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Cone Me\t/rlilc Spaces
By
Haitham D. Abu Sarries
Supervisor
Dr. Abdallah A. Hakawati
Abstract
Cone metric spaces were introduced in [1] by means of partially ordering
real Banach spaces by specified cones. In [4] and [8] , the nation of cone —
normed spaces was introduced. cone- metric spaces, and hence, cone-
normed spaces were shown to be first countable topological spaces. The
reader may consult [5] for this development. In [6], it was shown that, in a
sense, cone- metric spaces are not, really, generalizations of metric spaces.
This was the motive to do further investigations.
Now, we put things in order.
1. Definition:[1] Let (E ,I-l) be a real Banach space and P a subset of E

then P is called a cone if :

(a) P is closed, convex, nonempty, and P # {0}.

(b)a,beR;ab>0;x,y€P = axthbyeP.

(c)xePand-xeP=x=0.

2. Example: [13] Let E= (!, the absolutely summable real sequences.

ThenthesetP={x € E:x,>0,vn} isaconeinE.
In our project, we will attempt to enforce the feeling that cone metric
spaces are not real generalization of metric spaces by the necessary theory
and examples. In the meantime, we will keep it conceivable to arrive at

generalization aspects.
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Preface
Recently, the concept of cone metric space is introduced and some fixed
point theorems for contractive mappings in a cone metric space were
established. Indeed, the authors there replace the real numbers R by
ordering a Banach space E to define cone metric space.
After that, series of articles about cone metric spaces started to appear.
Some of those articles dealt with fixed point theorems in those spaces and
some other with the structure of spaces themselves.
Convergent and Cauchy sequences, complete spaces, normed spaces,
metric spaces and others are studied in a new way in cone metric space.
Topological questions were answered in cone metric spaces, where it was
proved that cone metric spaces are: topological space, first countable space,
Hausdorff space and T, space.
One of the important questions that will appear is: " are cone metric spaces
real generalizations of metric spaces or they are equivalent? " Recently, this
question has been investigated by many authors by showing that cone
metric spaces are metrizable and defining the equivalent metric using a
variety of approaches.
So our belief is that a cone metric space is really a metric space and every
theorem in metric spaces is valid for cone metric space automatically. This
enforces the feeling that cone metric spaces are not real generalization of
metric spaces. In the meantime, we will keep it conceivable to arrive at
generalization aspects. So we suggested a section which is titled by " On

generalization possibilities ".
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Finally, we define new concepts of measure theory in the sense of cone
metric space.
This thesis consists of five chapters. Each chapter is divided into sections.
A number like 2.1.3 indicates item (definition, theorem, proposition,
remark, lemma or example) number 3 in section 1 of chapter 2. Each
chapter begins with a clear statement of the pertinent definitions and
theorems together with illustrative and descriptive material. At the end of
this thesis we present a collection of references.
In chapter (1) we introduce the basic results and definitions which shall be
needed in the following chapters. The topics include normed space, Banach
space, cone, properties and examples of cones, cone metric spaces,
convergent sequence, Cauchy sequence, complete cone metric space, cone
normed space and cone Banach space.
Chapter (2) will be devoted to give an introduction to fundamental ideas of
metrizability of cone metric spaces. We will start by introducing a
metrizable space and presenting some efforts of some authors in showing
that cone metric spaces are metrizable spaces. Finally, we give our
contributions in this direction. We would like to mention here that this
contribution is accepted for publication in the journal of nonlinear analysis
and application (JNAA).
In chapter (3) some topological concepts and definitions are generalized to
cone metric spaces. The topics includes distance between two nonempty
subsets, bounded subsets, sequentially closed subsets, normal space, T4

space, continuous mappings, sequentially continuous maps, c-net subsets,
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totally bounded subsets, Lebesgue element, compact and sequentially
compact subsets. Also, it was proved that cone metric spaces are:
topological spaces, first countable space, Hausdorff space and T, space.
Chapter (4) has two purposes. First, we review some fixed point theorems
of contractive mappings in cone metric spaces. Second, we obtain some
examples in cone metric spaces that some properties are incorrect in these
spaces but hold in ordinary case (metric space) and conversely. First
example states that comparison test does not hold in cone metric spaces, the
second example is for normal cones in which we can find two members f, g
of the cone such that f < gbut I f1>1 g I, and the last example is a
contractive mapping on a cone metric space but not contractive in the
Euclidean metric space.

In chapter (5) we shall review the theory of Lebesgue measure, Lebesgue
integral and Lebesgue integrable functions. Finally, we define new

concepts of measure theory in sense of cone metric space.
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Chapter One

Preliminaries
This chapter contains some definitions and basic theorems about normed
space, Banach space, cone, normal cones, regular cones, minihedral and
strongly minihedral cones, cone metric space, convergent sequences,

Cauchy sequences, completeness and cone normed spaces.

Definition 1.1.1: [22] A real normed space is a real vector space X
together with a map Il: X —IR, called the norm, such that:

1) IxI >0, vx € Xand Ixl =0 if and only if x = 0.

i1) lax! = |o/lIxl, ¥X € X and o € R.

iii) Ix+yl < Ixl+lyl, vx, y € X.
Definition 1.1.2: [22] A complete normed spaces is called a Banach space.

Definition 1.1.3: [1] Let E be a real Banach space with norm |I-]I.

A nonempty convex closed subset P c E is called a cone if it satisfies:

i) P£ {0}.

i)0<a,beRandx,y € P imply that ax+by € P.

Iii) x € P and —x € P imply that x = 0.

The space E can be partially ordered by the cone P < E as follows:
x <y if and only if y—x € P. We write x < y (x is away behind y) if:
y—x € P°, where P° denotes the interior of P. Also, x < y means that:

x<ybutx#y.



Some examples of cones: [13]

1) In R, the nonnegative numbers form a cone.
P
- P—
R

2) In R?, any wedge which extends to infinity from the origin is a cone.

3) LetE=R3, then P ={(x1, X2, X3)€ E ; X; >0} is a cone.

4) LetE=R", then P={(x,,x,,...x, ) €EE; X; >0} is a cone.

5) In £P spaces including (¢*), the set P ={x_, €t . x_, > 0, ¥n} is
a cone.

6) In E= C[0 ,1] with the supremum norm, the set P={f € E: f >0} is

a cone.
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Definition 1.1.4: [24]A cone P in (E , II) is called:

(N)Normal: If there exists a constant k > 0 such that:
0 <x <y implies that Ixl <klyl.
The least positive integer k is called the normal constant of P, we will see

that there are no cones with constant k < 1.

(R)Regular: If every increasing sequence which is bounded above is

convergent.
That is if {X,},» is a sequence such that x, <x,<..<y for some y € E
then there exists x € E such that : lim|x, —x|| = 0. Equivalently; the cone

n-—oo

P is regular if and only if every decreasing sequence which is bounded
below is convergent.
Regular cones are normal and there exist normal cones which are not

regular, see [2] and [15].

(M)Minihedral: If sup {Xx, y} exists VX, y € E and strongly minihedral if

every subset of E which is bounded above has a supremum.
(S) Solid: If P* £ @.
Proposition1.1.5: [2] There are no normal cones with normal constant k < 1.

Proof: Let P be a normal cone with normal constant k < 1, choose a non-
zero element x € P and 0 < & < 1 such that k < (1- €) then; (1- €) x < x but
(1- ¢) IxI > kixI , so this is a contradiction, hence there is no normal cones

with normal constant k < 1.
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Lemmal.l.6: [2] Every regular cone is normal.

Proof: Let P be a regular cone which is not normal. For each n > 1, choose
t,,s, €P such that t,—s, €P and n’|t,[<|s,|. For each n > 1 put

S
”t ” and X ||t ” . Then:x, , ¥, , ¥,—X, €P. “y “ land N <HX H vn=

1. Now, since the series ZFHyn | is convergent and P is closed, there is
n=1

=1
an element y €P such that 2 ,_nzyn =Y.
n=1

Since: 0 <X; <X, + X, SX;+ X, +5 X3 <...<Y | the series

S . X
> LX . is convergent because P is regular. Hence, AILT;”—';:O.
n=1

This is a contradiction.

Theorem1.1.7:[2]For each k >1, there is a normal cone with normal

constant M > k.

Proof: Let k >1 is given; consider the real vector space

E= {ax +b:a,beR;x € [1—%,1}} equipped with the supremum norm

and P={ax +b € E :a<0,b>0} . First, we show that P is regular (and so

normal).
Let {a,x +b,} _ be an increasing sequence which is bounded above that is,

there is an element cx+d €E such that:
aX +b, <a,x +b, <...<ax +b, <...<cx +d
Then{a,} .and{b }  are two sequences in R such that:

b, <b,<b,<..<d, a=a,=a,=...=cC

Thus {a,} . and {b,} _are convergent by the monotone convergence

theorem.



8
Leta, — a, by, — b, then ax+b €P and (a,x+ b,) — (ax+b)
Therefore, P is regular and hence normal (by lemm1.1.6).
So there is M > 1 such that 0 < g < fimplies Igl < MIfl, for all g, f € E.
Now, we show that M > k.
First, note that f(x)=—kx +k €P, g(x) =k €P and f—g €P implies that

0 <g <f. Therefore, k =lgl < Mifl =M.
On the other hand, if we consider f(x)=—(k +k1jx +k and g(x)=k thenf, g

€ P and f—g € P, also lgl=k and Ifl = 1‘%*% .

Thus, k =lgl >k Ifl =k +kl-1 . This shows that M > k .

Proposition 1.1.8:[7] Every strongly minihedral normal cone is regular.

Proof : Let Pc E be a strongly minihedral normal cone with normal
constant k and a; <a, <az <... increasing and bounded above in E. Since P
is strongly minihedral, one can find sup{ a: , az, as,...} say a.

Claim:a, — ainE.

To prove the claim; let € > 0 be given, choose ¢ > 0 such that: kicl <e.
Now, a—c¢ « a, hence find m such that a—c « an « a. Then,

0 <a—a, K a—an < ¢, Yn>m. Since a, is increasing  la—a, | <klcl < &,
vn>m . Therefore, !ma” =a,

Proposition1.1.9 : [15]There exist normal cones which are not regular.

The following example gives illustration.
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Examplel.1.10:[15] Let E = C[0 , 1] with the supremum norm and
P={f€E:f >0} then P is a normal cone with k =1 which is not regular.
This is clear, since the sequence X" is monotonically decreasing, but not

uniformly convergent to 0. Thus, P is not strongly minihedral.

2. Cone metric spaces
In what follows, E is a real Banach space, P a cone in E and the partial

ordering are given with respect to P.

Definition1.2.1:[1] Let X be a nonempty set, suppose that the mapping

D: XxX — E satisfies the following:

M 0<D(x,y),vx,ye Xand D(x,y)=0ifand only if x=y.

(ID(x, y) = D(y, x).

@ii)D(X,y)<D(x,2)+D(z,y), ¥ x,y,z€ X.

Then D is called a cone metric on X, and the pair (X, D) is called a cone

metric space.

Definition1.2.2:[1] Let (X, D) be a cone metric space, x € X and {X. } be
a sequence in X, then:

(){xn} is said to be convergent to x € X whenever for every ¢ € E with
¢ > 0 there is N such that for n >N, D(X», X) «<cC..

(i){xn} is called a Cauchy sequence in X whenever for every ¢ € E with
¢ > 0 there is N such that for each n, m >N, D(X», Xm) <C.

(iii)(X , D) is a complete cone metric space if every Cauchy sequence is

convergent.
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Examplel.2.3: [25] Letq>0,E=1",P={{x,} € E: X,>0; ¥n}

Let (X, p) be a metric space and D: XxX — E defined by:

D(x, vy) ={[%} } .Then (X , D) is a cone metric space and the

normal constant of P is equal to k =1.

Examplel.2.4 :[25] Let E = (C[0,») ,I'l.), P={fEE:f(x) >0}, (X, p)
be a metric space, D: XxX — E defined by D(x , y)=p(x,y)¢ where
¢:[0, 1]— R™is continuous then (X , D) is a cone metric space and the

normal constant of P is k =1.

Theorem1.2.5:[1] Let (X, D) be a cone metric space, P be a normal cone

with normal constant k. Let {X, } be a sequence in X. Then:

(i) {X, } converges to x if and only if D(x,, x ) —>0asn — oo.

(i) If {X, } converges to x and {X, } converges to y, then x =y. That is the
limit of {X, } is unique.

(i) If {X, } converges to x, then {X, } is a Cauchy sequence.

(iv) {x, } is a Cauchy sequence if and only if D(X, , X,)— 0as n,m — o,
(WIf {x,} and {y, } are two sequences in X and X, —» X, Yy, = Y (h—)

Then D(x,,y,) —D(x,y)as (n — «).

Proof :

(1): Suppose that {x_ } converges to x. For every real € > 0; choose ¢ € E

with ¢ > 0 and klcl < .
Then, there is N such that for all n >N, D(x,,xX) < c¢. So that when

n> N, ID(Xn, X)I < klcl <. This means D(Xn, Xx) -0 as n— oo
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Conversely; suppose that D(x,, X) - 0asn — « for c € E withc > 0

there is & > 0 such that IxI < & implies that c—x € P’ for this & there is N,

such that for all n >N, ID(x,, x)I < 8, so c—D(x,, X) € P". This means

D(Xn , X) < c. Therefore, {x,} converges to X.

(i1): For any ¢ €E with ¢ >0, there is N such that for all n >N, D(x ,, X) «<c
and D(X, , y) «c, we have:

D(x , y) < D(x,, X) +D(X,, y) < 2c. Hence ID(x , y) I < 2klcl
since ¢ was arbitrary =D(x , y) = 0. Therefore, x = y.

(iii): For any ¢ € E with ¢ >» 0, there is N such that for all n, m > N,
D(x, ,x)<<%and D(Xm, X)L % Hence; D(Xn ,Xm) < D(xn, X)+ D(Xm, X) < C.
Therefore, {x. } is a Cauchy sequence.

(iv): Suppose that {xn } is a Cauchy sequence. For every ¢ > 0, choose

c € Ewith ¢ >» 0 and klcl < €. Then there is N, foralln, m>N

D(Xn, Xm) &< ¢. So that ID(Xn, Xm)l < klcl < &, when n, m > N. This
means; D(Xn, Xm) — 0as (n, m — o).

Conversely; suppose that D(Xn, Xm) — 0 (n, m — o) for ¢ € E with

¢ > 0, there is 8 > 0, such that Ixl < § implies c—x € P’ for this & there is N,
such that for all n , m > N, ID(Xn, Xn)l < 8. S0, c—D(Xn, Xn) € P thus,

D(xn, Xm) < c. Therefore {xn } is a Cauchy sequence.
&

(v): For every ¢ > 0, choose ¢ € E with ¢ >» 0 and Icl <4k+2

From x»— xand y»— Yy, we have:

D(Xn,yn) <D(Xn, X)+D(x, y)+D(yn , y) < D(x, y)+2c
D(X, y) < D(Xn , X)*D(Xn, yn)+D(yn, y) < D(Xn, yn)+2c
Hence, 0 <D(x,Yy) +2¢—D(Xn, yn) <A4c.
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Now,
ID(Xn , Yn)-D(X, y)I <ID(X, y)+2¢—D(Xn, Yn)l+12cl < (4k+2)lcl < g
Therefore, D(Xn, Yn)—D(X, y) as (n— o).

Proposition 1.2.6 : [15]If {x.} is a decreasing sequence (via the partial

ordering obtained by the cone P) such that x,—u then,

u=inf{X,:n e N}.

Proof: Since { X, } is a decreasing sequence, Xm— X € P for all n>m and

(Xm—Xn) —=(xm—U), Ym. Then closeness of P implies that u<x_, vm. To

see that u is the greatest lower bound of {x.}, assume that v € E satisfies

X >V, ¥vm, from (X —Vv) —(u—v) and the closedness of P we get u—v € P’

or v < u which shows that: u = inf{X» : n € N}.
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3. Cone Normed Spaces

Definition1.3.1: [16] Let X be a real vector space. Suppose that the
mapping Il, : X — E such that:

(1) Ixl, > 0, for all x € X and Ixl, = 0 if and only if x = O.
(i1) laxl, = |a/Ix], , for all x € X and a €R.

(i) Ix+yl, < Ixl,+lyl,, forall x , y € X,

Then Il is called a cone norm on X and (I, , X) is called a cone normed
space.

It is easy to show that every normed space is a cone normed space by

puttingE=R, P =[0, ).

Examplel.3.2: [16] Let E = ¢%, P ={{x,} €E :x,=0,vn} and (X, Il) be

a normed space and Il,: X — E defined as Ixl,= {”;(—n”} Then P is
a normal cone with k =1 and (X, I'l,) is a cone normed space.

Remark1.3.3: [8] Let (X, Il,) be a cone normed space, set
D(x ,y)= Ix —yly, it is easy to show that (X , D) is a cone metric space, D

is called "the cone metric induced by the cone norm I-l,".

Proof: Forall x,y,ze X

1)D(x, y)=0 if and only if Ix—yl,=0 if and only if x-y=0 < x =Y.
2)D(x,y) = IX =yl = I-(y—=x)l, = ly—xl, = D(y, X).

3)D(x, y) =lIx — yly=Ix—z+z—yl, < Ix—zl, + Iz—yl, = D(x , z) +D(z , y).

The following example is given to show that cone metrics do not

necessarily produce cone norms.
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Examplel.3.4: [12] Let X= ¢!, P=[0,0) and let E = R. Let for x , y € X

d(x )= 31x, -y, then let D(x ,y)= 201

It is easy to see that D is a cone metric relative to the cone P which is not
compatible with any cone norm.

Remark1.3.5: [8] Convergence in cone normed space is described by the
cone metric induced by the norm. For example, a sequence X, € X is said to
converge to an element x € X, if for all ¢ >0 there exist n. such that
D(Xn , x)=Ixs— xlp, < ¢ for all n > n. . Hence, a sequence x, — X if and only
if ID(Xn, X)I = IX—XIpl—0 as n — oo,

Definition1.3.6: [8] A sequence X, € X is called Cauchy sequence if for
all ¢>> 0 there exists n. such that D (Xn , Xm)=Ixn — Xmlp < ¢ for all n, m > n..

Equivalently, if lim [D (x,,x,)|= fim [[x,-x,] |=0.

Definition1.3.7: [8] We say that the cone normed space (X, I-lp) is a cone
Banach space when the induced cone metric of I-l, is complete.
Example1.3.8: [8] Let (E, I'ly), E=R? P={(x , y) : x > 0,y > 0}. The
function I-l, defined by | (X , y)l,= (afx|, Bly|), @, B > 0 is a cone normed
space and a cone Banach space.

Proof:

DIx, y)l, >0, I(x , y)l,=0 & (afx| , Bly)=(0 , 0) < a|x|=0 and Ply|=0 <
x=0,y=0&< (x,y)=(0,0).

inla(x , y)l=l(ax , ay)l,=(|ax| , lay})=lal(x , y)= |a|l(x , ¥)I,.

Hl(x , )4z, Wy = I(x+z , ytw)ly=(x+z| , [y+w]) < (X[+[z] , |yl+[w])
= (X[ [yD+(zl s wl) =1, s + 1z, W)l

Hence, I(x , Y)+(z , W)lp <1(X , Y)lH(z , W)l
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Therefore, (E, IIy) is a cone normed space.
Now, let z, = (X» , Yn) €R? be a Cauchy sequence, hence by

(Definition.1.3.6)

tim |z, =zl [= 0im [ %, =x.y0 =yl |7

m,n—oo m,n—w

lim (ex, —% ol Bl o~y D= lim o e, —x, [+ £y, ~y.[ =0.

m,n—oo ,N—>0

Therefore,|x, —x,,| >0, |y, —Yn.|—>0as n, m — oo. Hence, {Xn} and {yn}
are Cauchy sequences in the field R. One can find x , y €R such
that|x, —x |—>0,|y,—y |—>0asn,m— .

We shall show that z, = (X,, Yn) — z = (X, y) in cone norm space and

hence (R?, I-l,) is complete.

lim|| |z, —z ||, |=tim

n—oo n—oo

rI1im\/052|xn —x|2+ﬂ2|yn —y|2 =0.

[10¢, =%y, =y)l, | = lim|(elx, =] Bly, - y])]|=

n—oo

Proposition1.3.9: [8] Every cone normed space is topological space.
Actually, the topology is given by:

Te={Uc X:V¥x€eX,3c>»0suchthat B(x, c) c U} where;
B(x,c)={yeX:Ix-y)lh«c}

Theorem1.3.10: [8] The cone metric D induced by a cone norm on a cone
normed space satisfies:(i)D(x +a,y +a) = D(x, y)

(i)D(ox , ay) = a|D(x , y)

Proof:
We have D(x + a,y + a) =l(x+a) — (y + a)l, =l(x—y) I,= D(X, y)
and D(ox , ay) = lox— ayly=|a/l(x—y) l;=|a/D(x , y).

If our cone is strongly minihedral, then we can define continuous functions.
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Definition1.3.11: [8] Amap T: (X, D) — (X, D) is called continuous at
x € X if for each V €Tp containing T(X), there exists U €Tp containing X
such that T(U) cV. If T is continuous at each x € X, then it is called

continuous.

Definition1.3.12: [16] Let (X, I-l,) be a cone normed space, a subset

A c X is cone bounded if the set {||X ”p X e A} has an upper bound.

In the following examples we see a linear mapping that is not cone
bounded and a complete cone metric space which has no Cauchy

sequences.

Examplel.3.13: [16] Let E=R?, P={(x ,y) €EE:x,y>0},¢co=(1, 1) and
let X be the set of all real-valued polynomials on the interval [0, 1] and
I-l, is the supremum norm on X, that is :Ifl, = sup{|f(x)|: x € [0, 1]} for all
f e X. Let Il : X — E be defined by I[fl, = Ifly co, then (X, I-l,) is a cone
normed space. Suppose D: X — X is defined by D(f) =f'. Then, D is

a linear mapping that is not cone bounded.

Examplel.3.14: [19]Let X = {a1 , a2 ,...} be a countable set of distinct

points, E = (¢, I'l2) and P={{x,},, < ¢*:x, 20(vn 21)}. Put X‘z{%} o
n>1

all i > 1 and note that x; € €2 (i >1). Define the map D: XxX — P hy
D(Xi , X)={]xi—xj|}= {|3i —3j|} We see that (X , D) is a cone metric space,

n

the normal constant of P is k =1 and there is no Cauchy sequence in

(X, D). Hence (X, D) is a complete cone metric space.
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Chapter Tow
Metrizability of cone metric spaces

1.The generalization problem

To generalize a mathematical concept has been a very long living problem.
For example, the field of complex numbers is a generalization of the field
of real numbers. Just to mention, the equation x> +1 = 0 has no real
solution, but it has two complex solutions { i , —i }. This generalization
allowed us to extend very important functions from real to complex—valued
functions.

Again, just to mention, the sine function is bounded on the real field but
unbounded on the complex field, this occurs on the one hand. On the other
hand, similar geometric feature may be deceptive. For instance, viewing the
z-plane as being a copy of R? may cause a feeling of full match of vector
features of both fields. But just noting that the complex numbers make up
a one—dimensional vector space while R? is two—dimensional, will reviel
the difference between the algebraic structure of the two spaces.

A very important concept in functional analysis is absorbency. For
example, the Schatz's apple S = {(x,y) € R?: (x —1)? +y?* =1} U
{(x,y)ER? : (x+1)?+y? =1} U {(Xx,y)ER?:x=0, -1<y <1}

is absorbing if R? is our underlying space but is not if complex field is our
underlying space, see [27].

Our setting is no exception. We have an idea of generalization of the

distance function on any set. The original classical setting is the
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non-negative value being assigned to the distance between two elements in
a given set. Now, we would like to assign a member of a pre-assigned
object in a Banach space. This object is assumed to obey some algebraic
features.
We induce a mimic of the well-known order of R. The definition of this
order allows us to think in terms of the classical setting. In fact, every
single word of the classical setting transforms (almost) automatically to the
new setting. For example, convergence, generated topologies; the
preservation of points under some recursively defined functions. Almost
everything concerning limits transforms word for word here.
Having noted this, we made a deep study in the one direction of norms.
Every classical theorem of limits gets back to where we started classically.
In the literature, no new results were really different, with a few exceptions
when your new object is not so nice in the new setting (not natural). The
squeeze theorem may fail under the rigid setting. Also some tests to
compare limits may fail. Other than that, everything you might think of
makes a mimic in this new setting.
Remains to mention, our result was obtained in section 2 (Our
contributions) of this chapter is to prove the metrizability of cone metric
space. Our results are, in a way, to straighten the path of the renorming
process. This work (ours) was accepted for publication in INAA (see [20]).
It is worthwhile to mention, that the topic is still young, and many results
of the authors of many articles may be easily extended or altered, or even

proved to be untrue.
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Right now, the work is concentrated on the improvement of a result on
norms. The conjecture is: For any M > 0 there is a normal cone with
constant of normality k = M. So far, the idea is to consider the subset of
functions f defined on a subinterval of [0 ,1], where f(xX)=ax— b, with
a, b > 0. It is believed (Dr. A. Hakawati believes so) to do the whole

problem, probably in different spaces, (where k = M).

2. Historical introduction of metrizability of cone metric spaces

A metrizable space is a topological space that is homeomorphic to a metric
space. That is, a topological space (X, T) is said to be metrizable if there is
a metric d : XxX — [0, o0) such that the topology induced by d is T.

One of the first widely-recognized metrization theorems was Urysohn's
metrization theorem, it states that every Hausdorff second-countable
regular space is metrizable.

Several other metrization theorems follow as simple corollaries to
Urysohn's theorem. For example, a compact Hausdorff space is metrizable
if and only if it is second-countable.

In the previous chapter we pointed out that any cone normed space is
a topological space so it remains only the equivalent metric d.

Note: Every cone metric space is indeed metrizable.

Many authors showed that the cone metric spaces are metrizable and
defined the equivalent metric using different approaches. In this chapter we
will review some of those approaches and finally give our contribution in

this direction.
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Firstly, M.Khani and M.Pourmadian prove the metrizability of cone metric
space in [14].The following theorem defines a metric d representing a cone

metric space.

Theorem 2.2.1: [14] Let (X, E, P, D) be a cone metric space, a € P* and
c < 1 bein R, Then there exists a metric d: XxX — R* which induces the
same topology on X as the cone metric topology induced by D. Moreover,
a sequence {xn} is Cauchy in (X, E, P, D) if and only if it is Cauchy in
(X, d). In particular, (X, E, P, D) is complete if and only if (X, D) is
complete.

Their definition was:

min{k d (x JdXa

AX,Y) p e }1D(X,y)¢0

X,V)=
Y 0,D(x,y)=0

n-1
and d(x,y):im‘{Z:A(Xi X)) i X=X, X, =y}
i=1

Despite the intricacies of their definition, cone metric spaces can in part be
dealt with as the familiar metric spaces.

In [12], A.A. Hakawati and S. Al-Dwaik tried to answer the question of
metrizability in the sense of best approximation. For the classical setting of
best approximation theory readers can consult [3].

Also M. Asadi, S.M.Vaezpour and H.Soleimani in [6] tried to prove the
metrizability by answering "in the negative" the important question " Are

cone metric space a real generalization of metric space ? " by proving that
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every cone space is metrizable and the equivalent metric satisfies the same
contractive conditions as the cone metric.
Their definition was d(x , y)=inf{llull : D(x , y) < u}; where D: XxX— E
any cone metric and d: XxX— R* the equivalent metric to D.
Moreover, the same authors in[10] prove the metrizability of cone metric
spaces by renorming the Banach space, then every cone P can be converted
to a normal cone with constant k = 1.Their renorming was the following
norm. [l : E — [0, «) defined as:
[IXII|=inf{llull : x <u}+inf{llvIl : v <x}+IIxIl , forall x € E .
So every cone metric D : XXX — E is equivalent to the metric defined by
d(x,y) = |ID(x , Y. Therefore, every cone metric defined on a Banach
space is really equivalent to a metric.
It is important to know that this result of M. Asadi et al. in [10] has been
disproved by Z. Kadelburg and S. Radenovich in [18] because their result
cannot be true (an error appears in the last step of the proof, when proving
that P is monotone (normal cone with normal constant k=1) in the new
norm) this would imply that all cones in Banach spaces are normal, which
is obviously not true.
Also, some other authors in [11] showed that the result of M. Asadi et al.
does not hold. Moreover, they titled their works by " On non metrizability

of cone metric spaces ". The authors their presented the next counter

example which shows that the main theorem in [10] does not hold.
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Example 2.2.2 :[11] Let E = CZ ([0,1]) with the norm |[f ||=|f ||, +|f

and consider the cone P={fe E:f>0}thenPis anon-normal cone let

f(x) =xand g(x) =x*>,vVx € [0, 1].

Then, clearly, 0 < g < f. Further |f |=|f || +|f ' = 1#1 =2 and

[ee]

lof=lall. ]9, = 1+2=3.
Since f € P,
[IFNl| = inf{llull : f<u} +inf{livil : v < f} + |Ifll
= inf{{lull : f<u} + 0+ [Ifll
=Ifl.+2=1+2=3
Also, g €P, [llgll| = inf{llull : g <u} + inf{llvil : v<g} + llgll
= inf{llull : g <u} + 0+ ligll
=llgll.+3=1+3=4
According to M. Asadi et al. in [10], P is a normal cone with normal
constant K =1. Hence, 0 < g < f implies that |ligll| <|lIfll| = 4 <3 whichis a

contradiction.
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3. Our contributions
Our main result states that we can convert every strongly minihedral
normal cone to a normal cone with K =1 by giving a new norm to our
Banach space and consequently due to this approach every cone metric
space is really a metric space and every theorem in metric space is valid for
cone metric space automatically.

First of all, we need the following lemmas.

Lemma 2.3.1 :[20] Suppose P is a strongly minihedral cone in a real
Banach space E. Then; for x , y €E; we have:
@) inf{w:w>x+y}=inf{u:u>x} +inf{v:v>y}

(2) sup{w : w <x + y} =sup{u : u<x} + sup{v:v<y}

Proof:

(DLetU={w : w>x+y}, Ui={u:u>x}, Vi={v:v>y}

Let e, e,and e, be inf(U), inf(U:) and inf(V1), respectively.

Now, if u €U then u > x+y, so u—y > x and so u—y €U

Soe, <u-y=u-e,>yandsou—e, €V:.

Soe, <u—e,andsoe,+e,<u(thisistrue Vu€U). So

1) e, +te, <e

For the other inequality, note that by the very definition of e ,and e, we
have: e,+e, >xtysoe,+e, €U, and hence

(2) e<e,te,

by (1) and (2) we conclude that : e = e+ e,

e. infiw:w>x+y}=influ:u>x}+inf{v:v>y}
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Likewise, sup{w : w<x +y} =sup{u:u<x} +sup{v:v<y}. |

Lemma 2.3.2: [20] For 0 <x <y we have:
(Dlsup{U : U<x} <lsup{U’:U'<y}I

)linf{V : x <V Y < linf{V':y <V}l

Proof : For (1) letU={U: U<x},u'={u’:u'<y}

Since 0 < x <y we have x € U= x < sup(U’) so V u € U
we have

u <sup(U’) so sup(U) <sup(U’)

Hence, Isup{U : U <x}I <lIsup{u’:U'<y}l

Similarly, one can show: linf{V: x <V} <linf{V':y<V'}l. m

Theorem 2.3.3: [20] Let (E ,Il) be a real Banach space with a strongly
minihedral normal cone P. Then there exists a norm [-]Jon E with respect to

which P is a normal cone with normal constant K =1 .

Proof : Define []: E — [0, «) by:
[x]=linf{u : x <u}+HIsup{v:v <x}I, forallx e E
It is clear that, if x =0then [x] =0, forall x € E
If [x]=0then3 u, ,v,€Esuchthat: vV, <x<U,whereu,—0,V,— 0as
n—oo ., Since P is a normal cone then we get x = 0.
Therefore, [x] =0 if and only if x = 0.
Now, [—x]=linf{u:—x<u}l+Isup{v:v<-x}H
= [-sup{-u:—=x<u} Il +I=inf{~v:v<—x}

= Isup{—U: —u <x}I + linf{~v : x <V}
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= Isup{u : u <x}l + linf{v : x < v}l =[X]

For A >0,
[Ax]= linf{u : Ax <u}l + Isup{v : v < Ax}l
o 1 1 1. L
= ||1nf{?u(i u): XSZ u}pl + Isup{A (EV) 7 v <x}l
1 1 1

1
ZV: ZVSX}”:X[X]

= Minf{ Juixs7y u} I+ Asup{
Therefore, [Ax] =| A|[x], V X €E and A € R.
Now, we prove the triangle inequality, using lemma2.3.1
[X + y]=linf{u : x + y <u}l+lsup{v: v <x + y}
= [inf{u : x <u}+inf{u: u <y}l+lsup{v: v <x}+sup{v: vy}l
<linf{u: x <u}l+linf{u: u <y}l+lsup{v: v<x}l+lsup{v: v <y}l
= linf{u: x <u}l+lsup{v: v <x}I+linf{u: u < y}l+lsup{v: v <y}l
= [x] +[yl.
Therefore, [x+y] <[x] +[y]and hence, [‘] is a norm on E.
Finally, with respect to this norm [-], by lemma2.3.2, P is a normal cone
with normal constant k =1. ]
So our belief is that a cone metric space is really a metric space and every
theorem in metric spaces is valid for cone metric space automatically. This

enforces the feeling that cone metric spaces are not real generalization of

metric spaces.
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Chapter Three

Topological cone metric spaces

The generalizing problem occupies a large area of the interest of
mathematicians. On the one hand, it certainly opens wide scopes of
applications, and on the other, it helps find quicker solutions to problems
with long and perhaps difficult proofs. There are many occasions one can
mention. Just for example, the uniform boundedness principle made short,
the long proof of theorems on the continuity (boundedness) of maps
between Banach spaces. Some matrix maps between sequence spaces, we
proved to be bounded using only a paragraph full statement. We refer the
reader to any standard book on functional analysis which contains the
uniform boundedness principle. Albert Wilansky proved this in his book:
Modern Methods of Topological Vector Spaces, 1978.

In literature, we didn't find any specific problem our topic is trying to solve.
This, probably, why things are only aimed to make things general. We were
aware of this all the time. You cannot go for nowhere, but you can say that
this way, or that, does not, or does, give you new fruitful results. It looks
like that all authors do the same as we do.

Recently, in the 5" Palestinian conference on modern trends in
mathematics and physics, A. Hakawati suggested the following for
a statement to the generalization problem:

The map T: X —X has a fixed point if and only if it satisfies some

contraction condition with respect to some cone P.
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One thing we would like to reemphasize is that, under the normality
assumptions, there does not happen any intrinsic difference with the new
type of measure.

In this chapter, topological questions were answered in cone metric spaces,
where it was proved that cone metric spaces are: topological space, first
countable space, Hausdorff space and T, space. And some other
topological concepts and definition are generalized to cone metric spaces.

First of all, we need the following important lemmas:

Lemma 3.1.1: [5] Let (X, D) be a cone metric space. Then for all ¢ > 0,

Cc € E, there is &> 0 such that (c—x) €P’ (i.e. X « ¢) whenever |Ix]| < §, X € E.

Proof: Since ¢ > 0 and ¢ € P". Then, we can find & >0 such that:
{XEE:IIx—cll<d}cP.

Now, if [IX|l < & then [[(c—x) —clI=II-xII=IIX|l < §, and then (c—X) € P".

Lemma 3.1.2: [5] Let (X, D) be a cone metric space. Then, for all ¢; > 0

and c, > 0, ¢y, co EE, thereisc > 0, ¢ € E such that ¢ << ¢; and ¢ < C».

Proof: Since ¢, » 0, then by Lemma3.1.1, we can find 6 > 0 such that

IXIl < & this implies that X < ¢, Choose n. such that ni<ﬁ . Take ¢ =
0 1

e

S = Pl < § and therefore , C K cp. But also it is clear
0 nO

c
=L . Then |c|l =
n

Ny

that ¢ > 0 and ¢ «< c;.
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Theorem 3.1.3: [5] Every cone metric space (X, D) is a topological space.

Proof: For all ¢ » 0, c € E, let B(x , ¢)={y € X : D(x ,y) « ¢} and
B={B(xX,c):xeX, c>»0}ts0T={Uc X:vxeU,IBep,xeB
c U} is a topology on X. In fact, we have:

(T) 0, XeT,.

(T2) Let U, V € Tcand let x € UNV. Then, x € U and x € V, find ¢; > 0,
c2 > 0 such that x € B(x, ¢;) € U and x € B(x, ¢c2) ¢ V, by lemma3.1.2
find ¢ » 0 such that ¢ « ¢ and ¢ « c; .Then, clearly
X€B(x,c)cB(x,c)NBx,c)) cUNV. Hence, UNV € T..

(Ts) Let U, € T for each a € T', and let x € Ju, .Then Jo. € T such that

ael

x € Uo. . Hence, find ¢ > 0 such that x € B(x , ¢) c U, c | Ju,

ael’

Thatis, Ju, € Tc.

aell

Theorem 3.1.4: Every cone metric space (X, D) is a Hausdorff space.
Proof. Let x, y € X such that ( x # y ) are two points in X, then
DX , y) = ¢ > 0, so that [B(x ,%) N B(y ,%)] € T. and

c C\ _
B(x, E) N B(y,E)—Q

Definition 3.1.5: [8] Let U #@ and V #@ be two subsets of a cone metric
space (X , D) Then the distance between U and V, denoted by d(U ,V) is
defined by d(U ,V)=inf{D(u , v): u € U, v € V} If U={u}, we write
d(u, V) ford(U, V).

Example 3.1.6: [8] Let E=R%?and P = {(u, v): u>0, v > 0}. We define
D: R?%R? - Eby D((U1,U2),(V1,V2)=(ui—V4|,|uz— V) and let
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U={(u,v)€ER?2:1<u<2,3<v<4}V={(u,v)eER?*4<u<5b,
1<v<4}. Thend(U, V)=(2,0)

Definition 3.1.7: [8] Let (X , D) be a cone metric space. Then U c X is
called bounded above if there is ¢c € E, ¢ > 0 such that D(x , y) <c for all
X,y € U, and is called bounded if §(U) =sup{D(x, y): X,y € U} exists in

E. If the supremum does not exist, we say that U is unbounded.

Theorem 3.1.8: [8] Every cone metric space (X , D) is a first countable.

Proof: Let q € X and fix ¢ » 0 where ¢ € E. We see that;
B={B(q , %) :n € N} is a local base at g. Let U be open with q € U.

Find c; >» 0 such that q € B(q, ¢1) € U, also by lemma3.1.1, find n. such
that ni<< ci1 . Therefore, B(q, nc—) cB(q,c) cU.
0

0

Definition 3.1.9: [8] Let (X, D) be a cone metric space. A subset U c X is

called sequentially closed if whenever x, € U with X, — x then X € U.

Theorem 3.1.10: [8] Let (X , D) be a cone metric space. Then the ball
B(x c)={yeX:D(x,y)<c} ,c>0,ceE isasequentially closed.

Proof: Let y, €B(x ,c) be a sequence such that y, — y. Then D(y,, X) < ¢

and D(yn , X) » 0 asn— oo. Theny €B(x c) ifand only if D(x , y) < c if
and only if ¢— D(x,y) € P. But then D(y, , x) — D(x,y), since P is closed,
then limc-D(y,.x)) = c—D(x,y) €P.

Lemma 3.1.11: [8] Let P be a normal cone in E and {x,}, {y.} be two
sequences in E. If y, — y, X, — x as n— oo in (E, I-ll) and x, <y, for all n,

thenx <y.
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Proof: X, < y, implies that (y» — X,) € P. Since P is closed and

(Yn — Xn)— (y — X) then (y — x) € P. Hence, x <y.

Theorem 3.1.12: [8]Let (X , D) be a cone metric space and U c X where
U #@.Thenx € U if and only if D(x , U) = 0.

Proof : Suppose x € U. Then, for ¢ » 0 and each n € N,
B(x ,%) N U # @. Hence, for each n € N there is u, € U such that:

0<D(x, U) < D(x, ur) < =. Hence, ID(x , Ul < k”r:—”, for all n € N.

Therefore, D(x , U) = 0.

Conversely, let V € T. be open in (X , D) such that x € V, then we find
¢ » 0 such that B(x , ¢) € V. But, since 0 = D(x , U) <, find u € U such
that D(x ,u)<c.Thatisue UNB(Xx,c)cUNV.

Definition 3.1.13 :[4] A topological space X is a normal space if, given
any disjoint closed sets F and G, there are open neighborhoods U of F and
V of G that are also disjoint. More intuitively, this condition says that F and

G can be neighborhoods.

Definition 3.1.14: [4] A T4 space is a T; space X that is normal; this is

equivalent to X being normal and Hausdorff.


https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Disjoint_sets
https://en.wikipedia.org/wiki/Closed_set
https://en.wikipedia.org/wiki/Neighbourhood_%28topology%29
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Theorem 3.1.15: [4] Every cone metric space (X, D) is a T, space.

Proof: As already mentioned (X , D) is a Hausdorff space. To show that X
iIs normal, let F and G be two closed disjoint subsets of X and define
U={x e X:D(x, F) <D(x, G)}and V={x eX: D(x , F)>D(x , G)} from
the definition of U and V we see U N V = @. Furthermore, if a € F, then
D(@a,F)=0,a¢ G and, since G is closed, D(a , G) > 0. According to
(theorem 3.1.11), D(a, F) < D(a, G) so that a € U, it follows that F c U.
Similarly, G c V.

Now, if we show that U and V are open then we will be done. To show that
U is open, let x. €U then ¢; = D(X., F) < D(X., G) = c,. Since ¢c;—¢;> 0

[i.e. c,—C1 € P, c2 # ¢1], we may define C:%(Cz_Cl) and consider the basic

open B(X. , %). Let x € B(Xo ,%), then for each s > 0 and by the definition
of D(x., F), there exists a € F such that D(x.,, a)< c;+s . Therefore,
DX, F) < D(X, a) < D(X, X)*D(x., a) < %+ Ci+s . Then,
it follows that D(x, F) < %+ C1 :%(301+C2). Also, for b € G, we have
D(b, x.) < D(b, xX)+D(X, X.) and since D(X., G) < D(X.,, b) and
D(X, X) < % . We may write D(b, X) +% > D(X.,, G) = C,. Thus,
D(b, x) > cz—%:%(3cg+cl).Then, by noting that c,+3c; < 3c,+c; we

conclude that D(x , F) < D(x, G). That is, x € U and hence U is open

subset of X. The same reasoning shows V is also open subset of X.

Definition 3.1.16: [8] Amap T :(X , D) —(X, D) is called continuous at

x € X if for each V € T, containing T(x) there exists U € T. containing X
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such that T(U) < V. If T is continuous at each x € X, then it is called

continuous.

Definition 3.1.17: [8] Let (X, D) be a cone metric space. A map
T:(X, D) — (X, D) is called sequentially continuous if for x, € X such that

Xn — x implies T(Xn) — T(X).

Theorem 3.1.18: [8] Let (X, D) be a cone metric space, and assume that
T. (X, D) — (X, D) be a map. Then, T is continuous if and only if T is

sequentially continuous.

Proof: Assume X, — x and let ¢ > 0 since T is continuous at X € X, then
find c; > 0 such that T(B(x, ¢1)) <(B(T(X) ,c)). By convergence of x,, find
n. such that D(X, , X) < €1, V n > n. . But then, D(T(Xn), T(X)) < ¢
VY n>n..Since (X, D) is a first countable topological space, then the

converse holds.

Definition 3.1.19: [8] Let (X, D) be a cone metric space and ¢ > 0, ¢ € E.
A finite subset N= {c;, C,,.., cn} of X is called a c-net for the subset

U c X if for each p € U there is ¢;. € N such that D(p , ¢i.) < C.

Definition 3.1.20: [8] Let (X , D) be a cone metric space. A subset U of

(X, D)is called totally bounded if for each ¢ > 0, ¢ € E, U can be composed

into a finite union of sets Ni , i= 1,2 ,.... , n (ie. U c [N, ) where
i=1

O(Nj) < c.
Theorem 3.1.21: [8] Let (X, D) be a cone metric space, and U c X. Then

U is totally bounded if and only if for each ¢ > 0, ¢ € E, U has a c-net.
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Proof: Assume U is totally bounded and let ¢ » 0, ¢ € E. Then find
N1, N2,....., Nysuchthat U c CJNi , 0(Nj) < c.
i=1

From each N; choose an element ¢, | = 1 , 2 ,.... , n. Let
N={c;, Cz,....., Cn}. We show that N is a c-net for U.
Let p € U. Then there exists Ci., I.={1, 2 ,....., n} such that p € N;. . Using

that both p and ci. are in N;j. and that 6(N;j) « c, we conclude that
D(p, ci,) K< C.

Conversely, let ¢ > 0, ¢ € E. Then find a finite set N={c;, C2 ,.... , Cn}
such that for each p € U there is ¢i. € N with D(p , Ci) K C.

Let Ni = B(Ci , ¢)={x € X : D(x, ¢ci) «c},i=1,2,....,n. Then clearly
Uc N, and 5(N)) < c.
i=1

Definition 3.1.22: [8] Let (X , D) be a cone metric space. An element
c>» 0, c €E,iscalled a Lebesgue element of a cover C = {G;} c T, ,
i=1,2, 3,... forasubset U of (X, D) if for each subset V of U with

o(V) < c there exists Gj. € C such that V c G;..

Definition 3.1.23: [8] Let (X, D) be a cone metric space. A subset U of
(X, D) is called compact if each cover of U by subsets from T contains

a finite subcollection that also covers U.

Definition 3.1.24: [8] Let (X, D) be a cone metric space and U c X. If for
any sequence {X,} in U, there exists a subsequence {X,} of {x,} such that

{Xni} is convergent in U, then U is called sequentially compact.



34
Theorem 3.1.25: [8] Let (X, D) be a cone metric space and U c X . If U is

sequentially compact, then it is totally bounded.

Proof: Assume there exists ¢ > 0 where ¢ € E such that U cannot have
a c-net. Hence, for fixed x; € U there exists x, € U such that:
c—D(x1 , X2) & P, then also {x1 , xo} cannot be a c-net for U, hence there is
X3 € U such that c— D(X1 , X3) € P" and c—D(X3 , X2) & P". Like this method
we construct a sequence X, € U such that c—D(Xn, Xm) € P, V n, m €N,
So, any subsequence of {x,} cannot be Cauchy and {x,} cannot have

convergent subsequence. Therefore, U is not sequentially compact.

Theorem 3.1.26: [8] Let (X , D) be a cone metric space. Then, a subset

U c Xis compact if and only if U is sequentially compact.

Proof: Let C ={G;}.

., be an open cover for U. Since U is sequentially

compact, there is ¢ > 0 where ¢ € E such that for any subset V c U with

d(V) < ¢, there is i. € | with V < G;.. Since U is totally bounded then
U anJNi where 6(Nj) « c. Hence, foreachi=1,2,.,nfind G, G,, ...,

i=1

Gn € C such that N; € G; . That is, U CLnJNi c LnJGi and hence U is
i=1 i=1

compact.
However, it is noted that, since every cone metric space is a topological

space, then compact CMSs are sequentially compact.
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Chapter Four
Fixed point theory in cone metric spaces

1. Fixed point theorems of contractive mappings in cone metric spaces
Fixed point theory occupies a prominent place in the study of metric
spaces. One of the important questions that may arise in this connection is
"whether metric spaces really provide enough space for this theory or not?"
Recently, Huang and Zhang, in [1], rather implied that the answer is no.
Actually, they were who introduced the nation of cone metric space. Also,
they studied the existence and uniqueness of the fixed point for a self-map
T on a cone metric space (X, D).

The authors in [1] considered different contractive conditions on T. They
also assumed (X , D) to be complete when P is a normal cone, and (X , D)
to be sequentially compact when P is a regular cone.

Later, in [2], Rezapour and Halmbarani improved some of the results in [1]
by omitting the normality assumption of the cone P, when (X, D) is
complete, which is a milestone in developing fixed point theory in cone
metric spaces.

Moreover, in [17], H.P.Masiha, F.Sabetghadam and A.H.Sanatpour focused
on the regularity condition of the cone P, when (X , D) is sequentially
compact, and they improved the basic theorem in [1] (theorem 2.2) by
omitting the regularity assumption and considered the weaker condition of

normality on the cone P.
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In this chapter we will study some fixed point theorems in cone metric

space.

Definition 4.1.1: A contraction mapping on a cone metric space (X, D) is a
function T from X to itself with the property that there is some non-
negative real number K € [0 ,1) such that: D(T(x), T(y)) <KD(x , ¥)
forall x,y € X.

The smallest such value of K is called the Lipschitz constant of T and

contractive maps are sometimes called Lipschitzian maps.

Remark 4.1.2: If the contraction condition is instead satisfied for all K <1

then the mapping is said to be a non-expansive map.

Example 4.1.3: [21] Let X = [0, 1] U [2, o[ and D : Xx X — [0 , o)

1+1X If x € [0, 1]
defined by D(x , y) = |x —y |. Define f : X— X by: f(x)=12

1+§X If x € [2, oo

Then, (X, D) is a complete cone metric space and f is a non-expansive
mapping.

A contraction mapping has at most one fixed point. Moreover, the Banach
fixed point theorem states that every contraction mapping on a nonempty
complete metric space has a unique fixed point. And for any x in X, the
iteration function sequence: X, T(x), T(T(x)), .... converges to the fixed

point.

Theorem 4.1.4: [1] Let (X , D) be a complete cone metric space, P be

a normal cone with normal constant k. Suppose the mapping T: X—X
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satisfies the contractive condition: D(T(x) ,T(y)) < K D(x , y) for all
X,y € X, where K € [0, 1) is a constant. Then, T has a unique fixed point

in X, and for each x € X, the iterative sequence {T"(x)} n>1 converges to the

fixed point.

Proof: choose X.€ X set X3 = T(X.), X2 = T(X) = TiX.) ,
X3= T(X2) = T3(Xo)  evev s Xne1= T(Xn) = T™(Xo)

We have:

D(Xn+1 , Xn) = D(TXn, TXn-1) <K D(Xn, Xn-1)

<K?D (Xn-1,Xn-2) < .... < K" D(X1, Xo)
So forn>m;
D(Xn , Xm) < D(Xn , Xn-1)*D(Xn-1 , Xn-2)+.... D(Xme1 » Xm)

Km
1-K

< (K" K",  KMD(Xy, Xo) < D(X1, Xo)

Km

By normality assumption of P, we get: ID(Xn , Xm)Il < K KIID(X1, Xo)lI

this implies D(Xn, , Xm) — 0 (as n , m—o), hence {x,} IS a Cauchy
sequence. So, by the completeness of X, there exists x*€ X such that

Xn —X* as n—oo.
Now; D(Tx*, x*) < D(Txn , TX*)+D(TX, , X*) <K D(Xn , X*)+D(Xn+1 , X*)
So; IID(Tx*, Xx*)I < K(K I D(Xn , X*)I+ID(Xn+1 , X*)I) — 0

Hence; ID(Tx*, x*)|l =0 and so D(Tx*, x*) =0



38

Therefore, Tx* = x*, so x* is a fixed point of T.

Now, to see the uniqueness, let y* be another fixed point of T then:
D(x*, y*) = D(Tx*,Ty*) < KD(x*, y*).

Hence, [ID(x*, y*)Il =0 and so x* = y*.

Theorem 4.1.5: [1] Let (X , D) be a sequentially compact cone metric
space, P be a regular cone. Suppose the mapping T: X — X satisfies the
contractive condition: D(Tx ,Ty) <D(x,y) forallx,y € X, x#y. Then T

has a unique fixed point in X.
Proof: choose x. € X set X3 = T( Xo)
X2 = T(X1) = T2 (Xo)

X3 = T(X2) = T3(Xo), vovey Xne1 = T(Xn) = TM(Xo)
If for some n, Xn+1 = X, then X, is a fixed point on T, the proof is complete.
So we assume that for all n, Xu1 # X, set dn = d(Xn , Xn+1), Then:
Ons1 = D(Xne1 , Xnt2) = D(TXn ,Txe1) < D(Xn , Xn+1) = dn Therefore, d, is
decreasing sequence bounded below by 0. Since P is regular, there is
d* € E such that d, — d* as n— . So from the sequentially compactness
of X, there are subsequence {x,} of {X,} and x* € X such that x,; — x* as
1—00.
We have D(TXpi , TX*) < D(Xni , X*), 1=1,2, ...
So: ID(TXni , T X*)II <KID(TXni , X*)l — 0 (as i — )
where K is the normal constant of P.
Hence; TX, — Tx* , (i—x)
Similarly, T2Xpi — T?x* , (i—o0)

So, D(TXni , Xni) — D(Tx*, X*) , (i—o)
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and D(T%Xg; , TXni) — D(T2X*, TX*) , (i—0)
It is obvious that: D(TXyi , Xni) = dnj — d* = D(Tx*, X*), (i—w0)
Now, we shall prove that Tx*=x*. If Tx*#x*, then d*#0
We have: d* = D(Tx*, x*) > D(T?%* , Tx*)=lim D(T2%x;i ,Txw) = IM d,.q
=d*
We have a contradiction, so Tx* = x*. That is x* is a fixed point of T.The
uniqueness of fixed point is obvious.
The following theorem improves (Theorem 4.1.4) by omitting the

normality assumption of the cone P.

Theorem 4.1.6: [ 2] Let (X, D) be a complete cone metric space and the
mapping T: X — X satisfies the contractive condition: for all x , y € X
D(Tx ,Ty) <KD(x, y), where Ke [0 ,1) is a constant. Then: T has a unique
fixed point in X and for each x € X, the iterative sequence {T"X}.>1

converges to the fixed point.
Proof: Foreach x. € Xandn>1

set X; = TX. and Xp+1 = T"1X,, then:

D(Xn+1 y Xn) :D(TXn y TXn_]_) S K D(Xn y Xn_l)

<K?D(Xp-1, Xn2) < ... <K"D(X1 , Xo)
So forn>m,
D(Xn y Xm) S D(Xn y Xn-l) + D(Xn-l y Xn-2) +... + D(Xm+1 y Xm)

< (K4 K"2+ ..+ K"™) D(x;, X.) < D (x,,X,)

1-—

Now, let ¢ >» 0 be given, choose 6 > 0 such that c+N3(0)c P, where

Ns(0) ={y € E : |lyl| < &}
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Also, choose a natural number N4 such that:

m

ZoD(x,x)) € N(0), ¥ m = Nu. Then; %D(xl,xo)« c,V m3>N

K
Thus, D(Xn, Xm) < K

m

D(X;,X,) KC , Vn>m .

Therefore, {Xn}.>1 is a Cauchy sequence in (X , D), since (X , D) is

a complete cone metric space, there is x* € X such that x, — x*.

Choose a natural number N, such that D(x, , x*) « % for all n > N,

Hence, D(Tx*, x*) < D(TX, , TX*)+D(TX,, x*) <K D(Xn, X*)+D(Xn+1 , X*)
< DXp , X*)+D(Xp+1 , X*) < %+% =C , VYn>N,.Thus, D(Tx*, x*) « %

vm >1. So %—D(Tx*, x*) € P, ¥ m> 1. Since %—> 0 (as m—) and P is

closed, so —D(Tx*, x*) € P. But D(Tx*, x*) € P, therefore D(Tx*, x*) =0

and so Tx* = x*.

Theorem 4.1.7 :[17] Let (X , D) be a complete cone metric space. For
ce Ewithc>0and x. € X, set: B(X., ¢)={x € X : D(X , X) < c}.
Suppose the mapping T : X — X satisfies the contractive condition :
D(Tx , Ty) <K D(x,y), forall x,y € B(Xx., c) where K € [0 ,1) is
a constant. Then T has a unique fixed point in B(X. , ¢) if and only if there
exists y € B(x. , ¢) such that: D(Ty, y) < (1-K)(c—D(x. , y)).

The next theorem improves Theorem 4.1.5 by omitting the regularity

assumption and considering the weaker condition of normality on the cone P.

Theorem 4.1.8: [17] Let (X , D) be a sequentially compact cone metric
space and P be a normal cone. Suppose the mapping T: X — X satisfies the
contractive condition: D(Tx ,Ty) <D(x,y), forall x ,y € X and x #y. Then

T has a unique fixed point in X.
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2. On generalization possibilities

In this section we obtain some examples in cone metric spaces in which
some properties are incorrect but hold in ordinary case (metric space ) and
conversely. First example states that comparison test does not hold in cone
metric spaces, the second example is for normal cones where we can find
two members of the cone that f < gbut | f1>1 g I. The last example is
a contractive mapping on a cone metric space but not contractive in the
Euclidean metric space. All this will convey the possibility of the idea of
generalization.

As one notices, these examples appear elsewhere, but none of their authors
made the remark that with these at hand, cone metric spaces somehow

should generalize metric spaces.

Example 4.2.1: [13]Let E = C;[01] with norm |x|=|x|_ +|x’], and

P={x € E : x(t) > 0} which is not a normal cone. Foralln>1andt€ [0, 1]
t(n—l)z t n?

1)2+1_n2+1
sn(t)= ZX t)= 1—
|
|

m +1 n +ﬂ

put (9= and yn(t):iz 0 0 < % < yn and

50 =Sull=Isn =sul.. +1s

1 m?

2+2
m<+1 m-°+1

|m2t'“ <+ pin ‘1|

‘m +1 n+l‘

=1, for all n, m.

So {S.} is not a Cauchy sequence. Thus, ixk(t)is divergent, but

i y, () =§i Is convergent. This means that the comparison test does not

2
k=1 k=1 k

hold for series.
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Example 4.2.2: [13] Let E be a real vector space,
E={ax+b;a,beR, xe[% ,11} with supremum norm and

P ={ax +b; a <0, b > 0}. So P is normal cone in E with constant k >1.
Define f(x)= —2x+10, g(x)=—6x+11, f, g € P, then f < g since
g(x)—f(x)=—4x+1 € P. But, Ifl = f(%) =9 and lgl = g(%) = 8. Therefore,
f< g but Ifl > Ilgl.

These examples lead us to find other examples or properties which may be

held in ordinary spaces but don't hold in cone metric spaces.

Example 4.2.3: [1] Let E = R? and P = {(X, ¥) € R% X, y > 0} a normal
cone in E. Let X={(x,0) e R?: 0<x <1} U{(0,x) ER?:0<x<1}. The

mapping D: XxX — E is defined by:
4
D((X , O),(y , O)) = (g |X_Y| > |X_Y|)

D0, )0, y) = (x-yl, 5 [x-y)

D((x, 0,0, V)= D((0, )(x, 0)= (5 x+y, x+2Y)

Then (X ,D) is a complete cone metric space. Let T: X— X defined by:
T((x, 0))=(0, x) and T((0, x))=( %x , 0), then T satisfies the contractive

condition: D(T(X1 , X2), T(y1, Y2)) < KD( (X1 , X2), (y1 , Yy2)) for all
(X1, X2),(y1, Y2) € X, with constant K =% . It is obvious that T has

a unique fixed point (0, 0) € X. On the other hand, we see that T is not

a contractive mapping in the Euclidean metric R on X.
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Chapter Five

Measure theory in cone metric spaces
It is impossible to construct a function (measure #2) operating on subsets of
R and sending them to the extended non-negative real numbers such that
the followings all hold simultaneously:
(i)Domain of m = power set of R.
(iym (1) = length of I, where | is any interval.
@It {A} is a pairwise disjoint sequence of sets in R, then:
m(LiJAi ) = Zm(Ai).
(iv) m has a translation invariant property;
e. m(A)=m(A+x),VACRand VXx€ER.
It is not, yet, proven whether or not that »: of this sort would satisfy the
first three conditions. Even more we can say, specifically, it is known that
if R is equivalent (up to bijection) to each of its uncountable subsets, then
no measure m can satisfy the first three conditions simultaneously. So we
have to sacrifice at least one of the four given conditions.
For instance, relaxing the first condition or weakening it to only the
requirement that (Domain of m & power set of R) would make a good
choice, though some sets of real numbers would not be measurable
(i.e. have no images under #2) and this is the choice we will take.
Now, let us rewrite the conditions after that brief introduction:
(i) m(A) € [0, ], VA S R.

(if) m(1) = length of I; where 1 is any interval.
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@) 1f {Ai} is a pairwise disjoint sequence of sets in R, then:
/m(LiJAi ) = izm(Ai).
(iv) m has a translation invariant property;
e. m(A)=m(A+x) ,VACRand VxX€eER.
In this chapter we shall review the theory of Lebesgue measure, Lebesgue
integral and Lebesgue integrable functions. Finally, we suggest some
definitions for new concepts of measure theory in the sense of cone metric

space, in order to compare some of the basics of Lebesgue measure theory.

Definition 5.1.1: [23]

a) A collection m of subsets of a set X is said to be a o- algebra of X if it
has the following properties:

(i) X € m.

(i1) If A € m, then A €em, where A" is the complement of A relative to X.

iy IfFA= A, , A, emforn=1,2,3,... ,thenAem.
n=1

b) If m is c-algebra in X, then X is called a measurable space and the
members of m are called the measurable sets in X.

c) If X is a measurable space, Y is a topological space, and f is a mapping
of X into Y then f is said to be measurable provided that f(v) is

a measurable set in X for every open setvin.
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Definition 5.1.2: [23] For E c X, let Xt denote the characteristic function
of E

_ 1.t e E
I.e. Xe(t)= Ot «E

Xe(t) is measurable if and only if E is measurable.

Definition 5.1.3: [26]
a) A function S: T — R is said to be simple if its range contains only
finitely many points a, a2, a3, ..., 0n .

b) If S(a;)is measurable fori=1,2,3, ..., nthen such a function can

n
be written as: S = Z Xi-Zai , where A = SY(x;), then we define:
i=1

J sduziai H(A, NE) .,

E

c)If f is a non-negative measurable function on E, then define:

I fdu =sup{ I sdu; 0<s<f,sissimple and measurable on E}

£ E

Definition 5.1.4: [23]
a) A measure p is a function, defined on a o- algebra 7, whose range is in
[0, ] and which is countably additive. This means that if {A.} is

a disjoint countable collection of members of m, then:

H(UA =2 ur,).

b) A measure space is a measurable space which has a measure defined on
the o- algebra of its measurable sets.
c) A property which is true except for a set of measure zero is said to hold

almost everywhere (a.e).
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Remark5.1.5: [23] The following propositions are immediate
consequences of the definitions. Functions and sets are assumed to be

measurable on a measure space E;
a)If0<f<gthen |f<|g.

E E

b) IfAcBandf>0,then I fdu< I f du . (Monotonicity)

A B

c)If c is a constant, thenf c du=c wE).

E
d If E = E1 U E, where E; and E, are disjoint then:
jfdu=jfdu+[fdu.

E E, 3

e)Ifszandj fdu=0,thenf=0a.conE.
E

Definition5.1.6: [23] " The Lebesgue class £ "
a) Let f be measurable on R, then write: (i) f=f"—
(i) |f| = f* +F
where f* = max {f, 0}, f = max {-f, 0}
b)Let £ denote all measurable functions on R such that: J If] < oo
¢)For f e £, write: () | f=| £ — [ £

iy [ 1f=]F + f

Note: Members of the class £ are called Lebesgue integrable functions.
Now, let us mimic these terms from the beginning by replacing R by the

Banach space in different places in the previous and see what will happen.

Definition 5.1.7: Let (Q, F, n) be a measure space, where: Q: set, F: the

set of all measurable sets in Q and p: measure. Let E be a real Banach
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space and P a cone in E. Fix a non-zero element of P and call it 1. For any
subset A of Q, we define:

a) The indicator function I , (instead of the characteristic function X¢), by
1, co e A

Ia:Q — E ; such that: IA(c0)=<[O o & A

b) A simple function s on ® is one which takes the form : s : Q — E such

n
that: s= 2. %1 ac(®) k=1.2. .. . n.Where Ay € F. o € R
k =1

c) For a non-negative simple function s (ox > 0 , V k) we define:

n
deH:Zak 2(A)
0 k=1
Definition 5.1.8: Suppose f > 0 is a measurable function such that
f. Q — E, let St = {s: s is simple mble function s: Q — E with s > 0 and

s(o) <f(w), V o € Q}, then we can define:
Ifdp =sup{Jsdu:sec§f}.

0 0
Note: To ensure the well-definition of the last integral, we assume P is
strongly minihedral, f bounded on Q (i.e.: 3 z € P such that: f(0) <z, V © € Q)
and that  is a finite measure.

Now, for any measurable function f on Q, assume P is a strongly
minihedral cone in E, then:

(Df'( @) = sup{f(w), 0}

(i1) F( ®) = sup{—f(w), 0}. So that f(®w) = f'(®)— f (o)
Hence, we can define: I fdp= I frdp - j fdp

Q Q Q
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Finally, we also present a famous example herein.
Example 5.1.9: [13] Let (Q, S, w) be a finite measure space. S: countably
generated, assume that E = LP(Q), 1 < p < o and
P={f € E: f(ln) >0n a.e. on Q} then this cone P is normal, regular,

minihedral and strongly minihedral and it is not solid (P"= @).
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