 |
+ (6)

 L(d | x) = log *
 |

 |
+ + log *

+ (7)

 L(d | x) = L(x | d) + L(d) (8)

Where L(x|d) is the LLR of the test statistic x obtained by

measurements of the channel output x under the alternate conditions

that d = +1 or d = -1 may have been transmitted, and L(d) is the a

priori LLR of the data bit d.

 To simplify the notation , equation (8) is rewritten as follows:

L'(̂) = Lc(x) + L(d) (9)

where the notation Lc(x) emphasizes that this LLR term is the result

of a channel measurement made at the receiver. Equations (1)

through (9) were developed with only a data detector in mind. Next,

the introduction of a decoder will typically yield decision-making

benefits. For a systematic code, it can be shown [3] that the LLR

(soft output) L(̂) out of the decoder is equal to Equation 10:

 L(̂) = L'(̂)+ Le(̂) (10)

Where L'(̂) is the LLR of a data bit out of the demodulator (input

to the decoder), and Le(̂) called the extrinsic LLR, represents extra

knowledge gleaned from the decoding process. The output

sequence of a systematic decoder is made up of values representing

data bits and parity bits. From Equations (9) and (10), the output

LLR L(̂) of the decoder is now written as follows:

35

 L(̂)= Lc(x) + L(d) + Le(̂) (11)

Equation (11) shows that the output LLR of a systematic decoder

can be represented as having three LLR elements: a channel

measurement, a priori knowledge of the data, and an extrinsic LLR

stemming solely from the decoder. To yield the final L(̂) , each of

the individual LLRs can be added as shown in Equation (11),

because the three terms are statistically independent [3, 13]. This

soft decoder output L(̂) is a real number that provides a hard

decision as well as the reliability of that decision. The sign of L(̂)

denotes the hard decision; that is, for positive values of L(̂) decide

that d = +1, and for negative values decide that d = -1. The

magnitude of L(̂) denotes the reliability of that decision. Often,

the value of Le(̂) due to the decoding has the same sign as Lc(x) +

L(d) ,and therefore acts to improve the reliability of L(̂) .

2.1.3 Principles of Iterative (Turbo) Decoding

In a typical communications receiver, a demodulator is often

designed to produce soft decisions, which are then transferred to a

decoder. The error-performance improvement of systems utilizing

such soft decisions compared to hard decisions is typically

approximated as 2 dB in AWGN. Such a decoder could be called a

soft input/hard output decoder, because the final decoding process

out of the decoder must terminate in bits (hard decisions). With

turbo codes, where two or more component codes are used, and

decoding involves feeding outputs from one decoder to the inputs of

36

other decoders in an iterative fashion, a hard-output decoder would

not be suitable. That is because hard decisions into a decoder

degrade system performance (compared to soft decisions). Hence,

what is needed for the decoding of turbo codes is a soft input/soft

output decoder. For the first decoding iteration of such a soft

input/soft output decoder, illustrated in Figure(13), we generally

assume the binary data to be equally likely, yielding an initial a

priori LLR value of L(d) = 0 for the third term in Equation (7). The

channel LLR value, Lc(x), is measured by forming the logarithm of

the ratio of the values of ℓ1 and ℓ2 for a particular observation of x

(see Figure (12)), which appears as the second term in Equation (7).

The output L(̂) of the decoder in Figure (13) is made up of the

LLR from the detector, L'(̂) , and the extrinsic LLR output, Le(̂)

representing knowledge gleaned from the decoding process as in

equation (10). As illustrated in Figure (13), for iterative decoding,

the extrinsic likelihood is fed back to the decoder input, to serve as

a refinement of the a priori probability of the data for the next

iteration.

37

Figure (13) : soft input/soft output decoder (for a systematic code).

2.2 Log-Likelihood Algebra

To best explain the iterative feedback of soft decoder outputs, the

concept of loglikelihood algebra [13] is introduced. For statistically

independent data d, the sum of two log-likelihood ratios (LLRs) is

defined as follows:

L(d1) L(d2) L(d1 d2) = ln [
 () ()

 () ()
] (12)

 (-1) sgn[L(d1] sgn[L(d2] min{| L(d1) | ,| L(d2) |} (13)

Where the natural logarithm is used, and the function sign ()

represents ―the polarity of.‖ There are three addition operations in

Equation (12). The + sign is used for ordinary addition. The sign

is used to denote the modulo-2 sum of data expressed as binary

digits. The sign denotes log-likelihood addition or, equivalently,

the mathematical operation described by Equation (12). The sum of

38

two LLRs denoted by the operator is defined as the LLR of the

modulo-2 sum of the underlying statistically independent data bits

[13]. Equation (13) is an approximation of Equation (12) that will

prove useful later in a numerical example. The sum of LLRs as

described by Equations (12) or (13) yields the following interesting

results when one of the LLRs is very large or very small:

L(d) = -L(d)

and

L(d) 0 = 0

Note that the log-likelihood algebra described here differs slightly

from that used in [13] because of a different choice of the null

element. In this treatment, the null element of the binary set (1, 0)

has been chosen to be 0.

2.2.1 Single Parity Check Product Code (Example)

Consider the two-dimensional code (product code) depicted in the below

figure. The configuration can be described as a data array made up of k1

rows and k2 columns. The k1 rows contain codewords made up of k2 data

bits and n2 - k2 parity bits. Thus, each row (except the last ones) represents

a codeword from an (n2, k2) code. Similarly, the k2 columns contain

codewords made up of k1 data bits and n1 - k1 parity bits. Thus, each

column (except the last ones) represents a codeword from an (n1, k1) code.

The various portions of the structure are labeled d for data, ph for horizontal

parity (along the rows), and pv for vertical parity (along the columns). In

39

effect, the block of k1 x k2 data bits is encoded with two codes—a

horizontal code, and a vertical code. Additionally, in Figure (14) , there are

blocks labeled Leh and Lev that contain the extrinsic LLR values learned

from the horizontal and vertical decoding steps, respectively. Error-

correction codes generally provide some improved performance. We will

see that the extrinsic LLRs represent a measure of that improvement.

Notice that this product code is a simple example of a concatenated code.

Its structure encompasses two separate encoding steps—horizontal and

vertical.

Figure (14) : Product code

2.2.2 Iterative Decoding Algorithm for Product Codes

This algorithm can be found in [5]:

1. Set the a priori LLR L(d) = 0 (unless the a priori probabilities

of the data bits are other than equally likely).

2. Decode horizontally, and using Equation (11) obtain the

horizontal extrinsic LLR as shown below:

Leh(̂)= L(̂)-Lc(x) - L(d)

41

3. Set L (d)= Leh(̂) for the vertical decoding of step 4.

4. Decode vertically, and using Equation (11) obtain the vertical

extrinsic LLR as shown below:

Lev(̂)= L(̂)-Lc(x) - L(d)

5. Set L (d) = Lev(̂) and repeat steps 2 through 5.

6. After enough iterations (that is, repetitions of steps 2 through 5)

to yield a reliable decision, go to step 7.

7. The soft output is

 L(̂)= Lc(x) + Leh(̂)+Lev(̂) (14)

An example is next used to demonstrate the application of this

algorithm to a very simple product code.

2.2.3 Two-Dimensional Single-Parity Code Example

At the encoder, let the data bits and parity bits take on the values

shown in Figure 15(a), where the relationships between data and

parity bits within a particular row (or column) expressed as the

binary digits (1 , 0) are as follows:

{

 (15)

Where denotes modulo-2 addition. The transmitted bits are

represented by the sequence d1 d2 d3 d4 p12 p34 p13 p24. At the

receiver input, the noise-corrupted bits are represented by the

sequence {xi}, {xij}, where xi= di+ n for each received data bit, di &

41

xij= pij+ n for each received parity bit, and n represents the noise

contribution that is statistically independent for both di and pij. The

indices i and j represent position in the encoder output array shown

in Figure 15(a). However, it is often more useful to denote the

received sequence as {xk}, where k is a time index. Both

conventions will be followed below—using i and j when focusing

on the positional relationships within the product code, and using k

when focusing on the more general aspect of a time-related signal.

The distinction as to which convention is being used should be clear

from the context. Using the relationships developed in Equations

(7) through (9), and assuming an AWGN interference model, the

LLR for the channel measurement of a signal xk received at time k

is written as follows:

Lc(xk) = ln *
 |

 |
+ (16a)

 = ln *

 (

(

)

)

 (

(

)

)

+ (16b)

 =

(

)

 +

(

)

 =

 xk (16c)

Where the natural logarithm is used, if a further simplifying

assumption is made that the noise variance is unity, then

Lc(xk) = 2xk (17)

Consider the following example, where the data sequence d1d2d3d4

is made up of the binary digits 1 0 0 1, as shown in Figure (15). By

the use of Equation (15), it is seen that the parity sequence

42

p12p34p13p24 must be equal to the digits 1 1 1 1. Thus, the transmitted

sequence is

 {di} , {pij}= 1 0 0 1 1 1 1 1 (18)

When the data bits are expressed as bipolar voltage values of +1

and -1 corresponding to the binary logic levels 1 and 0, the

transmitted sequence is:

{di} , {pij}= +1 -1 -1+1 +1 +1 +1 + 1

Assume now that the noise transforms this data-plus-parity

sequence into the receive sequence

 {xi} , {xij} = 0.75, 0.05, 0.10, 0.15, 1.25, 1.0, 3.0, 0.5 (19)

Where the members of {xi}, {xij} positionally correspond to the data

and parity {di}, {pij} that was transmitted. Thus, in terms of the

positional subscripts, the received sequence can be denoted as:

{xi} , {xij} = x1, x2, x3, x4, x12, x34, x13, x24

From Equation (17), the assumed channel measurements yield the

LLR values

 {Lc(xi)} , {Lc(xij)} = 1.5, 0.1, 0.20, 0.3, 2.5, 2.0, 6.0, 1.0 (20)

These values are shown in Figure (15b) as the decoder input

measurements. It should be noted that, given equal prior

probabilities for the transmitted data, if hard decisions are made

based on the {xk} or the {Lc(xk)} values shown above, such a

43

process would result in two errors, since d2 and d3 would each be

incorrectly classified as binary 1.

Figure (15) : Product code example.

2.2.4 Extrinsic Likelihoods

For the product-code example in Figure (15), we use Equation (11)

to express the soft output L(̂) for the received signal corresponding

to data d1, as follows:

L(̂)= Lc(x1) + L(d1) + {[Lc(x2) + L(d2)] Lc(x12) } (21)

where the terms {[Lc(x2) + L(d2)] Lc(x12) } represent the extrinsic LLR

contributed by the code (that is, the reception corresponding to data d2 and

it’s a priori probability, in conjunction with the reception corresponding to

parity P12. In general, the soft output L (̂) for the received signal

corresponding to data di is:

L(̂)= Lc(xi) + L(di) + {[Lc(xj) + L(dj)] Lc(xij) } (22)

44

Where Lc(xi), Lc(xj), and Lc(xij) are the channel LLR measurements of the

reception corresponding to di, dj, and pij, respectively. L(di) and L(dj) are

the LLRs of the a priori probabilities of di and dj, respectively, and

 {[Lc(xj) + L(dj)] Lc(xij) } is the extrinsic LLR contribution from the

code. Equations (21) and (22) can best be understood in the context of

Figure (15)b. For this example, assuming equally-likely signaling, the soft

output L(̂)is represented by the detector LLR measurement of Lc(x1) = 1.5

for the reception corresponding to data d1, plus the extrinsic LLR of [Lc(x2)

= 0.1] [Lc(x12) = 2.5] gleaned from the fact that the data d2 and the parity

p12 also provide knowledge about the data d1, as seen from Equations (15).

2.2.5 Computing the Extrinsic Likelihoods

For the example in Figure (15), the horizontal calculations for

Leh(̂) and the vertical calculations for Lev(̂) are expressed as

follows:

Leh(̂)= [Lc(x2) + L(̂)] Lc(x12) (23a)

Lev(̂)= [Lc(x3) + L(̂)] Lc(x13) (23b)

Leh(̂)= [Lc(x1) + L(̂)] Lc(x12) (24a)

Lev(̂)= [Lc(x4) + L(̂)] Lc(x24) (24b)

Leh(̂)= [Lc(x4) + L(̂)] Lc(x34) (25a)

Lev(̂)= [Lc(x1) + L(̂)] Lc(x13) (25b)

Leh(̂)= [Lc(x3) + L(̂)] Lc(x34) (26a)

Lev(̂)= [Lc(x2) + L(̂)] Lc(x24) (26b)

45

The LLR values shown in Figure (15) are entered into the

Leh(̂) expressions in Equations (23) through (26) and, assuming

equally-likely signaling, the L(d) values are initially set equal to

zero, yielding (using eqn. (13))

Leh(̂)= (0.1 +0) 2.5 -0.1 = new L(d1) (27)

Leh(̂)= (1.5 +0) 2.5 -1.5 = new L(d2) (28)

Leh(̂)= (0.3 +0) 2.0 -0.3 = new L(d3) (39)

Leh(̂)= (0.2 +0) 2.0 -0.2 = new L(d4) (30)

Where the log-likelihood addition has been calculated using the

approximation in Equation (13). Next, we proceed to obtain the first

vertical calculations using the Lev(̂) expressions in Equations (23)

through (26). Now, the values of L(d) can be refined by using the

new L(d) values gleaned from the first horizontal calculations,

shown in Equations (27) through (30). That is,

Lev(̂)= (0.2 – 0.3) 6 0.1 = new L(d1) (31)

Lev(̂)= (0.3 – 0.2) 1.0 -0.1 = new L(d2) (32)

Lev(̂)= (1.5 – 0.1) 6.0 -1.4 = new L(d3) (33)

Lev(̂)= (0.1 – 1.5) 1.0 1.0 = new L(d4) (34)

The results of the first full iteration of the two decoding steps

(horizontal and vertical) are shown below.

1.5 0.1

0.2 0.3

Original Lc(xk) measurements

46

-0.1 -1.5

-0.3 -0.2

Leh (̂) after first horizontal decoding

0.1 -0.1

-1.4 1.0

Lev(̂) after first vertical decoding

Each decoding step improves the original LLRs that are based on

channel measurements only. This is seen by calculating the decoder

output LLR using Equation (14). The original LLR plus the

horizontal extrinsic LLRs yields the following improvement (the

extrinsic vertical terms are not yet being considered):

1.4 -1.4

-0.1 0.1

Improved LLRs due to Leh(̂)

The original LLR plus both the horizontal and vertical extrinsic

LLRs yield the following improvement:

1.5 -1.5

-1.5 1.1

Improved LLRs due to Leh(̂)+ Lev(̂)

For this example, the knowledge gained from horizontal decoding

alone is sufficient to yield the correct hard decisions out of the

decoder, but with very low confidence for data bits d3 and d4. After

incorporating the vertical extrinsic LLRs into the decoder, the new

LLR values exhibit a higher level of reliability or confidence. Let’s

pursue one additional horizontal and vertical decoding iteration to

47

determine if there are any significant changes in the results. We

again use the relationships shown in Equations (23) through (26)

and proceed with the second horizontal calculations for

Leh(̂) using the new L(d) from the first vertical calculations shown

in Equations (31) through (34), so that

Leh(̂)= (0.1 – 0.1) 2.5 0 = new L(d1) (35)

 Leh(̂) = (1.5 + 0.1) 2.5 -1.6 = new L(d2) (36)

Leh(̂) = (0.3 + 1) 2.0 -1.3 = new L(d3) (37)

Leh(̂) = (0.2 - 1.4) 2.0 1.2 = new L(d4) (38)

Next, we proceed with the second vertical calculations for Lev ,

using the new L(d) from the second horizontal calculations, shown

in Equations (35) through (38). This yields

Lev(̂) = (0.2 – 1.3) 6 1.1 = new L(d1) (39)

Lev(̂) = (0.3 + 1.2) 1.0 -1.0 = new L(d2) (40)

Lev(̂) = (1.5 + 0) 6.0 -1.5 = new L(d3) (41)

Lev(̂) = (0.1 – 1.6) 1.0 1.0 = new L(d4) (42)

The second iteration of horizontal and vertical decoding yielding

the above values results in soft-output LLRs that are again

calculated from Equation (14), which is rewritten below:

L(̂)= Lc(x) + Leh(̂)+ Lev(̂) (43)

The horizontal and vertical extrinsic LLRs of Equations (35)

through (42) and the resulting decoder LLRs are displayed below.

48

For this example, the second horizontal and vertical iteration

(yielding a total of four iterations) suggests a modest improvement

over a single horizontal and vertical iteration. The results show a

balancing of the confidence values among each of the four data

decisions.

1.5 0.1

0.2 0.3

Original Lc(xk) measurements

0 -1.6

-1.3 1.2

Leh(̂)after second horizontal decoding

1.1 -0.1

-1.5 1.0

Lev(̂) after second vertical decoding

The soft output is

L(̂)= Lc(x) + Leh(̂)+ Lev(̂)

Which after two iterations yields the following values for L(̂)

2.6 -2.5

-2.6 2.5

Observe that correct decisions about the four data bits will result,

and the level of confidence about these decisions is high. The

iterative decoding of turbo codes is similar to the process used

when solving a crossword puzzle. The first pass through the puzzle

is likely to contain a few errors. Some words seem to fit, but when

49

the letters intersecting a row and column do not match, it is

necessary to go back and correct the first-pass answers.

2.3 Modification

An AWGN interference model was used for the channel, under this

and using the Iterative Decoding Algorithm for product codes, an

algorithm was written and a code using Matlab was developed, our

computation shows the following results:

First for an AWGN interference model with normal distribution

having unity variance " " the program was run for one

iteration and the result was as shown in the following table for L(d)

L(d) = *

+

Then after 4 iterations, the following values for L(d) were obtained

L(d) = *

+

Also, after 1000 iterations, we find that the values are stable with:

L(d) = *

+

We notice that the algorithm was stable after 4 iterations with:

L(d) = *

+

Secondly a comparison using the logistic distribution with variance

 instead of the normal distribution had been done.

51

Remark 2.1: The logistic distribution has a P.d.f

 P.d.f : f(x) =

 (

*

 (

)

 ,

Where is the mean and the variance is

 ln(

) = ln (

 (

*

 (

)

 (

)

 (

*
,

 = ln (

(

)

(

)

 ,

=

 + 2 ln (

(

)

(

)

) (44)

When then =

 .

We ran the program using the logistic distribution under the

condition mentioned before, after one iteration we found that:

L(d) = *

+

Also, it is found to be stable after 4 iterations (see Appendix B) with:

L(d) = *

+

Our computations show that the logistic distribution is more performance

than the normal distribution, the results is shown in the following table:

channel
L(d)

AWGN channel (normal

distribution)

Channel with logistic

distribution
L(d) L(d) = *

+ L(d) = *

+

51

Notice that with variance the logistic distribution is approximately a

normal distribution with the same variance value.

In all the previous calculations an AWGN channel with variance 1 was

used. Now we will make a modification; a normal distribution with

variance =

 will be used to make calculations:

We use equation (17c), hence, Lc(xi) = 2

xi , using the Matlab code we

get:

1- After one iteration:

L(d) = *

+

2- After 4 iterations:

L(d) = *

+

Remark 2.2 One can verify that decreasing the variance values gives better

results, But still with performance to logistic distribution over normal

distribution.

2.4 Encoding with Recursive Systematic Codes

The basic concepts of concatenation, iteration, and soft-decision

decoding using a simple product-code example have been

described. These ideas are next applied to the implementation of

turbo codes that are formed by the parallel concatenation of

component convolutional codes [3, 7].

Definition: Finite Impulse Response (FIR): the output is a

weighted sum of the current and a finite number of previous values

of the input.

52

A short review of simple binary rate 1/2 convolutional encoders

with constraint length K and memory K-1 is in order. The input to

the encoder at time k is a bit dk, and the corresponding codeword is

the bit pair (uk, vk), such that

uk = ∑

 mod 2 ; = 0,1 (45)

vk = ∑

 mod 2 ; = 0,1 (46)

Where G1 = {g1i} and G2 = {g2i} are the code generators, and dk is

represented as a binary digit. This encoder can be visualized as a

discrete-time finite impulse response (FIR) linear system, giving

rise to the familiar nonsystematic convolutional (NSC) code, an

example of which is shown in Figure (16). In this example, the

constraint length is K = 3, and the two code generators are

described by G1 = { 1 1 1 } and G2 = { 1 0 1 }. It is well known

that at large Eb/N0 (the energy per bit to noise power spectral

density, for more details we refer the reader to [29]) values, the

error performance of an NSC is better than that of a systematic code

having the same memory. At small Eb/N0 values, it is generally the

other way around [3]. A class of infinite impulse response (IIR)

convolutional codes [3] has been proposed as building blocks for a

turbo code. Such building blocks are also referred to as recursive

systematic convolutional (RSC) codes because previously

encoded information bits are continually fed back to the encoder’s

input. For high code rates, RSC codes result in better error

53

performance than the best NSC codes at any value of Eb/N0. A

binary, rate 1/2, RSC code is obtained from an NSC code by using a

feedback loop and setting one of the two outputs (uk or vk) equal to

dk. Figure 17(a) illustrates an example of such an RSC code, with K

= 3, where ak is recursively calculated as

ak= dk + ∑

 mod 2 (47)

and g i is respectively equal to g1i if uk = dk, and to g2i if vk= dk.

Figure 17(b) shows the trellis structure for the RSC code in Figure

17(a).

Figure (16) : Nonsystematic convolutional (NSC) code.

Figure 17(a) :Recursive systematic convolutional (RSC) code.

54

Figure 17(b): Trellis structure for the RSC code in Figure 17(a).

It is assumed that an input bit dk takes on values of 1 or 0 with equal

probability. Furthermore, {ak} exhibits the same statistical

properties as { dk } [3]. The free distance is identical for the RSC

code of Figure (16) and the NSC code of Figure (16). Similarly,

their trellis structures are identical with respect to state transitions

and their corresponding output bits. However, the two output

sequences {uk} and {vk} do not correspond to the same input

sequence {dk} for RSC and NSC codes. For the same code

generators, it can be said that the weight distribution of the output

codewords from an RSC encoder is not modified compared to the

weight distribution from the NSC counterpart. The only change is

the mapping between input data sequences and output codeword

sequences.

2.4.1 Example: Recursive Encoders and Their Trellis Diagrams

a) Using the RSC encoder in Figure 17(a), verify the section of

the trellis structure (diagram) shown in Figure 17(b).

55

b) For the encoder in part a, start with the input data sequence

{dk} = 1 1 1 0, and show the step-by-step encoder procedure

for finding the output codeword.

Solution

a) For NSC encoders, keeping track of the register contents and

state transitions is a straightforward procedure. However,

when the encoders are recursive, more care must be taken.

Table 1 is made up of eight rows corresponding to the eight

possible transitions in this four-state machine. The first four

rows represent transitions when the input data bit, dk, is a

binary zero, and the last four rows represent transitions when

dkis a one. For this example, the step-by-step encoding

procedure can be described with reference to Table 1 and

Figure 17, as follows.

1. At any input-bit time k, the (starting) state of a transition is

denoted by the contents of the two rightmost stages in the

register, namely ak-1 and ak2.

2. for any row (transition), the contents of the ak stage is found

by the modulo-2 addition of bits dk, ak-1, and ak-2 on that row.

3. The output code-bit sequence ukvk for each possible starting

state (that is, a = 00, b = 10, c = 01, and d = 11) is found by

appending the modulo-2 addition of ak and ak-2 to the current

data bit, dk= uk.

56

It is easy to verify that the details in Table 1 correspond to the trellis

section of Figure 17b. An interesting property of the most useful

recursive shift registers used as component codes for turbo encoders

is that the two transitions entering a state should not correspond to

the same input bit value (that is, two solid lines or two dashed lines

should not enter a given state). This property is assured if the

polynomial describing the feedback in the shift register is of full

degree, which means that one of the feedback lines must emanate

from the high-order stage; in this example, stage ak-2.

Table 1: Validation of the figure 17(b) Trellis Section

Input bit

dk = uk

Current

bit ak

Starting state Code bits

ukvk

Ending state

a k-1 a k-2 ak a k-1

0

0 0 0 0 0 0 0

1 1 0 0 1 1 1

1 0 1 0 0 1 0

0 1 1 0 1 0 1

1

1 0 0 1 1 1 0

0 1 0 1 0 0 1

0 0 1 1 1 0 0

1 1 1 1 0 1 1

b) There are two ways to proceed with encoding the input data

sequence {dk} = 1 1 1 0. One way uses the trellis diagram,

and the other way uses the encoder circuit. Using the trellis

section in Figure 17(b), we choose the dashed-line transition

(representing input bit binary 1) from the state a = 00 (a

natural choice for the starting state) to the next state b = 10

(which becomes the starting state for the next input bit). We

denote the bits shown on that transition as the output coded-

bit sequence 11. This procedure is repeated for each input

57

bit. Another way to proceed is to build a table, such as Table

2, by using the encoder circuit in Figure 17(a). Here, time, k,

is shown from start to finish (five time instances and four

time intervals). Table 2 is read as follows.

1. At any instant of time, a data bit dk becomes transformed to

ak by summing it (modulo-2) to the bits ak-1 and ak-2 on the

same row.

2. For example, at time k = 2, the data bit dk= 1 is transformed

to ak= 0 by summing it to the bits ak-1 and ak-2 on the same k

= 2 row.

3. The resulting output, ukvk= 10, dictated by the encoder logic

circuitry, is the coded-bit sequence associated with time k =

2 (actually, the time interval between times k = 2 and k = 3).

4. At time k = 2, the contents (10) of the rightmost two stages,

ak-1 and ak-2, represents the state of the machine at the start of

that transition.

5. The state at the end of that transition is seen as the contents

(01) in the two leftmost stages, ak ak-1, on that same row.

Since the bits shift from left to right, this transition-

terminating state reappears as the starting state for time k = 3

on the next row.

6. Each row can be described in the same way. Thus, the

encoded sequence seen in the final column of Table 2 is 1 1

1 0 1 1 0 0.

58

Table 2: Encoding a Bit Sequence with the Figure 17(a) Encoder

Time (k) Input

dk = uk

First Stage

ak

State at Time k

Output

ukvk

ak-1 ak-2

1 1 1 0 0 1 1

2 1 0 1 0 1 0

3 1 0 0 1 1 1

4 0 0 0 0 0 0

5 0 0

2.4.2 Concatenation of RSC Codes

Consider the parallel concatenation of two RSC encoders of the

type shown in Figure (16). Good turbo codes have been constructed

from component codes having short constraint lengths (K = 3 to 5).

An example of such a turbo encoder is shown in Figure (18), where

the switch yielding vk provides puncturing (puncturing

systematically removes some of the parity bits after encoding. This

is, for example, applied to constraint code. Both encoders might

want to send the information. This repetition is inefficient so one

encoder may puncture its information bits. The information bits in

say, the second encoder are therefore ignored, and the rate of the

code is increased.), making the overall code rate 1/2. Without the

switch, the code would be rate 1/3. There is no limit to the number

of encoders that may be concatenated, and in general the

component codes need not be identical with regard to constraint

length and rate. The goal in designing turbo codes is to choose the

best component codes by maximizing the effective free distance of

the code [8]. At large values of Eb/N0, this is tantamount to

maximizing the minimum-weight codeword. However, at low

59

values of Eb/N0 (the region of greatest interest), optimizing the

weight distribution of the codewords is more important than

maximizing the minimum-weight codeword [7].

The turbo encoder in Figure (18) produces codewords from each of

two component encoders. The weight distribution for the

codewords out of this parallel concatenation depends on how the

codewords from one of the component encoders are combined with

codewords from the other encoder. Intuitively, we should avoid

pairing low-weight codewords from one encoder with low-weight

codewords from the other encoder. Many such pairings can be

avoided by proper design of the interleaver. An interleaver that

permutes the data in a random fashion provides better performance

than the familiar block interleaver [9].

Figure (18): Parallel concatenation of two RSC codes.

61

If the component encoders are not recursive, the unit weight input

sequence 0 0 … 0 0 1 0 0 … 0 0 will always generate a low-weight

codeword at the input of a second encoder for any interleaver

design. In other words, the interleaver would not influence the

output-codeword weight distribution if the component codes were

not recursive. However if the component codes are recursive, a

weight-1 input sequence generates an infinite impulse response

(infinite-weight output). Therefore, for the case of recursive codes,

the weight-1 input sequence does not yield the minimum-weight

codeword out of the encoder. The encoded output weight is kept

finite only by trellis termination, a process that forces the coded

sequence to terminate in such a way that the encoder returns to the

zero state. In effect, the convolutional code is converted to a block

code.

For the encoder of Figure (18), the minimum-weight codeword for each

component encoder is generated by the weight-3 input sequence (0 0 … 0 0

1 1 1 0 0 0 … 0 0) with three consecutive 1s. Another input that produces

fairly low-weight codewords is the weight-2 sequence (0 0 … 0 0 1 0 0 1 0

0 … 0 0).

However, after the permutations introduced by an interleaver, either of

these deleterious input patterns is unlikely to appear again at the input to

another encoder, making it unlikely that a minimum-weight codeword will

be combined with another minimum-weight codeword.

61

The important aspect of the building blocks used in turbo codes is

that they are recursive (the systematic aspect is merely incidental).

It is the RSC code’s IIR property that protects against the

generation of low-weight codewords that cannot be remedied by an

interleaver. One can argue that turbo code performance is largely

influenced by minimum-weight codewords that result from the

weight-2 input sequence. The argument is that weight-1 inputs can

be ignored, since they yield large codeword weights due to the IIR

encoder structure. For input sequences having weight-3 and larger,

a properly designed interleaver makes the occurrence of low-weight

output codewords relatively rare [8-10].

2.5 A Feedback Decoder

The APP of a decoded data bit dk can be derived from the joint

probability

defined by

 = P{ dk = i, Sk = m|R1
N
 } (48)

Where Sk is the encoder state at time k, and R1
N
 is a received binary

sequence from time k = 1 through some time N.

Thus, the APP for a decoded data bit dk, represented as a binary digit, is

equal to

P{dk = i |R1
N
 } = ∑

 , i= 0, 1. (49)

The log-likelihood ratio (LLR) is written as the logarithm of the

ratio of APPs, as follows:

62

 L(̂)= log [
∑

∑

] (50)

The decoder makes a decision, known as the maximum a posteriori

(MAP) decision rule, by comparing L(̂)to a zero threshold. That is,

{
 ̂ ̂

 ̂ ̂
 (51)

For a systematic code, the LLR L(̂) associated with each

decoded bit ̂ can be described as the sum of the LLR of ̂ out of

the demodulator and of other LLRs generated by the decoder

(extrinsic information), as expressed in Equations (12) and (13).

Consider the detection of a noisy data sequence that stems from the

encoder of Figure (18), with the use of a decoder shown in Figure

(19). Assume binary modulation and a discrete memoryless

Gaussian channel. The decoder input is made up of a set Rk of two

random variables xk and yk. For the bits dk and vk at time k,

expressed as binary numbers (1, 0), the conversion to received

bipolar (+1, -1) pulses can be expressed as follows:

xk= (2dk- 1) + ik (52)

yk= (2vk- 1) + qk (53)

where ik and qk are two statistically-independent random variables

with the same variance , accounting for the noise contribution.

The redundant information, yk, is demultiplexed - (a method by

which multiple analogue message signals or digital data streams are

combined into one signal) - and sent to decoder DEC1 as y1kwhen

63

vk= v1k, and to decoder DEC2 as y2kwhen vk= v2k. When the

redundant information of a given encoder (C1 or C2) is not emitted,

the corresponding decoder input is set to zero. Note that the output

of DEC1 has an interleaver structure identical to the one used at the

transmitter between the two encoders. This is because the

information processed by DEC1 is the noninterleaved output of C1

(corrupted by channel noise). Conversely, the information

processed by DEC2 is the noisy output of C2 whose input is the

same data going into C1, however permuted by the interleaver.

DEC2 makes use of the DEC1 output, provided that this output is

time-ordered in the same way as the input to C2 (that is, the two

sequences into DEC2 must appear ―in step‖ with respect to the

positional arrangement of the signals in each sequence). For more

details we refer the reader to see [4]

Figure (19): Feedback decoder.

64

2.5.1 Decoding with a Feedback Loop

We rewrite Equation (11) for the soft-decision output at time k, with the a

priori LLR L(dk) initially set to zero. This follows from the assumption

that the data bits are equally likely. Therefore,

 L(̂)= Lc(xk) + Le(̂)

 = log [
 |

 |
] + Le(̂) (54)

Where L(̂) is the soft-decision output at the decoder, and Lc(xk) is

the LLR channel measurement, stemming from the ratio of

likelihood functions P(xk|dk=i) associated with the discrete

memoryless channel model. Le(̂)= L(̂)| xk = 0 is a function of

the redundant information. It is the extrinsic information supplied

by the decoder, and does not depend on the decoder input xk.

Ideally, Lc(xk) and Le(̂)are corrupted by uncorrelated noise, and

thus Le(̂)may be used as a new observation of dk by another

decoder for an iterative process. The fundamental principle for

feeding back information to another decoder is that a decoder

should never be supplied with information that stems from itself

(because the input and output corruption will be highly correlated).

For the Gaussian channel, the natural logarithm in Equation (54) is

used to describe the channel LLR, Lc(xk), as in Equations (16a-c).

We rewrite the Equation (16c) LLR result below:

Lc(xk) =

(

)

 +

(

)

 =

xk (55)

65

Both decoders, DEC1 and DEC2, use a method of decoding, for

example, the modified Bahl algorithm [2]. If the inputs (̂) and

y2k to decoder DEC2 are statistically independent, the LLR

 (̂) at the output of DEC2 can be written as

 (̂) =f [(̂)] + (̂) (56)

With

 (̂) =

xk + (̂) (57)

Where f [] indicates a functional relationship. The extrinsic

information (̂) out of DEC2 is a function of the sequence

{L1(̂)}n≠k. Since L1(̂) depends on the observation R1
N
, the

extrinsic information (̂)is correlated with observations xk and

y1k. Nevertheless, the greater |n-k| is, the less correlated are L1(̂)

and the observations xk, yk. Thus, due to the interleaving between

DEC1 and DEC2, the extrinsic information (̂) and the

observations xk, y1k are weakly correlated. Therefore, they can be

jointly used for the decoding of bit dk. In Figure (19), the parameter

zk= (̂) feeding into DEC1 acts as a diversity effect in an

iterative process. In general, (̂) will have the same sign as

dk.Therefore, (̂) may increase the associated LLR and thus

improve the reliability of each decoded data bit.

The algorithmic details for computing the LLR, L(̂), of the a

posteriori probability (APP) for each data bit has been described by

several authors [3-4,20]. Suggestions for decreasing the

implementational complexity of the algorithms can be found in [18-

24].

66

Chapter 3

Linear Programming Decoding of Low Density Parity Check

Codes (LDPC)

3.1 Introduction

LDPC codes can be classified in two categories, regular and irregular

LDPC codes.

Definition 3.1: A regular LDPC code is characterized by two values,

and , where is the number of ones in each column of the parity check

matrix H
 , and represents the numbers of ones in each row.

Generally, the decoding of linear block codes, and particularly the

LDPC codes can be carried out by several methods. One of the

well-known method, the message passing algorithm (MPA).

Another method will be described in the following, the linear

programming decoding.

The Linear Programming (LP) method is an optimization method to

solve a problem defined by a linear objective function using linear

constraints. The optimization problem can be considered as follows,

Given a binary linear code C
 , a codeword x =

 T
is transmitted over a memoryless channel, the

received vector is y = T
 and the log likelihood

ratio (LLR) vector is λ = λ λ λ . The parity check

matrix H
 . The goal of the optimization problem is to find

the maximum likelihood codeword

67

 Minimize, λ
 T

 x (1)

subject to x C

From now onwards the optimization problem is written with the notation

min. as minimum and s.t. as subject to. If x C, then H. x = 0. So, the

equation (1) becomes,

min. λ
T
x (2)

s.t. H. x = 0

x {0,1}

The different parts of this optimization problem are,

 An objective function which is minimized (or sometimes

maximized):

min. λ
 T

 x (3)

 The problem constraint,

 H x = 0 (4)

If we split H into its M rows, the equation (4) will be,

hm x = 0; m = ⏟

 (5)

We have now M equations, each corresponding to :

ai1x1 ai2x2 ai3x3 …… aiNxN= 0 (6)

With aij {0,1} , j= 1 ,……., N, i= 1,…,m

 The integer (binary) variable, {0,1}.

68

3.2 Maximum Likelihood Decoding for LP

After the transmission of an error-correcting code, the receiver has to

decode the transmitted codeword. So, one way to decode is to choose a

codeword which has the maximum likelihood probability of a received

word given a transmitted codeword. It means that it will find a maximum

likelihood codeword. We will show how the maximum likelihood

codeword can be derived in a linear form in order to be used in the LP

formulation.

If a codeword x C is transmitted over a memoryless channel and the

corresponding received vector is y, then the maximum likelihood codeword

can be :

 x =

Pr(y|x) (8)

Since, the variables are independent and the channel is memoryless without

feedback, equation (8) becomes:

 x =

∏ |
 (9)

 =

(-ln∏ |
 (10)

 =

(-∑ |
) (11)

One trick is now used. The term∑ |
 is independent of x. So,

it can be considered as a constant since minimization is done over x

equation (11) will be :

x =

∑ |
 - ∑ |

 (12)

69

 =

∑

 |

 |
 (13)

The sum, ∑

 |

 |
 is equal to 0 when xn= 0 , and for xn= 1 it is

equal to

∑

 |

 |
 = ∑

So equation (13) is now :

x =

∑

 (ln

 |

 |
 (14)

Finally, the log likelihood ratio can be replaced by its value such that

x=

∑

 (15)

 =

 . (16)

We see that the equation (16) is exactly equal to our optimization problem

described in equation (1).

3.3 Linear Programming Formulation

Now we will first state the problem of linear programming decoding and

then describe the results.

3.3.1 Problem Formulation

An example will be taken to derive a formulation of LP decoding.

Afterwards the general formulation is shown. Our goal is still,

min. λ
 T

 x (17)

 s.t. hm x = 0; m = ⏟

 {0,1}

71

We want to use a linear programming decoder such that the variables and

constraint function are in R. A simple example is considered to formulate

the integer LP problem before relaxation of the constraints. The relaxation

of the constraints means that the constraint {0,1}is changed to

[0,1].

The check equations in will be reformulated as linear equations in R

which is described further. So, consider the following parity check matrix

H,

H = [

] (18)

If x = , the set of check equations corresponding

to the H matrix will be,

 H x = ,

- (19)

In order to use the parity check equation in R, a new formulation with new

variables is used. Let us define them for example for chk(A),

 is the set of indices of the code symbols used in the check

equation chk(A)

 ={ 1 , 4, 5 } (20)


is the local codeword formed with the corresponding code

symbols used in check equation chk(A):

= ()

T
 (21)

 The matrix which will be able to extract
from x is called

71

 = [

] (22)

It can be verified that

 x (23)

Note : in the above equation the addition and multiplication in R are used

instead of the modulo 2 operation.

 Now, another matrix is defined as follows:

The columns of are composed of the local codewords satisfying chk(A).

These local codewor's are even weight vectors of length , including the

zero vector. In our case = 3, so:

 { ()

T
, ()

T
, ()

T
 , ()

T
}

Thus,

 = [

] (24)

An indicator vector wA that select the right configuration for chk(A) is

defined in this way

wA= [

]
 , 1

T
wA =1 (25)

It shall be noted that the 4 in
 corresponds to the number of different

local codewords satisfying chk(A).and also to the number of columns in the

matrix AA .And 1 is the all-ones vector,

[

] (26)

72

So, wA belongs to the set because of the definition in equation (25),

wA {[

] [

] [

] [

]} (2 7)

All these vectors will satisfy, 1
T
wA=1

It can be seen that

 = AA wA (28)

In equation (28), the multiplication and addition are used in R. If for

example if wA=
 T

 then wA,{4,5} =1 and = =

 =0 such that
 T

 . wA is an indicator/auxiliary variable

which selects the correct configuration for the local codeword from the

columns of AA.

Equation (23) and (28) are combined such that

 x = AAwA , wA
 , 1

T
wA=1 (29)

Equation (29) has been formed in such a way that it satisfies the check

equation chk(A). Thus, equation (29) is equivalent to chk(A)

For each check equation of (19), the following settings for the new linear

equations can be deduced,

Chk(A)=

{

 *[

]+ [

]

}

 (3 0)

 Chk(B)=

{

 [

] [

]
}

 (31)

73

Chk(C)=

{

 [

] [

]
}

 (32)

 So, if the number of one's is the same in each row of H (= 3), Am will

be the same matrix for each check equation (m corresponds to the index of

the check equation). Let us generalize the formulation. For each row of

the parity check matrix, let (m) be the number of ones in this row, be

the set of indices of the code symbols participating in the check equation m,

 be a dc(m) x N matrix which extracts the local codeword from the

codewordx and be a matrix (m) x whose columns are formed

by the local codewords satisfying m
th
 check equation. The m

th
 parity check

equation can be written as

 x = ,

, 1
T =1 (33)

It can be noticed that all the operations used in this equation are over R. By

replacing the check constraint in (17) by this new equation (33), the

optimization formulation becomes

min. λ
 T

 x (31)

 s.t. x = , m = ⏟

, 1
T
wm=1

 {0,1} , n= 1, … , N

3.4 Alternative Formulation

In this section, an alternative way of defining the constraints of the LP are

given. The motivation for the alternative formulation is to reduce the

74

complexity of LP by removing the auxiliary variable . We know that

for each check equation, the number of different auxiliary variables

grows exponentially (), so removing these could simplify the problem

significantly. However, we are minimizing and the objective function

is independent of the , so it can be possible to remove the auxiliary

variable.

3.4.1 Exemplification of the Alternative Formulation

In this section, an example is given to show how the alternative formulation

can be derived. Consider the constraints for the degree 3 check equation A

in equation (32), where the constraint = 1 has been added to the

matrix.

[

] = [

] [

] , (32)

Formulating this in an augmented matrix form and bringing it into row

reduced echelon form.

[

] ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

[

]

 (33)

If we add the constraint that and multiply with -1, we obtain the

following 4 equations in (34)

 0 (hs1)

 0 (hs2)

 0 (hs3)

75

 0 (hs4) (34)

First note that the solution space of in (34) should be equivalent with

the solution space of in (32) (all the constraints are utilized). We can

now describe the local check equation constraints in another way without

the indicator variable .Further; the new constraints have a nice

interpretation. The equation (34) describes 4 half-spaces (hs1) - (hs4).

Contemplate now the tetrahedron in the Figure (20).

Figure (20): the 4 half-spaces defining the tetrahedron

For equality in the equations (34), the faces of the tetrahedron are described

by the4 planes, and the solid tetrahedron is described by the 4 half-spaces

(hs1) - (hs4).

3.4.2 The Alternative Formulation in General

From the previous section's results, it can be construed that the convex hull

can be described as a set of inequalities without using the auxiliary

variable . Firstly, the example of the previous section with half space

76

(hs2) is described after which the alternative formulation is derived in

general. In Figure (21), the example with (hs2) is shown.

Figure (21) : Half-space 2 (hs2) with the normal n.

The normal to the half-space is n =

1 , i.e. the vector from the

center of the unit cube to an odd weighted vertex . Then, the plane can be

defined such that all
 satisfy equation (35).

 (
 -

) = 0 (35)

Where n is the normal, and
is a point on the plane. Inserting the

example from (hs2) yields.

 2. (
-

) = 2.

 (

 -
) = 0 (36)

 = 2. ([

] [

 ⁄

 ⁄

 ⁄
] +

([

] [

]+ =0 (37)

 = [

]

[

] = 0 (38)

77

 = - - + (39)

Not surprisingly, we have obtained the surface corresponding to half space

(hs2) in equation (34). From this example, we now generalize this

procedure for the halfspaces.

 (
-

) 0 (40)

 2.

 (41)

As n always point towards an odd weighted vertex, it will have the

following form.

 = [⏟
 | |

 ⏟

⏞

] (42)

 can be permuted and just shown in this regular form for convenience.

V is defined as a subset of indices from N(m) where has positive signs.

The negative signs (the rest) are then N(m) excluding V . We can further

see that we can select
 as one of the even weighted vertices defining

the plane. The number of positions where the symbols in
and

differs is 1 i.e., Hamming weight or distance wH (
 1. This fact

can be construed by observing the Figure (21). Any walk from an even

weight vertex along an edge in the hyper cube will give an odd weight

vertex, and vice versa. The total weight change from an odd to an even

vertex is 1, such that the sum of
 is

 = |V | 1.

 = [⏟

 | |

 ⏞

] (43)

78

 can be permuted and just shown in this regular form for convenience.

It can be comprehended that
= |V | 1 from the contention.

Continuing from equation (41).

 2.

 (44)

∑ - ∑ |V | 1 (45)

Since we want a set of inequalities for all the surfaces, we need to find the

respective half-spaces for each odd weighted vertex in the unit cube, which

corresponds to the all odd combinations of the subset V taken from N(m).

All the solutions should be within the unit cube, so the general check

constraint in the alternative formulation is given by [16], [18]:

∑ - ∑ |V | 1 V (m) , |V| odd 0 (46)

Equation (46) is bit hard to interpret, so if these inequalities are written in

matrix form then they have a nice structure. The constraints from the

degree 4 check equation A of the (7, 4, 3) Hamming code is considered

such that N(A) = {1, 2, 4, 5}.

[

]

[

]

[

]

 (47)

Note that the matrix has a nice diagonal symmetry with the signs when the

rows are in the order shown.

79

3.4.3 Special Properties for a Degree 3 Check Equation

Now turn back to the degree 3 check equation, which turns out to have

special properties. Consider now a different way of deriving the alternative

formulation.

[

] = [

] [

] , (48)

[

] = w (49)

where, is the extended (e) version of the with added in the

first row. is non-singular and square, so calculating the inverse yields.

 2w = 2
 [

] [

] [

] (50)

The factor 2 is used to bring the matrix entries to integer values. Again

using the side constraint and multiply by -1,

[

] [

] [

]

 (51)

which will give us the four half spaces. This manoeuvre can only be

accomplished for a degree 3 check equation, because only this matrix is

square. For higher degrees more unknown occurs since has dimension

(+ 1) (). Further, a check equation of degree 3 has a special

property. To see this, add now the equations corresponding to the two half-

spaces (hs2) and (hs3).

 ⏟

+ ⏟

 0 + 0 ⇔ (52)

81

Further by adding (hs1) and (hs2)

 ⏟

+ ⏟

 0 + 0 ⇔ (53)

This means that the bounding 0 1 of the variables is implied in the

equations.It is also implied for and . If one observes the tetrahedron in

the Figure (20) and imagine the four planes, it is possible to see that no

solutions are outside the unit cube . That is, all the variables in a

degree 3 check equation are bounded automatically because it is implied in

the definition. The side constraints 0 1 are not needed if

 participates in a check equation of degree 3.

The consequence of this observation is that the complexity of LP decoding

may be reduced. If all variable participates in a check equation of degree

3, then no bounding is needed. The complexity in terms of the number of

constraints can be reduced by 2N since there are 2 inequalities for each

variable and N variables.

3.5 Multiple Optima in the BSC

This section is on the existence of multiple optima in the BSC. It will be

derived how multiple optima occurs while decoding the (7, 4, 3) Hamming

code.

A leaf node is a variable node having degree one such that it is only

connected with one check node. By example it was identified with the LP

decoder, that if an error occurs in a leaf node of the (7, 4, 3) Hamming

code, the LP decoder may fail because of the occurrence of multiple

81

optima. For an error anywhere else, decoding always succeeds. In this

section we will investigate this observation.

We will start by convincing us that for ML decoding, a leaf node error is

possible to decode. The (7, 4, 3) Hamming code has = 3, which

means that we should be able to correct at minimum t = ⌊

⌋ = 1 error

anywhere in the codeword [23] .So the loss of decoding performance is due

to the degradation of the LP decoder compared to the ML decoder.

For the example, the alternative formulation is used for decoding and

MOSEK 4 is used as a solver to yield two solutions, a basic point solution

 and an interior point solution

 . If an error is placed in the leaf node for

this code under the BSC, then we have,

 =

 where

 (54)

It states that both solutions have the same cost and there exist there by

multiple optima for this optimization problem. Both of them should be

considered as correct solutions. However, there are more than two solutions

to an error in the leaf node for the Hamming code. In fact there are

infinitely many solutions as we will show now. Because there is equal cost

in equation (54), then

 = = 0 (55)

The vector of direction r is orthogonal to the cost vector . The problem of

multiple optima could look like the Figure (22).

82

Figure (22): overview of multiple optima and MOSEK solution

The reason why
 is a vertex, is because by example

 has always given

an integer point solution. We now want to find the set of inequalities such

that we can find the intersection that seems to be orthogonal to the cost

vector. Say that we are solving the following problem, where G and h

defines the inequalities from the alternative formulation.

 min (56)

 s.t. G h

 0 n = 1, 2, ….. N

Let now each row equation of G x h be
 . The set of inequalities

defining the intersection, is all the active constraints for the solution x=
 .

An active constraint is where equality holds such that the solution is on the

bound of the polytope, i.e., the equations k for which

 = instead of

just

 . All the active constraints are then the constraints for which

one of the following equations holds.

 = or or (57)

83

Chapter 4

The Method of LP Decoding

4.1 Linear Programming Relaxation

A linear program (LP) consists of a set of linear inequalities (constraints)

and a linear objective function over a set of variables. Solving the linear

program means finding a setting of the variables that satisfies the

inequalities, and optimizes the objective function. Linear programs can be

solved efficiently using the simplex algorithm [1], which runs efficiently in

practice, or the ellipsoid algorithm [17], which has worst-case run-time

guarantees.

Although many important problems can be solved as LPs, not all problems

are directly amenable to this treatment. One issue is that LP solutions can

be real-valued, whereas the variables (in certain problems) may only be

meaningful as integers (e.g., number of seats in an airplane). If we add the

restriction that all variables must be integers, we obtain an Integer Linear

Programming (ILP) problem, which (unfortunately) is NP-hard in general

[27].

A natural strategy for finding an approximate solution to an ILP, then, is to

remove the integer constraints, solve the resulting LP, and then transform

the solution into a meaningful one. (For example, rounding techniques,

often randomized, are one method of transforming an LP solution into a

decent solution to the ILP of interest.) This generic technique is referred to

as linear programming relaxation, and many successful approximation

algorithms to NP-hard optimization problems are based on it [11].

84

4.2 An LP Relaxation of ML Decoding

Suppose we wish to decode a binary code C under some binary-

input memoryless channel. Let y C denote the transmitted codeword,

And let ̃ denote the received codeword.

Let be the log-likelihood ratio of the ith code bit:

 ln(
 ̃ |

 ̃ |
) (58)

The sign of the log-likelihood ratio determines whether transmitted bit

is more likely to be a 0 or a 1. (In particular, if is more likely to be a 1,

then will be negative, whereas if is more likely to be a 0, then will

be positive.) We will refer to as the cost of code bit , where

represents the cost incurred by setting a particular bit to 1, and to the

sum∑ as the cost of a particular codeword y. With these definitions,

the ML codeword is exactly the codeword of minimum cost [14].

Our LP relaxations for decoding will have LP variables for each code bit,

where i {1, … , n}. Suppose we were able to solve the following problem:

Minimize ∑

 s.t f C (59)

Any optimal solution f to this system is an ML codeword. However,

optimizing over C is too complex in general. Therefore, we optimize

instead over a less complex polytope , defined by a set of linear

constraints on the variables . The particular nature of the constraints will

depend on the underlying code. In [16, 15], polytopes for turbo codes,

LDPC codes, and arbitrary binary linear codes was defined. In each of

85

these cases, polytopes contain a linear (in n) number of constraints, and are

therefore solvable efficiently.

Since we are looking for codewords, it should be the case that our polytope

includes all the codewords, and does not include any non-codewords.

Definition 4.1: A polytope is proper for code C if the integral points in

 are exactly the codewords of C; i.e., is proper if P = C.

Given a proper polytope , our LP decoder solves the following linear

program:

Minimize ∑

 s.t f (60)

Define the cost of a point f as ∑

 . The LP in equation (59) will

find the point in with minimum cost. If the LP solution is integral (i.e., all

 are either 0 or 1), then the LP decoder outputs the codeword f. In

contrast, if the LP solution is fractional (i.e., some is non-integral), then

the decoder outputs ―error.‖

Notice that the only part of the LP relaxation that depends on the received

vector is the objective function.

Figure (22) provides an abstract visualization of the relaxation . This

figure is of course two-dimensional, but all the elements of the LP

relaxation can still be seen. The dotted line represents the polytope , and

the circles represent vertices of the polytope. The black circles in the figure

represent codewords, and the gray circles represent fractional vertices that

are not codewords. The inner solid line encloses the convex hull of the

codewords, the set of points that are convex combinations of codewords.

The arrows inside the polytope represent various cases for the objective

86

function, which depend on the noise in the channel. We will go through

these cases explicitly later in the discussion.

Figure (22): A decoding polytope (dotted line) and the convex hull [28] (solid

line) of the codewords y1 through y4. Also shown are the four possible cases (a-d) for

the objective function.[14]

4.3 The LP Relaxation as a Decoder

Maximum-likelihood (ML) decoding can be seen as optimizing the

objective function over points inside the convex hull of the codewords

(solid line in Figure (22)); since every point in this convex hull is a convex

combination of codewords, then the optimum will obtained at a codeword.

Unfortunately, this convex hull will be too complex to represent explicitly

for any code for which ML decoding is NP-hard (unless P = NP).

Our decoding algorithm using the relaxed polytope is the following:

solve the LP given in equation (60). If the LP solution is integral (a black

vertex in Figure (22)), output the corresponding codeword. If the LP

87

solution is fractional (a gray vertex in Figure (22)), output "error." Note

that if this algorithm outputs an integral solution (codeword), then we know

it outputs the ML codeword. This is because the cost of the codeword

found is at most the cost of all the points in , including all the

othercodewords. Therefore this decoder has what we call the ML certificate

property: if it outputs a codeword, it is guaranteed to be the ML codeword.

This property is one of the unique advantages of LP decoding.

Theorem 4.1: An LP decoder using a proper polytope has the ML

certificate property: if the decoder outputs a codeword, it is guaranteed to

be an ML codeword.

Proof: If the LP decoder outputs a codeword f , then the cost of the

point f is at most the cost of any point in . Since is proper, we have

P C, and so f has cost at most the cost of any code word y C. We

conclude that f is the ML codeword.

Example 4.1: Suppose we have the linear code C = {0000, 1101, 1011,

0110}. This code can be characterized by the parity check equations:

(= 0 and (= 0. We define a polytope on four

variables { , , } as the set of points that satisfy the following linear

inequalities:

{

 (

88

{

 (

{

 (

The (C) constraints ensure that all take on values between zero and one.

The (A) and (B) constraints ensure that the above constraints are exactly

the set of codewords of C. To see this, consider the (A) constraints; the

binary words that satisfy these the polytope is proper; i.e., the set of

binary words of length four the constraints are exactly the words that

satisfy the parity check equation (= 0. Similarly, the (B)

constraints correspond to the parity check equation (= 0. This

polytope is a special case of a general-purpose polytope for binary linear

codes and LDPC codes [15, 14].

4.3.1 Noise as a perturbation of the LP objective

Suppose the relaxation has the following reasonable property: when there is

no noise in the channel, the transmitted codeword y will be the optimum

point of the LP, and thus the LP decoder will succeed. (All the relaxations

we give in this thesis have this property.) Noise in the channel then

amounts to a perturbation of the objective function away from the "no

noise" direction. If the perturbation is small, then y will remain the optimal

point of the LP. If the perturbation is large (there is a lot of noise in the

channel), then y will no longer be optimal, and the LP decoder will fail.

89

In Figure (22), an objective function can be seen as a direction inside the

polytope; solving the LP amounts to finding the point in the polytope that is

furthest in that direction. The following mental exercise often helps

visualize linear programming. Rotate the polytope such that the objective

function points "down." Then, the objective function acts like gravity; if we

drop a ball inside this polytope, it will settle at the point that optimizes the

objective function. In Figure (22) we have rotated the polytope so that

when there is no noise in the channel, then the objective function points

"down," directly at the transmitted codeword (in figure(22)).

There are four cases describing the success of LP decoding, related to ML

decoding. These cases are illustrated in Figure (22) by four arrows (a, b, c,

d), representing directions inside the polytope. The gray arrow is the

objective function without noise in the channel. The cases are described as

follows:

(a) If there is very little noise, then both ML decoding and LP

decoding succeed, since both still have as the optimal point.

(b) If more noise is introduced, then ML decoding succeeds, but LP

decoding fails, since the fractional vertex f is optimal for the

relaxation.

(c) With still more noise, ML decoding fails, since is now optimal;

LP decoding still has a fractional optimum (f), so this error is

detected.

(d) Finally, with a lot of noise, both ML decoding and LP decoding

have as the optimum, so both fail, and the error is undetected.

91

Remark 4.1: in the last two cases when ML decoding fails, this is in some

sense the fault of the code itself, rather than the decoder.

4.4 Success Conditions for LP Decoding

Overall, the LP decoder succeeds if the transmitted codeword is the unique

optimal solution to the LP. The decoder fails if the transmitted codeword is

not an optimal solution to the LP. In the case of multiple LP optima (which

for many noise models has zero probability), we will be conservative and

assume that the LP decoder fails. Therefore, we have the following

theorem:

Theorem 4.2: For any binary-input memoryless channel, an LP decoder

using polytope will fail if and only if there is some point in other than

the transmitted codeword y with cost less than or equal to the cost of y.

Remark 4.2: We use to denote the word error rate (WER) of the LP

decoder, given a particular transmitted codeword y. By Theorem, we have:

 = Pr [∑ ∑ (61)

4.5 Vertices, Codewords and Pseudocodewords

Definition 4.2: An extreme point, or equivalently a vertex of a polytope is

a point that cannot be expressed as the convex combination of other points

in the polytope.

Let () be the set of vertices of the polytope . A fundamental fact of

linear programming is that the optimal solution to an LP can always be

found at a vertex of the polytope associated with the LP [1]. Therefore, the

LP decoder will always find the lowest cost vertex of the polytope .

91

Theorem 4.3: For any polytope that is proper for C, every

codeword y is avertex of

It is important to note that the converse statement (i.e., every polytope

vertex is a codeword) may not hold, however, since the polytope could

have fractional (non-integral) vertices. So, in general we have

In LP decoding, vertices take on the role of pseudocodewords : the set of

possible results that a sub-optimal decoder may produce.

Definition 4.3: Pseudocodewords are a superset of the codewords, and may

contain ―false‖ codewords that ―fool‖ the algorithm. While the set of

codewords is a function of the code itself, the set of pseudocodewords is a

function of the sub-optimal decoding algorithm being used.

Example 4.2: Consider the polytope designed earlier for the code C =

{0000, 1101, 1011, 0110}. The vertices of this polytope include the

codewords, as well as the fractional vertices (1,

) and (0,

).

Note that neither of the fractional vertices can be expressed as convex

combinations of codewords. We have = {(0, 0, 0, 0), (1, 1, 0, 1),(1, 0,

1, 1), (1, 1, 1, 1), (1,

), (0,

)}.This is the set of

pseudocodewords for the LP decoder using on this code.

4.6 The Fractional Distance

We motivate the definition of fractional distance by providing an alternate

definition for the (classical) distance in terms of a proper polytope .

Recall that in a proper polytope , there is a one-to-one correspondence

between codewords and integral vertices of ; i.e.,

92

C= . The Hamming distance between two points in the discrete

space is equivalent to the distance between the points in the

space Therefore, given a proper polytope , we may define the

distance of a code as the minimum distance between two integral

vertices, i.e.,

d =

∑ |
 |

The LP polytope may have additional non-integral vertices, as illustrated

in Figure (22). We define the fractional distance of a polytope as

the minimum distance between an integral vertex (codeword) and any

other vertex of ; i.e.,

 =

∑ | |

Note that this fractional distance is always a lower bound on the classical

distance of the code, since every codeword is a polytope vertex (in the

set). Moreover, the performance of LP decoding is tied to this

fractional distance, as we make precision the following:

Theorem 4.4: Let C be a binary code and a proper polytope in an LP

relaxation for C. If the fractional distance of is , then the LP

decoder using is successful if at most ⌈ ⌉ - 1 bits are flipped by

the binary symmetric channel.

Proof: Let y be the codeword transmitted over the channel. Suppose the LP

decoder fails; i.e., y is not the unique optimum solution to the LP. Then

there must be some other vertex (where y) that is an

93

optimum solution to the LP, since the LP optimum is always obtained at a

vertex. By the definition of fractional distance, we have

∑|
 |

For all bits i {1, … n}, let = |
 |. From the above equation, we

have:

∑

 (62)

Let = {i: ̃ be the set of bits flipped by the channel. By

assumption, we have that:

| | ⌈ ⌉–

and so

∑ ⌈ ⌉ – (63)

Since all from (62) and (63), it follows that

∑ ⌊ ⌋ (64)

Therefore from (63) and (64), we have

∑ ∑ (65)

Since is an optimum solution to the LP, its cost must be less than or

equal to the cost of y under the objective function ; i.e.,

∑

 - ∑

 (66)

We can rewrite the left side of equation (66) as follows

94

 ∑

 - ∑

 = ∑

 = ∑

 - ∑

 = ∑ - ∑ (67)

 = ∑ –∑ (68)

Equation (67) and (68) follows from the fact that

 {

Equation (68) follows from the fact under the BSC, we have if

 ̃ and if ̃ from (66) and (68), it follows that

∑ –∑ .

95

Chapter 5

LP Decoding of Turbo Codes

In this chapter we define a linear program (LP) to decode any turbo code.

We will motivate the general LP by first defining an LP for any

convolutional code. In fact, we will give an LP for a more general class of

codes: any code that can be defined by a finite state machine. Then, we use

this LP as a component in a general LP for any turbo code. We discuss the

success conditions of this decoder, which are related to the optimality

conditions for the network flow problem.

5.1 Trellis-Based Codes

In this section we define a linear program for codes represented by a trellis.

This family of codes is quite general; in fact trellises in their most general

form may be used to model any code (even non-binary codes). The trellis is

a directed graph where paths in the graph represent codewords. The trellis

representation is most useful when the code admits a small-sized trellis; in

this case, ML decoding can be performed using the Viterbi algorithm,

which essentially finds the shortest path in the trellis.

5.1.1 Finite State Machine Codes and the Trellis

Definition 5.1: Let M be a finite-state machine (FSM) over the input

alphabet {0, 1}. An FSM M is simply a directed graph made up of states.

Each state (node) in the graph has two outgoing edges, an input-0 edge and

an input-1 edge. For a given edge e, we use type(e) {0, 1} to denote the

"type" of the edge. In diagrams of the FSM, we use solid lines to denote

input-0 edges, and dotted lines to denote input-1 edges. Each edge has an

96

associated output label made up of exactly R bits. For an edge e, we use

label (e) {0, 1}
R
 to denote the output label.

The FSM can be seen as an encoder as follows. When the machine receives

a block of input bits, it examines each bit in order; if the bit is a zero, the

machine follows the input-0 edge from its current state to determine its new

state, and outputs the output label associated with the edge it just traveled.

If the bit is a one, it follows the input-1 edge. The overall rate of this

encoding process is r = 1/R.

For example, consider the FSM in figure (23). Suppose we start in state 00,

and would like to encode the information bits 1010. Our first information

bit is a 1, so we follow an input-1 edge (dotted line) to the new state 10,

and output the label 11. The next information bit is 0, so we follow the

input-0 edge (solid line) to the new state 01, and output the label 10. This

continues for the next two information bits, and overall, we travel the path

00 10 01 10 01, and output the code bits11100010.

Figure (23) : A state machine code with a rate-1/2. The bit pairs on the transition edges

represent encoded output bits.

97

Definition 5.2: The Trellis In order to simulate the operation of a single

FSM M over some number k of input bits; we will define a trellis T. The

trellis T is a graph with k + 1 copies (M0, … , Mk) of the states of M as

nodes.

The trellis T has edges between every consecutive copy of M, representing

the transitions of the encoder at each time step, as it encodes an information

word of length k. So, for each edge (s, s') connecting state s to state s' in the

FSM M, the trellis contains, for each time step t where 1 ≤ t ≤ k, an edge

from state s in Mt-1 to state s' in Mt. This edge will inherit the same type and

output label from edge (s, s') in M. Figure (24) gives the trellis for the FSM

in Figure (23), where k = 4. The bold path in Figure (23) indicates the path

taken by the encoder in the example given earlier, when encoding 1010.

 M0 M1 M2 M3 M4

Figure (24): A trellis for the rate-1/2 FSM code in figure (23). The trellis has length k =

4, and five node layers (M0, M1, M2, M3 , M4). As in the state transition table, the bit pairs

on the transition edges represent encoded output bits. Each layer of the trellis represents

one input bit. The bold path is the path taken by the encoder while encoding the

information bits 1010.

98

We can view the encoder as building a path through the trellis, as follows.

Denote a "start-state" of the FSM. The trellis length k is equal to the length

of the information word. The FSM encoder begins in the start state in M0,

uses the information word x as input, and outputs a codeword y. The length

of this codeword will be kR = k/r= n. Since every state has exactly two

outgoing edges, there are exactly paths of length k from the start state,

all ending in trellis layer Mk. So, the set of codewords is in one-to-one

correspondence the set of paths of length k from the start state in M0.

Now we need to establish some notation we will use through our study of

trellis-based codes and turbo codes.

Definition 5.3: for each node s in a trellis, define:

1- out(s): the set of outgoing edges from s.

2- in(s): the set of incoming edges.

3- for a set of nodes S, define out(s) and in(s) to be the set of outgoing

and incoming edges from the node set S.

Let be the set of " input- 1" edges entering layer t. formally,

 = { e in() : type(e) = 1}

we also define edge sets , where an edge is in if it outputs a 1 for the

 code bit. Formally,

 = { e in() : = 1}

where t = ⌊ ⌋ + 1 and = i – R(t – 1).

99

5.1.2 Decoding Trellis-Based Codes

Assign a cost to each edge of the trellis, and then finding the lowest-cost

path of length k from the start state of the trellis.

For each edge e in T, define a cost . This is also referred to as the branch

metric. This cost will be the sum of the costs i of the code bits in the

output label (denoted label (e)) of the edge that are set to 1. Where the cost

 of a code bit is the log-likelihood ratio of the bit i.e

 = ln (
 ̃ |

 ̃ |
)

more formally,

 = ∑
.

5.1.3 Convolutional Codes

Convolutional codes can be seen as a particular class of FSM-based codes.

Their simple encoder and decoder have made them a very popular class of

codes. In this section we describe the basics of convolutional codes.

The state of a convolutional encoder is described simply by the last k-1 bits

fed into it, where k is defined as the constraint length of the code. So, as the

encoder processes each new information bit, it remembers the last k- 1

information bits.

The output (code bits) at each step is simply the sum (mod 2) of certain

subsets of the last k- 1 input bits. (We note that convolutional codes with

feedback cannot be described this way, but can still be expressed as FSM

codes.)

111

Convolutional encoders are often described in terms of a circuit diagram,

such as the one in Figure (3.1). These diagrams also illustrate how simple

these encoders are to build into hardware (or software). The circuit for a

convolutional encoder with constraint length k has k-1 registers, each

holding one bit. In general, at time t of the encoding process, the ith register

holds the input bit seen at time t - i. In addition, there are R output bits,

each one the mod-2 sum of a subset of the registers and possibly the input

bit. The connections in the circuit indicate which registers (and/or the input

bit) are included in this sum.

For example, in Figure (25), the constraint length is 3, and so there

are 2 registers. The rate is 1/2, so there are two output bits. The bits

(, , … ,) are fed into the circuit one at a time. Suppose the

current 'time" is t. The first output bit is the sum of the current input

bit (at time t) and the contents of the second register: the bit seen at

time t-2. The second output bit is the sum of the input bit, and the

two registers: the bits seen at time t - 1 and t - 2.

In figure (25) The actions of a convolutional encoder for a rate-1/2

convolutional code From its initial state 00, given an input stream of 100.

Diagram (a) shows the initial state of the encoder, with both memory

elements set to 0. The first input bit is a 1. Upon seeing this bit, the encoder

outputs 1 + 0 = 1 for the first code bit, and 1 + 0 + 0 = 1 for the second

code bit. Diagram (b) shows the encoder after processing the first input bit;

the memory elements have slid over one step, so the new state is 10. The

new input bit is 0, and so the next output bits are 0 + 0 = 0 and 0 + 1 + 0 =

111

1. Diagram (c) shows the next state (01), the new input bit (0) and the next

output bits (1 and 1). Finally, diagram (d) shows the final state 00 after

processing all three input bits.

Figure (25): The actions of a convolutional encoder for a rate-1/2 convolutional code

The FSM and Trellis For Convolutional Codes: We can also describe a

convolutional code using a finite state machine. The state s of a

convolutional encoder can be described by the contents of the registers in

the circuit, so s .

The FSM for our running example is the same one shown in Figure (23).

This is simply a graph with one node for each possible state s of

the circuit in Figure (25). For each node with state s, we draw two edges to

other states, representing the two possible transitions from that state (one

for an input bit of 1, one for an input bit of 0). As before, the edges are

solid lines if the transition occurs for an input bit of 0 and dotted lines for

an input bit of 1.

The edges are labeled as before, with the bits output by the encoder circuit

making this transition. For example, if we take the first step in Figure (25),

112

the current state is 00, the input bit is a 1, the next state is 10, and the

output bits are 11. So, in our FSM graph we make an edge from state 00,

written with a dotted line, into state 10, and label the edge with code bits

11. We derive the trellis for a convolutional code from the FSM, as we did

in the previous section. The trellis for the code in Figure (25) is shown in

Figure (24).

Feedback If a convolutional code has feedback, then its new state is not

determined by the previous k-1 information bits, but rather is determined

by the previous k-1 feedback bits. The feedback bit at time t is the sum

(mod 2) of the information bit at time t and some subset of the previous k-1

feedback bits. These codes still have a simple state transition table, and can

be decoded with a trellis.

5.2 LP Formulation of Trellis Decoding

Since every cycle in the trellis passes through , the ML decoding

problem on tail-biting trellises is easily solved by performing | | shortest

path computations. However, we present a sub-optimal LP (min-cost flow)

formulation of decoding in order to make it generalize more easily to turbo

codes, where we have a set of trellises with dependencies between them.

We define a variable for each edge e in the trellis T, where 0 1.

Our LP is simply a min-cost circulation LP applied to the trellis T, with

costs e. Specifically, our objective function is:

Minimize ∑

We have the conversation constraints on each node:

113

∑ = ∑ (68)

We also force the total flow around the trellis to be one. Since every cycle

in T must pass between layers and , it suffices to enforce:

∑ = 1 (69)

We define auxiliary LP variables (, … ,) for each information bit, and

LP variables (, … ,) for each code bit. These variables indicate the

value that the LP assigns to each bit. They are not necessary in the

definition of the linear program, but make the connection to decoding much

clearer. The value of an information bit should indicate what "type" of

edge is used at layer t of the trellis; if = 1, this indicates that the encoder

used an input-1 edge at the trellis layer. Accordingly, we set

 ∑ (70)

The value of indicates the bit output by the encoder. Therefore, if

= 1, then the edge taken by the encoder that outputs the bit should have

a 1 in the proper position of the edge label. To enforce this in the LP, we

set ∑
 (71)

Since all variables are indicators, we enforce the constraints

 0 1 for all e T

 0 1 for all t {1, …., k} and (72)

 0 1 for all i {1, …., n}

We use the notation poly(T) to denote the polytope corresponding to these

constraints; formally,

114

 ploy(T) = {(f, x, y): equations (68) – (71) holds}

Overall, our LP can be stated as:

 Minimize ∑ s.t. (f, x, y) ploy(T)

Or , equivalently,

 Minimize ∑

 s.t. (f, x, y) ploy(T)

5.3 A Linear Program for Turbo Codes

In general, a turbo code is any set of convolutional codes, concatenated in

serial or parallel, with interleavers between them. These are often referred

to in the literature as "turbo-like" codes [1], because they are a

generalization of the original turbo code [3]. In this section we describe an

LP to decode any turbo code. In fact, we will describe an LP for a more

general class of code realizations, defined on trellises built from arbitrary

finite-state machines, and associations between sets of edges in the

trellises.

Figure (26): A circuit diagram for a classic rate-1/3 Turbo code. The "copy" FSM

simply copies the input to the three outputs. The two component codes CC1 and CC2

are convolutional codes.

115

Turbo Codes

The original turbo code consists of two component rate-1 convolutional

codes concatenated in parallel, with an interleaver in front of each of them.

Additionally, the information bits themselves are added to the codeword.

Figure (26), shows a tree representation of this code. The encoder for the

turbo code in Figure (26) takes as input an information word x of length k.

Two separate interleaves (fixed permutations) and are applied to the

information word. Then, the length-k words π1 (x) and π2 (x) are sent to the

encoders for rate-1 convolutional codes CC1 and CC2. The output of these

encoders, along with a copy of the information word x, is output as the

codeword.

In general we will define a turbo code by a directed out-tree ,whose nodes

correspond to trellises T. Each edge in the tree has an associated interleaver

π ; this is a permutation on k elements, where k is the length of the trellis

whose corresponding node the edge enters.

Formally, let be a directed out-tree, where the nodes {1, … , | |}

correspond to trellises { , … , | | . We assume that each trellis has

tailbiting. By convention, we have node 1 in as the root, corresponding to

trellis . Let denote the length of trellis , 1 ≤ m ≤ | |, and let

denote the length of the output labels on edges of trellis . For each edge

from m to m' in the tree , there is an interleaver π1 [m, m'], a permutation

on elements. Let L() denote the set of leaves of (the nodes in

with no outgoing edges).

116

The encoder for a turbo code takes a block of k information bits, feeds it

into the trellis at the root, and sends it through the tree. The codeword is

output at the leaves of the tree. An individual trellis of size receives

a block of bits of size from its parent in , applies its encoding process

to the block, and sends a copy of its output block of size to each of

its children in . Each edge applies its permutation to the bits sent across it.

For the encoder to work properly, it must be the case that for every edge

from m to m' in, we have = , so the number of output bits of

trellis is equal to the number of input bits for trellis .

The overall codeword is the concatenation of all the outputs of the

leaf trellises of . For a trellis where m L(), we use to

denote the string of code bits output by trellis . The

overall code length is then n =∑ , and the overall rate

is k/n. This codeword is transmitted over the channel, and a corrupt

codeword ̃ is received. We use ̃ to denote the corrupt bits

corresponding to the code bits , for some m L().

5.3.1 Turbo-Code Linear Program (TLCP)

We will define the Turbo Code Linear Program (TCLP), a generic LP that

decodes any turbo code. We will first outline all the variables of TCLP,

then give the objective function and the constraints. Basically, the LP will

consist of the min-cost flow LPs associated with each trellis, as well as

"agreeability constraints," tying together adjacent trellises in .

i. Variables: All variables in TCLP are indicator variables in {0, 1},

relaxed to be between 0 and 1. For each m , we have variables

117

= (
 ,... ,

) to denote the bits entering trellis . The TCLP

variables = (
 ,... ,

) represent the information bits, since

they are fed into the root trellis . Additionally, we have variables

 = (
 ,... ,

)to denote the output bits of each trellis .

Finally, for each m , and edge e in trellis , we have a flow

variable ; we use the notation to denote the vector of flow

variables for all edges e in trellis .

ii. Objective Function: The objective function will be to minimize the

cost of the code bits. Since the code bits of the overall code are only

those output by the leaves of the encoder, we only have costs

associated with trellises that are leaves in . For each trellis where

m L(),we have a cost vector with a cost
 for all i {1,

… , }. These costs are associated with the bits
 output by the

encoder for trellis . The value of
 is the log-likelihood ratio for

the bit , given the received bit ̃
 . Thus our objective function is

simply:

minimize ∑ ∑

 .

iii. Constraints: Recall that for a trellis T, the polytope poly(T) is the set

of unit circulations around the trellis T (defined before). In TCLP, we

have all the constraints of our original trellis polytope poly() for

each trellis in the tree . In addition, we have equality constraints

to enforce that the output of a trellis is consistent with the input to

each of the child trellises. We define the LP constraints formally as

follows:

118

1. Individual trellis constraints: for all m ,

(, ,) ply().

These constraints enforce that the values are a unit circulation

around the trellis , and that and are consistent with that

circulation

2. Interleaver consistency: For all edges (m, m') , for all t

{1,…, },

 =

These constraints enforce consistency between trellises in the tree that

sharean edge, using the interleaver associated with the edge.

A decoder based on TCLP has the ML certificate property for the following

reasons. Every integral solution to TCLP corresponds to a single cycle in

each trellis Furthermore, the consistency constraints enforce a

correspondence between adjacent trellises in , and the output bits { : m

 L()}. We may conclude that every integral solution to this LP

represents a valid set of encoding paths for an information word x, and the

cost of the solution is exactly the cost of the codeword output by this

encoding at the leaves. Thus this LP has the ML certificate property.

119

Chapter 6

Conclusions and Future Work

1- The work in this thesis represents the consideration of the application

of linear programming relaxation to the problem of decoding an

error-correcting code. We have been successful in applying the

technique to the modern code families of turbo codes and LDPC

codes, and have proved a number of results on error-correcting

performance. However, there is much to understand even within

these families, let alone in other code families we have yet to

explore. In this final chapter we survey some of the major open

questions in LP decoding of turbo codes and LPDC codes, and

suggest a number of general ideas for future research in this area.

2- There are many interesting open questions regarding the relationship

between message-passing algorithms and LP decoding. One needs to

run an interior point algorithm to solve the LP. It would be

interesting to see if there was a primal-dual or other combinatorial

algorithm with a provably efficient running time. An interesting

question is how modifying belief propagation to be "cost-balanced"

affects performance.

3- Improving the Running Time a drawback of the LP approach to

turbo decoding is the complexity of solving a linear program. Even

though the simplex algorithm runs quite fast in practice, most

applications of error-correcting codes require a more efficient

decoding algorithm. The specialized structure of TCLP may allow a

111

combinatorial solution. In general, it is an interesting question to

determine how the min-cost agreeable flow problem must be

restricted in order to make it solvable combinatorially.

4- In this thesis we study binary linear codes in memoryless symmetric

channels. There is certainly a way to generalize the notion of LP

decoding for more general codes and channels, and this opens up a

whole new set of questions.

In many applications, we operate over larger alphabets than binary

(for example in the transmission of internet packets). We could

model this in an LP by having a variable range over this larger space,

or by using several 0 - 1 variables as indicators of a symbol taking on

a particular value. Alternatively, we could map the code to a binary

code, and use an LP relaxation for the binary code. It would be

interesting to see if anything is gained by representing the larger

alphabet explicitly.

In practice, channels are generally not memoryless due to physical

effects in the communication channel. Even coming up with a proper

linear cost function for an LP to use in these channels in an

interesting question. The notions of pseudocodeword and fractional

distance would also need to be reconsidered for this setting.

5- In all the published research we found that Additive White Gaussian

Channel with normal distribution having variance one is used, we

know that in general the logistic distribution is better than the normal

distribution when having the same mean and variance making, we

111

study the case of channel having a logistic distribution with variance

one and compare our results with the normal distribution, we found

that our results were more accurate to determine wither the receiving

digits are 0 or 1. For example, it's clear that in the case of normal

distribution the probability of choosing 1 was 0.95 while we were

more accurate and we choose 1 under a probability exactly 0.98 .

6- A Final Remark

The work in this thesis represents the exploration of a computer

science theorist into the world of error-correcting codes. We have

discovered that many standard techniques in theoretical computer

science can help shed light on the algorithmic issues in coding

theory. The author therefore encourages communication between

these two fields, and hopes that this work serves as an example of the

gains that can result.

112

References

[1] A. Schrijver. Theory of Linear Programming. John Wiely, 1987.

 [2] Bahl, L. R., Cocke, J., Jeinek, F., and Raviv, J., “Optimal Decoding

of Linear Codes for Minimizing Symbol Error Rate,” Trans.

Inform. Theory, vol. IT-20, March 1974, pp. 248-287.

 [3] Berrou, C., Glavieux, A., and Thitimajshima, P., “Near Shannon

Limit Error-Correcting Coding and Decoding: Turbo Codes,”

IEEE Proceedings of the Int. Conf. on Communications,

Geneva, Switzerland, May 1993 (ICC’93), pp. 1064-1070.

 [4] Berrou, C. and Glavieux, A., “Near Optimum Error Correcting

Coding and Decoding: Turbo-Codes,” IEEE Trans. on

Communications, vol. 44, no. 10, October 1996, pp. 1261-1271.

 [5] C. E. Shannon. A mathematical theory of communication. Bell

System Technical Journal, 27:379-423, 623-656, 1948.

 [6] Derand Sklar. Fundamental of turbo codes

 http://www.informit.com/articles,2002.

 [7] Divsalar, D. and McEliece, R. J., “Effective Free Distance of

Turbo Codes,” Electronic Letters, vol. 32, no. 5, Feb. 29, 1996,

pp. 445-446.

 [8] Divsalar, D. and Pollara, F., “On the Design of Turbo Codes,”

TDA Progress Report 42-123, Jet Propulsion Laboratory,

Pasadena, California, November 15, 1995, pp. 99-121.

 [9] Divsalar, D. and Pollara, F., “Turbo Codes for PCS Applications,”

Proc. ICC ’95, Seattle, Washington, June 18-22, 1995.

http://www.informit.com/articles,2002

113

 [10] Dolinar, S. and Divsalar, D., “Weight Distributions for Turbo

Codes Using Random and Nonrandom Permutations,” TDA

Progress Report 42-122, Jet Propulsion Laboratory, Pasadena,

California, August 15, 1995, pp. 56-65.

 [11] D. Hochbaum, editor. Approximation Algorithms for NP-hard

Problems. PWS Publishing, 1995.

 [12] F. J. Macwilliams and N. J. A. Sloane, The Theory of Error

Correcting Codes. Amsterdam, The Netherlands: North-

Holland, 1978, pp. 567–580.

 [13] Hagenauer, J., “Iterative Decoding of Binary Block and

Convolutional Codes,” IEEE Trans. on Information Theory,

vol. 42, no. 2, March 1996, pp. 429-445.

 [14] Jon Feldman, Decoding error-correcting codes via linear

programming, Ph.D. thesis, Massachusetts Institute of

Technology, 2003.

[15] J. Feldman, M. J. Wainwright, and D. R. Karger. Using linear

programming to decode linear codes. 37th annual Conference

on Information Sciences and Systems (CISS ’03) , March 2003.

Submitted to IEEE Transactions on Information Theory , May,

2003.

[16] Jon Feldman, Martin J.Wainwright, and David R. Karger, Using

linear programming to decode binary linear codes, IEEE

Transactions on Information Theory, 51(3), pp. 954.972.

(2005).

114

 [17] M. Grotschel, L. Lov´asz, and A. Schrijver. The ellipsoid

method and its consequences in combi-natorial

optimization. Combinatorica , 1(2):169–197, 1981.

 [18] Mohammad H. Taghavi N. and Paul H. Siegel, Adaptive linear

programming decoding, (2006).

 [19] Moon T. Error correction coding: Mathematical Methods and

Algorithms. United States of America: John Wiley and Sons;

2005.

 [20] Pietrobon, S., ―Implementation and Performance of a Turbo/MAP

Decoder,‖ Int’l. J. Satellite Commun., vol. 16, Jan-Feb 1998, pp.

23-46.

 [21] P. Elias, “Error-free coding,” IRE Trans. Inform Theory, vol.

IT-4, pp. 29–37, Sept. 1954.

 [22] Ramjee Prasad, “OFDM for Wireless Communications

systems”, Artech House Publishers, 2004.

 [23] Robert H. Morelos-Zaragoza, The art of error correcting coding,

John Wiley & Sons,Ltd, 2002, ISBN: 0471 49581 6.

 [24] Robertson, P., Villebrun, E., and Hoeher, P., “A Comparison of

Optimal and Sub-Optimal MAP Decoding Algorithms

Operating in the Log Domain,” Proc. of ICC ’95, Seattle,

Washington, June 1995, pp. 1009-1013

 [25] R. W. Hamming. Error detecting and error correcting codes.

The Bell System Tech. Journal, XXIX(2):147-160, 1950.

115

 [26] University of South Australia, Institute for Telecommunications

Research, Turbo coding research group. http://www.itr.unisa.edu.au/

~steven/turbo/.

 [27] Wikipedia.org , Np-hard, 2006, Internet:

 http://en.wikipedia.org/wiki/NP-hard.

 [28] Wikipedia.org, Convex hull, 2006, Internet:

 http://en.wikipedia.org/wiki/Convex_hull.

 [29] http://en.wikipedia.org/wiki/Eb/N0

http://www.itr.unisa.edu.au/
http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/Convex_hull
http://en.wikipedia.org/wiki/Eb/N0

116

Appendix A

Matlab program for Additive White Gaussian Noise channel (normal

distribution with variance one).

clc

clear

t = input('received message')

n= input(' number of iterations')

l(1)=0;

l(2)=0;

l(3)=0;

l(4)=0;

x(1) = t(1);

x(2) = t(2);

x(3) = t(3);

x(4) = t(4);

y(1,2)= t(5);

y(3,4)= t(6);

y(1,3)= t(7);

y(2,4)= t(8);

lc(1)= 2*x(1)

lc(2)= 2*x(2)

lc(3)= 2*x(3)

lc(4)= 2*x(4)

ly(1,2)= 2*y(1,2)

ly(3,4)= 2*y(3,4)

ly(1,3)= 2*y(1,3)

ly(2,4)= 2*y(2,4)

for k= 1:n

for i= 1 : 4;

 if mod(i,2)==1

 lh(i)=-1*sign(lc(i+1) + l(i+1)) *sign(ly(i,i+1))

*min(abs(lc(i+1) + l(i+1)),(ly(i,i+1)))

 else

 lh(i)=-1*sign(lc(i-1) + l(i-1))*sign(ly(i-1,i))

*min(abs(lc(i-1) + l(i-1)),(ly(i-1,i)))

 end

end

for i = 1 :4;

 l(i) = lh(i)

end

for i= 1 : 4;

 if abs(i -1.5) == .5

117
 lv(i)=-1*sign(lc(i+2) + l(i+2))

*sign(ly(i,i+2))*min(abs(lc(i+2) + l(i+2)),(ly(i,i+2)))

 else

 lv(i)=-1*sign(lc(i-2) + l(i-2))*sign(ly(i-2,i))

*min(abs(lc(i-2) + l(i-2)),(ly(i-2,i)))

 end

end

for i = 1 :4;

 l(i) = lv(i)

end

end

for i = 1 :4;

 l(i) = lv(i) + lh(i) + lc(i)

end

clc

 Lc(1,1)= lc(1);

 Lc(1,2)= lc(2);

 Lc(2,1)= lc(3);

 Lc(2,2)= lc(4)

Leh(1,1)= lh(1);

 Leh(1,2)= lh(2);

 Leh(2,1)= lh(3);

 Leh(2,2)= lh(4)

Lev(1,1)= lv(1);

 Lev(1,2)= lv(2);

 Lev(2,1)= lv(3);

 Lev(2,2)= lv(4)

Ld(1,1)= l(1);

 Ld(1,2)= l(2);

 Ld(2,1)= l(3);

 Ld(2,2)= l(4)

118

Appendix B

Matlab program for a channel using Logistic Distribution with

variance one.

clc

clear

t = input('received message')

n= input(' number of iterations')

l(1)=0;

l(2)=0;

l(3)=0;

l(4)=0;

x(1) = t(1);

x(2) = t(2);

x(3) = t(3);

x(4) = t(4);

y(1,2)= t(5);

y(3,4)= t(6);

y(1,3)= t(7);

y(2,4)= t(8);

lc(1)= 2*pi/sqrt(3)+2*log((1+exp((pi/sqrt(3))*

(-x(1)-1)))/(1+exp((pi/sqrt(3))*(1-x(1)))))

lc(2)= 2*pi/sqrt(3)+2*log((1+exp((pi/sqrt(3))*

(-x(2)-1)))/(1+exp((pi/sqrt(3))*(1-x(2)))))

lc(3)= 2*pi/sqrt(3)+2*log((1+exp((pi/sqrt(3))*

(-x(3)-1)))/(1+exp((pi/sqrt(3))*(1-x(3)))))

lc(4)= 2*pi/sqrt(3)+2*log((1+exp((pi/sqrt(3))*

(-x(4)-1)))/(1+exp((pi/sqrt(3))*(1-x(4)))))

ly(1,2)=2*pi/sqrt(3)+2*log((1+exp((pi/sqrt(3))*

(-y(1,2)-1)))/(1+exp((pi/sqrt(3))*(1-y(1,2)))))

ly(3,4)= 2*pi/sqrt(3)+2*log((1+exp((pi/sqrt(3))*

(-y(3,4)-1)))/(1+exp((pi/sqrt(3))*(1-y(3,4)))))

ly(1,3)= 2*pi/sqrt(3)+2*log((1+exp((pi/sqrt(3))*

(-y(1,3)-1)))/(1+exp((pi/sqrt(3))*(1-y(1,3)))))

ly(2,4)= 2*pi/sqrt(3)+2*log((1+exp((pi/sqrt(3))*

(-y(2,4)-1)))/(1+exp((pi/sqrt(3))*(1-y(2,4)))))

for k= 1:n

for i= 1 : 4;

 if mod(i,2)==1

 lh(i)=-1*sign(lc(i+1) + l(i+1)

)*sign(ly(i,i+1))*min(abs(lc(i+1) + l(i+1)),(ly(i,i+1)))

 else

 lh(i)=-1*sign(lc(i-1) + l(i-1))*sign(ly(i-1,i))*

min(abs(lc(i-1) + l(i-1)),(ly(i-1,i)))

119
 end

end

for i = 1 :4;

 l(i) = lh(i)

end

for i= 1 : 4;

 if abs(i -1.5) == .5

 lv(i)=-1*sign(lc(i+2) + l(i+2))*sign(ly(i,i+2))*

min(abs(lc(i+2) + l(i+2)),(ly(i,i+2)))

 else

 lv(i)=-1*sign(lc(i-2) + l(i-2))*sign(ly(i-2,i))*

min(abs(lc(i-2) + l(i-2)),(ly(i-2,i)))

 end

end

for i = 1 :4;

 l(i) = lv(i)

end

end

for i = 1 :4;

 l(i) = lv(i) + lh(i) + lc(i)

end

clc

 Lc(1,1)= lc(1);

 Lc(1,2)= lc(2);

 Lc(2,1)= lc(3);

 Lc(2,2)= lc(4)

Leh(1,1)= lh(1);

 Leh(1,2)= lh(2);

 Leh(2,1)= lh(3);

 Leh(2,2)= lh(4)

Lev(1,1)= lv(1);

 Lev(1,2)= lv(2);

 Lev(2,1)= lv(3);

 Lev(2,2)= lv(4)

Ld(1,1)= l(1);

 Ld(1,2)= l(2);

 Ld(2,1)= l(3);

 Ld(2,2)= l(4)

 الْطٌيت الٌجاح جاهعت

 العليا الذراساث كليت

فك الشيفزة هي الٌْع حيزبْ باسخخذام البزهجت

 الخطيت

 ئعذاد

 ُشام حاهذ عبذ الزؤّف طلاحاث

 ئشزاف

 د. هحوذ ًجيب أسعذ

 د. هحوذ عوزاى

العليتا الذراستاث بكليتت الزياضتياث فتي الواجستخيز درجت اثلوخطلب اسخكوالا الأطزّحت ُذٍ قذهج

 فلسطيي. ًابلس, في الْطٌيت الٌجاح جاهعت في

3102

 ب

 فك الشيفزة هي الٌْع حيزبْ باسخخذام البزهجت الخطيت
 ئعذاد

 ُشام حاهذ عبذ الزؤّف طلاحاث
 ئشزاف

 د. هحوذ ًجيب أسعذ
 د. هحوذ عوزاى

 الولخض

خ الثزهجح الخط٘ح الوْسعح فٖ اكرشاف ّذصح٘ح الأخطاء فٖ ًفحص فٖ ُذٍ الزسالح ذط٘ثقا

تعض أًْاع الش٘فزج. طزٗقح الثزهجح الخط٘ح الوْسعح ُٖ طزٗقح ق٘اس٘ح فٖ خْراسه٘اخ الرقزٗة

 ّتحْز العول٘اخ,ّذسرخذم أٗضا فٖ إٗجاد الحل الج٘ذ شثَ الوثالٖ لوسائل الأفضل٘ح الصعثح.

لثعذٗح ّخْراسه٘اخ الفك العذدٗح لفك الش٘فزج الضزت٘ح)حالح لقذ ذن اسرخذام طزٗقح الاحروالاخ ا

خاصح هي ش٘فزاخ الر٘زتْ(. ذن كراتح تزًاهج علٔ الواذلاب ٗقْم تعول حساتاخ للخْارسه٘ح

الساتقح)خْارسه٘ح الفك العذدٗح(, ح٘س ذن ذطث٘ق الثزًاهج علٔ الرْسٗع اللْجسرٖ تاسرخذم الرثاٗي

 ا هع أتحاز آخزٗي كاًد ًرائجٌا الأفضل., ّتوقارًح ًرائج حساتاذ1ٌ

طزٗقح الثزهجح الخط٘ح احرلد هكاًِا فٖ ش٘فزاخ الر٘زتْ العاهح الوكًْح هي ذعزٗشاخ هثسطح

أص٘لح لِذٍ الش٘فزج, ح٘س ذن ذشك٘ل ص٘غح هشكلح الثزهجح الخط٘ح لوعالجح ذعزٗشح ّاحذج للش٘فزج

ًد الرعزٗشح ذذفق هرجَ, ذن ذْس٘ع ُذٍ الص٘غح كوسألح إٗجاد الحذ الأدًٔ لركلفح الرذفق, ح٘س كا

لإٔ ش٘فزج هي ًْع ذ٘زتْ ترطث٘ق ذق٘ذاخ ت٘ي الورغ٘زاخ الوْجْدج فٖ هسألح الثزهجح الخط٘ح فٖ

 كل ّحذج ش٘فزج.

إحذٓ الفْائذ الوِوح فٖ اسرخذام الثزهجح الخط٘ح فٖ فك الش٘فزاخ أى الٌاذج هي فك الش٘فزج ُْ

رلن هي الوعلْهاخ ُْ الأكثز احروال٘ح أًَ الوزسل, ُذٍ الخاص٘ح ذسؤ الحل الأهثل, إٔ أى الوس

 خاص٘ح الرصذٗق الأكثز احروال٘ح.

