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Abstract 

In this thesis we focus on the analytical aspects of the Fredholm 

integral equation a rising as a result of the heat energy exchange inside a 

convex and non-convex enclosure geometries. The phenomenon of heat 

radiation plays a very dominant role in a wide range of applications in 

science and technology. The general characteristicsof heat transfer modes ; 

namely: heat conduction, heat convection and heat radiation will be 

addressed. 

A systematic derivation of the heat radiation equation using some 

physical properties of heat transfer modes will be presented. Some 

important properties of the integral operator for the Fredholm integral 

equation will be investigated. The Banach fixed-point theorem will be 

introduced and used to show the existence and the uniqueness of the 

solution of the integral equation. A problem of coupling radiation with 

conduction will be solved and analyzed. 
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Introduction 

All bodies at temperature above absolute zero emit energy in the form 

of electromagnetic waves. A portion of this energy flux when impinging 

other bodies is absorbed. As a result, net energy flux occurs from a body of 

higher temperature to a body having lower temperature. This mode of 

energy transfer is known as heat radiation. The wavelength range 

encompassed by thermal radiation is approximately0.1 − 100 𝜇𝑚 . Heat 

radiation is, as each wave propagation phenomenon, of dual nature. It 

possesses the continuity properties of electromagnetic waves and the 

corpuscular properties characteristic for photons. Heat radiation plays a 

dominant role in engineering and modern technology. These applications 

includes the heat transfer in furnaces and combustion chambers and in the 

energy emission from a nuclear explosion. Also heat radiation must often 

be considered when calculating thermal effects in devices such as a rocket 

nozzle, a nuclear power plant, or nuclear rockets. One of the factors that 

accounts for the importance of the thermal radiation in some applications is 

the manner in which radiant emission depends on temperature. Another 

characteristic feature of radiation is that it can be transferred directly from 

one location to another only when the point can be seen when looking from 

another, i.e., it does not lay in the shadow zone. The presence of shadow 

zones should be taken into account in heat radiation calculation [3, 13, 23]. 

This leads to a rather complex algorithm and long computing times. 

It is evident that almost all phenomena that modelers deal with are 

governed by differential equations, however, heat radiation is one of the 
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few phenomena governed by an integral equation. Due to this nice feature, 

the idea of solving this Fredholm integral equation by the boundary 

element method naturally arises. Boundary element method together with 

other numerical methods for different types of heat radiation problems have 

been addressed in [4, 5, 13, 17, 18, 22, 23]. 

Moreover, the problem of coupling radiation with other heat transfer 

modes such as conduction and convection was also studied by many 

authors [4, 5, 11, 15, 19, 25]. Concerning the simplest nontrivial case of 

conductive body with nonconvex opaque radiating surface, we are aware of 

the work [31] and other previous work [4, 5]. They all studied some 

properties of the operators related to the radiative transfer and showed the 

existence of a weak solution under some restrictions. The  basic case has 

been extended to cover several conductive bodies and time dependent 

problems [14]. In the case of semitransparent material the analysis has been 

carried out in one-dimensional case with nonreflecting surfaces [16] and in 

two and three-dimensional with diffusively reflecting surfaces [12]. 

This thesis is organized as follows: 

Chapter one contains general characteristics of heat transfer modes. 

These include heat conduction, heat convection and heat radiation. 

The aim of chapter two is to present a systematic derivation of the 

equation of heat radiation. This equation is given in the form of a Fredholm 

integral equation of the second kind. 
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In chapter three, we investigate some important analytical results 

concerning the integral operator of the Fredholm integral equation of the 

second kind. 

In chapter four, we present the Banach fixed point theorem and show 

how this theorem can be used to show the existence and the uniqueness of 

the solution of the radiosity integral equation. 

In chapter five, we consider a conductive-radiative heat transfer model 

and investigate the question of existence and uniqueness of a weak solution 

for this problem.  

  



4 

 
 

 

 

 

 

 

 

 

 

Chapter One 

Introduction to Heat Transfer Modes 

 

 

  



5 

 
 

Chapter One 

Introduction to Heat Transfer Modes 

In this chapter, we summarize the general characteristics of heat 

transfer modes and some of their physical properties.  

 Heat Transfer is thermal energy in transit due to a spatial temperature 

difference.When a temperature gradient exists in a stationary medium, 

which may be a solid or fluid, we use the term conduction to refer to the 

heat transfer that will occur across the medium. In contrast, the term 

convection refers to heat transfer that will occur between a surface and a 

moving fluid when they are at different temperatures. The third mode of 

heat transfer is termed thermal radiation. All surfaces of finite temperature 

emit energy in the form of electromagnetic waves. Hence, in the absence of 

an intervening medium, there is net heat transfer by radiation between two 

surfaces at different temperature. 

1.1   Heat Conduction 

The most efficient method of heat transfer is conduction. This mode 

of heat transfer occurs when there is a temperature gradient across a body. 

In this case, the energy is transferred from a high temperature region to a 

low temperature region due to random molecular motion (diffusion). 

Conduction occurs similarly in liquids and gases. Regions with greater 

molecular kinetic energy will pass their thermal energy to regions with less 

molecular energy through direct molecular collisions. Different materials 

have varying abilities to conduct heat. Materials that conduct heat poorly 
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(wood) are often called insulator. Unlike radiation and convection, 

conduction requires the presence of intervening medium [29, 30]. 

Fourier Law 

The basic equation for the analysis of heat conduction is Fourier law : 

   𝑞𝑛 =  − 𝑘𝑛
𝜕𝑇

𝜕𝑛
      (1.1) 

where the heat flux𝑞𝑛 is the heat transfer rate in the n direction per unit 

area perpendicular to the direction of the heat flow(𝑊), 𝑘𝑛 is the thermal 

conductivity in the direction n (𝑊 𝑚. 𝐾) , 𝜕𝑇  /  𝜕𝑛 is the temperature 

gradient in the direction n(𝐾 𝑚) .The thermal conductivity is a thermo 

physical property of the material, which is in general, a function of both 

temperature  and location, that is𝑘 = 𝑘(𝑇, 𝑛). 

For isotropic materials, 𝑘is the same in all directions. For anisotropic 

materials such as wood and laminated materials. 

The temperature difference resulting from the steady-state diffusion of 

heat is thus related to the thermal conductivity of the material, the cross 

sectional area and the path length L, according to: 

𝑇1 − 𝑇2 = 𝑞 
𝐿

𝑘𝑛
    (1.2) 

The form of equation (1.2), where 𝑘𝑛 is constant that is equivalent to 

Ohm's Law governing electrical current flow through a resistance. It is 

possible to define a conduction thermal resistance as: 

𝑅 =
𝑇1−𝑇2

𝑞
  = 

𝐿

𝑘𝑛
    (1.3) 
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1.2   Heat Convection 

Heat energy transferred between a surface and a moving fluid at 

different temperature is known as convection. Convection heat transfer 

may be categorized into two forms according to the nature of the flow, 

natural convection and forced convection. 

In natural "free" convection, the fluid motion is driven by density 

differences associated with temperature changes generated by heating or 

cooling. Thus the heat transfer itself generates the flow which conveys 

energy away from the point at which the transfer occurs. 

In forced convection, the fluid motion is driven by some external 

influences. For example: the flow of air induced by a fan, by the wind, or 

by the motion of a vehicle, and the flow of water within heating, cooling, 

supply and drainage systems. 

If 𝑇1 is the temperature of the surface receiving or giving heat, and 

𝑇∞ is the average temperature of the stream of fluid adjacent to the surface, 

then the convective heat transfer q is governed by Newton's Law: 

𝑞 =  𝑕𝑐𝐴 (𝑇1 − 𝑇∞)     (1.4) 

where 𝑕𝑐 is the convective heat transfer coefficient,(𝑊 𝑚2. 𝐾) , A is 

the heat transfer surface area (m
2
).  

Heat transfer by convection is more difficult to analyze than heat 

transfer by conduction because no single property of the heat transfer 

medium, such as thermal conductivity, can be defined to describe the 
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mechanism. Heat transfer by convection varies from situation to situation 

(upon the fluid flow conditions), and it is frequently coupled with the mode 

of fluid flow [4]. 

1.3HeatRadiation 

 All bodies at temperatures above absolute zero emit energy in a form 

of electromagnetic waves. A portion of this energy flux when impinging 

other bodies is absorbed. As a result, net energy flow occurs from a body of 

higher temperature to a body having low temperature. This mode of energy 

transfer is termed heat radiation. Radiation plays a dominant rule in energy 

transfer at elevated temperatures and in the presence of rarefied gases. One 

of the factors that accounts for the importance of the thermal radiation in 

some applications is the manner in which radiant emission depends on 

temperature. For conduction and convection, the transfer of energy between 

two locations depends on temperature difference of the locations. The 

transfer of energy by thermal radiation, however, depends on the individual 

absolute temperatures of the bodies, each raised to a power in the range of 

about 4 or 5. It is clear that the importance of radiation becomes intensified 

at high absolute temperature levels. Consequently, radiation contributes 

substantially to the heat transfer in furnaces, composition chambers and in 

the energy emission from a nuclear explosion. Also heat radiation must 

often be considered when calculating thermal effects and devices such as a 

rocket nozzle, nuclear power plants and nuclear rockets. 



9 

 
 

Blackbody radiation 

Each body emits radiative energy. Radiative energy flux is defined as 

the amount of radiative energy passing a unit surface in a unit time: 

𝑒𝑟 =  
𝑑2𝐸𝑟

𝑑𝑠𝑑𝑡
     (1.5) 

where 𝑒𝑟  is the radiative energy flux (𝑊. 𝑚−2) ,𝐸𝑟 is the radiative 

energy( 𝐽),𝑑𝑠 is the infinitesimal surface(𝑚2) and 𝑑𝑡is the  infinitesimal 

time increment(𝑠). 

Radiation is transferred via electromagnetic waves whose lengths 

(spectrum) range from 0 to ∞. The amount of energy transported at a given 

wavelength is a function of this length. Functions associated with transfer 

at a certain wavelength are referred to as spectral or monochromatic 

quantities. These quantities will be denoted by appending a subscript λ to 

appropriate symbol.Functions associated with the entire spectrum are 

referred to as total or panchromatic quantities. Let 𝐴λ denote arbitrary 

spectral quantity and 𝐴stand for its panchromatic (total) counterpart. These 

two functions are related by the relationships: 

 𝐴λ =  
𝑑𝐴

𝑑λ
      (1.6) 

𝐴 =  ∫ 𝐴λ  𝑑
∞

0
λ  

     
(1.7)

 

Transport of radiation takes place a long straight lines referred to as 

lines of sight. 

To describe the transfer of heat radiation a long a line of sight, a 

notion of intensity of radiation is introduced. Intensity of radiation is 
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defined as a radiative flux passing through an infinitesimal surface 

orthogonal to the line of sight and subtended within an infinitesimal solid 

angle centered around the line of sight. 

𝐼 =  
𝑑3𝐸𝑟

𝑑𝑆⊥𝑑𝑡𝑑Ω
    (1.8) 

where𝐼  is the intensity of radiation(𝑊 𝑚2 ) , 𝑑Ω is the differential 

solid angle, and 𝑑𝑆⊥is the differential surface normal to the line of sight; 

𝑑𝑆⊥ =  𝑑𝑠 cos ∅ , ∅ is the angle with which the line of sight is inclined with 

respect to the surface normal .  

The intensity is connected with the energy flux and hence, it can be 

interpreted as a vector having a direction of the line of sight. As an infinite 

number of lines of sight cross at a given point, an infinite number of 

intensities can be assigned to a chosen point. 

A perfect emitter of radiant energy is called a blackbody. From all 

bodies of the same temperature a blackbody emits maximum energy. 

Kirchhoff's Law states that a blackbody is also a perfect absorber of radiant 

energy. Thus it absorbs the entire incident radiative energy. Quantities 

associated with this reference body will be marked by appending a 

subscript b to appropriate symbols. 

A blackbody, being by definition an ideal emitter of radiation, emits 

energy uniformly in all directions. Hence, the intensity of blackbody 

radiation 𝐼𝑏 is independent of direction. This property of a blackbody is 

referred to as the isotropy of blackbody emission. 
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The flux of radiative energy emitted by an elemental blackbody 

surface is termed blackbody emissive power𝑒𝑏 . This flux can be computed 

upon integrating the normal component of the intensity vectors over the 

entire hemisphere centered at that surface: 

𝑒𝑏 = ∫ 𝐼𝑏 cos ∅
2𝜋

 𝑑Ω   (1.9) 

where 𝐼𝑏 is the blackbody intensity of radiation, 𝑒𝑏 is the blackbody 

emissive power. 

A differential solid angle can be related to the polar angle ∅ and the 

angle 𝜃 by: 

𝑑Ω =  𝑠𝑖𝑛∅𝑑∅𝑑𝜃   (1.10) 

Taking into account equation (1.10) and performing an appropriate 

integration, equation (1.9) yields a relationship linking the intensity and the 

emissive power of the blackbody: 

𝑒𝑏 =  𝐼𝑏 ∫ ∫ cos ∅
𝜋/2

∅=0
sin ∅𝑑∅𝑑𝜃 =

2𝜋

𝜃=0
 𝜋𝐼𝑏  (1.11) 

Quantum mechanics yields an equation expressing the blackbody 

spectral emissive power as a function of temperature and wavelength. This 

relationship is known as the Planck's function and has the form: 

𝑒𝑏λ =
2𝜋𝐶1

λ5 exp  
𝐶2
λ T

 −1 
   (1.12) 

where λ is the wavelength(𝑚), 𝑇 is the temperature 𝐾 , 

𝐶1 =  0.59544 × 10−16𝑊. 𝑚2,    𝐶2 = 1.4388 × 10−2𝑚. 𝐾. 
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Planck's function also depends on the refraction index of the medium. 

This index is defined as the ratio of the speed of light in vacuum and in the 

medium. The refraction index of gases is very close to 1. For simplicity, 

radiation transfer within media having a refraction index equal to 1 will be 

considered. 

Wien's displacement law is obtained by differentiating equation (1.12) 

to find the wavelength at which the emission 𝑒𝑏λ is a maximum : 

λ𝑚𝑎𝑥 𝑇 = 𝐶3    (1.13) 

where 𝐶3 = 2.8978. 10−3𝑚. 𝐾 . 

The energy emitted by a unit blackbody surface in a unit time within 

the entire spectrum can be computed from a relationship known as the 

Stefan-Boltzmann law : 

e𝑏 =  ∫ 𝑒𝑏λ𝑑𝜆
∞

0
= σ𝑇4   (1.14) 

where σis the Stefan-Boltzmann constant (𝜍 = 5.669 × 10−8𝑊/𝑚2. 𝐾4)  

For two blackbodies at temperature 𝑇1 and 𝑇2 , the maximum radiative 

interchange between them is given by: 

e𝑏1 = σ𝑇1
4   ,    e𝑏2 = σ𝑇2

4 ,   e𝑏 ,1−2 = σ(𝑇1
4 − 𝑇2

4)  (1.15) 

Radiative Properties 

Radiation can be absorbed by a medium it transverses. Certain 

materials including vacuum do not interact with the radiation. Such media 

are termed transparent. Remaining media are said to be participating. In 
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this case radiation is absorbed in a very thin layer in the vicinity of the 

surface of the medium and the material is called an opaque medium. Most 

solids are treated as opaque substances. Real substances differ from the 

ideal blackbody model because at the same temperature they emit less 

radiative energy. The fraction of blackbody emission radiated by a real 

surface of an opaque body is termed emissivity and is denoted by 𝜀. 

Similarly, a real surface absorbs only a fraction of the incident radiant 

energy. This fraction is called absorptivity and is denoted as 𝛼.  From 

Kirchhoff's law it follows that : 

𝜀 = 𝛼    (1.16) 

Incident radiation that is not absorbed on an opaque surface must be 

reflected. The fraction of incident energy reflected from a surface is termed 

reflectivity and is denoted as 𝜌. The energy balance yields the following 

relationship : 

    𝜌 = 1 − 𝛼 = 1 − 𝜀   (1.17) 

 Emissivity, absorptivity and reflectivity are material properties of a 

surface. Surfaces whose radiative properties are independent of the 

wavelength are termed grey. Equations (1.16) and (1.17) concern such 

surfaces.  
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Chapter Two 

Formulation and The Derivation of The Radiosity Fredholm 

Integral Equation 

One of the most important features about the heat radiation between 

two points on a surface is its formulation as a Fredholm integral equation of 

the second kind. Another important  feature of radiation is that it can be 

transferred directly from one point to another only when the point can be 

seen when looking from another, that means it does not lay in the visibility 

zone. The presence of visibility zones should be taken into account in heat 

radiation analysis.  

We consider an enclosure geometries of domain Ωℝ3, with 

boundary ∂Ω. Assume that the boundary∂Ω of the enclosure is composed of  

n elements. 

The heat balance for an element 𝑗 of area 𝑑𝐴 𝑗 is given as: 

𝑅𝑗 = 𝑞𝑗 𝑑𝐴𝑗 =  𝑞𝑜 ,𝑗 − 𝑞𝑖 ,𝑗  𝑑𝐴 𝑗   (2.1) 

where 𝑞𝑖 ,𝑗 is the rate of incoming energy per unit area on  element j, 

𝑞𝑜 ,𝑗  is the rate of heat per unit area emitted by an element j, 𝑑𝐴𝑗  is the area 

of the element j, and 𝑞𝑗 is the heat energy brought to the element j by 

conduction. 

For diffuse and grey surfaces the outgoing flux has the form: 

𝑞𝑜 ,𝑗 = 𝜀𝑗 𝜍𝑇𝑗
4 + 𝜌𝑗 𝑞𝑖,𝑗    (2.2) 
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where the first part corresponds to the Stefan-Boltzmann radiative 

law.  

Here 𝜀𝑗  is the emissivity coefficient  0 < 𝜀𝑗 < 1 , 𝜍  is the Stefan-

Boltzmann constant which has the value 5.669 × 10−8𝑊/𝑚2 . 𝐾4, 𝜌𝑗  is the 

reflection coefficient with the relation 𝜌𝑗 = 1 − 𝜀𝑗  for diffuse grey 

surfaces. 

The incoming energy 𝑞𝑖 ,𝑗  is composed of the portions of the energy 

leaving the viewable surfaces of the enclosure and arriving at the 𝑗𝑡𝑕 

surface. If the 𝑗𝑡𝑕surface is nonconvex, then the incident energy is given 

as: 

𝑑𝐴𝑗 𝑞𝑖 ,𝑗 = 𝑑𝐴1𝑞𝑜 ,1𝑉1𝑗  𝛼 1, 𝑗 + 𝑑𝐴2𝑞𝑜 ,2𝑉2𝑗  𝛼 2, 𝑗 + ⋯ +  𝑑𝐴𝑟𝑞𝑜 ,𝑟𝑉𝑟𝑗  𝛼 𝑟, 𝑗  

+ ⋯ + 𝑑𝐴𝑗 𝑞𝑜 ,𝑗 𝑉𝑗𝑗  𝛼 𝑗, 𝑗 + ⋯ + 𝑑𝐴𝑛𝑞𝑜 ,𝑛𝑉𝑛𝑗  𝛼(𝑛, 𝑗) (2.3) 

Upon using the reciprocity relation for the view factor [29, 30] we get: 

𝑑𝐴1𝑉1𝑗 𝛼 1, 𝑗 = 𝑑𝐴𝑗 𝑉𝑗1𝛼 𝑗, 1 , 

𝑑𝐴2𝑉2𝑗 𝛼 2, 𝑗 = 𝑑𝐴𝑗 𝑉𝑗2𝛼 𝑗, 2 , 

⋮ 

𝑑𝐴𝑛𝑉𝑛𝑗 𝛼 𝑛, 𝑗 = 𝑑𝐴𝑗 𝑉𝑗𝑛 𝛼 𝑗, 𝑛  .    (2.4) 

In virtue of (2.4) we can rewrite (2.3) as:  

𝑑𝐴𝑗 𝑞𝑖 ,𝑗 = 𝑑𝐴𝑗 𝑉𝑗1𝛼 𝑗, 1 𝑞𝑜 ,1 + 𝑑𝐴𝑗 𝑉𝑗2𝛼 𝑗, 2 𝑞𝑜 ,2 

                                      + ⋯ +  𝑑𝐴𝑗 𝑉𝑗𝑟 𝛼 𝑗, 𝑟 𝑞𝑜 ,𝑟 + ⋯ + 𝑑𝐴𝑗 𝑉𝑗𝑗 𝛼 𝑗, 𝑗 𝑞𝑜 ,𝑗  

                                  + ⋯ + 𝑑𝐴𝑗𝑉𝑗𝑛𝛼 𝑗, 𝑛 𝑞
𝑜,𝑛

       (2.5) 
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Then the incoming energy can be written as: 

𝑞𝑖 ,𝑗 =   𝑉𝑗𝑟
𝑛
𝑟=1 𝛼 𝑗, 𝑟 𝑞𝑜 ,𝑟        (2.6) 

 The shadow factor 𝛼 𝑗, 𝑟 is defined as [4]: 

𝛼 𝑗, 𝑟 =   

1  when surface element j and surface element r
exchange heat directly.    

0   otherwise.                                                                   

  (2.7) 

Inserting (2.6) into (2.2) and using the relation 𝜌𝑗 = 1 − 𝜀𝑗 , we then 

obtain: 

𝑞𝑜 ,𝑗 =  𝜀𝑗  𝜍𝑇𝑗
4 +  1 − 𝜀𝑗   𝑉𝑗𝑟

𝑛
𝑟=1 𝛼 𝑗, 𝑟 𝑞𝑜 ,𝑟                 (2.8) 

2.1 The computation of the view factor𝑉𝑗𝑟 . 

The total energy per unit time leaving the surface element 𝑑𝐴𝑗  and incident 

on the element 𝑑𝐴𝑟  is given as: 

𝑅𝑗𝑟 = 𝐿𝑗 𝑑𝐴𝑗 cos 𝜃𝑗 𝑑𝑤𝑗     (2.9) 

where 𝑑𝑤𝑗  is the solid angle inclined by 𝑑𝐴𝑟  when viewed from 

𝑑𝐴𝑗 and 𝐿𝑗  is the total intensity of a blackbody for the surface element 𝑑𝐴𝑗 . 

The solid angle 𝑑𝑤𝑗  is related to the projected area of 𝑑𝐴𝑟  and the 

distance 𝑆𝑗𝑟 between the element 𝑑𝐴𝑗  and 𝑑𝐴𝑟and can be calculated as: 

𝑑𝑤𝑗 =
𝑑𝐴𝑟 cos 𝜃𝑟

𝑆𝑗𝑟
2          (2.10) 

where 𝜃 r denotes the angle between the normal vector 𝑛 r and the 

distance vector 𝑆𝑗𝑟 . Inserting (2.10) into (2.9) gives the following equation 

for the total energy per unit time leaving 𝑑𝐴𝑗  and arriving at 𝑑𝐴𝑟 : 



18 

 
 

𝑅𝑗𝑟 =  
𝐿𝑗 𝑑𝐴𝑗 𝑐𝑜𝑠𝜃𝑗 𝑑𝐴𝑟𝑐𝑜𝑠𝜃𝑟

𝑆𝑗𝑟
2       (2.11) 

In [29], we have the relation between the total intensity𝐿𝑗  and the 

total emissivity 𝐸𝑗  of a black body, that is 

𝐿𝑗 =
𝐸𝑗

𝜋
=  

𝜍  𝑇𝑗
4

𝜋
     (2.12) 

 

and consequently (2.11) becomes: 

𝑅𝑗𝑟 =
𝜍𝑇𝑗

4𝑐𝑜𝑠𝜃𝑗 𝑐𝑜𝑠𝜃𝑟𝑑𝐴𝑗 𝑑𝐴𝑟

𝜋𝑆𝑗𝑟
2      (2.13) 

From the definition of the view factor 𝑉𝑗𝑟  [4], together with (2.13) we 

get: 

2.1 
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𝑉𝑗𝑟 =  
𝑅𝑗𝑟

𝜍𝑇𝑗
4𝑑𝐴𝑗

 =  
𝑐𝑜𝑠𝜃𝑗 𝑐𝑜𝑠𝜃𝑟𝑑𝐴𝑟

𝜋𝑆𝑗𝑟
2      (2.14) 

2.2 The boundary Fredholm integral equation. 

Now we are able to derive the boundary Fredholm integral equation 

describing the heat balance in a grey and diffuse surfaces. The substitution 

of (2.14) into (2.8) leads to: 

𝑞0,𝑗 =  𝜀𝑗 𝜍𝑇𝑗
4 +  1 − 𝜀𝑗   

𝑐𝑜𝑠𝜃𝑗 𝑐𝑜𝑠𝜃𝑟𝑑𝐴𝑟

𝜋𝑆𝑗𝑟
2  𝛼 𝑗, 𝑟 𝑛

𝑟=1 𝑞0,𝑟      (2.15) 

If the number of the area elements n → ∞, then for all 𝑥 ∈ 𝑑𝐴𝑗 , we 

obtain the boundary integral equation: 

𝑞0 𝑥 =  𝜀 𝑥 𝜍𝑇4 𝑥 +  1 − 𝜀 𝑥  ∫ 𝑀 𝑥, 𝑦 
∂Ω

𝑞0 𝑦 𝑑 ∂Ω𝑦   𝑓𝑜𝑟 𝑥 ∈ ∂Ω(2.16) 

where the kernel 𝑀 𝑥, 𝑦 denotes the view factor between the points x 

and y of  ∂Ω . 

From the above considerations and for general enclosure geometries, 

𝑀  𝑥, 𝑦  is given through: 

𝑀  𝑥, 𝑦 = 𝑀∗  𝑥, 𝑦 𝛼 𝑥, 𝑦 =
 𝑛𝑦  .   (𝑦 − 𝑥)   .   𝑛𝑥  .   (𝑥 − 𝑦) 

𝜋 𝑥 − 𝑦 4
 𝛼 𝑥, 𝑦  

where : 

             𝑀∗  𝑥, 𝑦 = 
 𝑛𝑦   .   (𝑦−𝑥)   .   𝑛𝑥   .   (𝑥−𝑦) 

𝜋 𝑥−𝑦 4
(2.17) 

For convex enclosure geometries, 𝛼 𝑥, 𝑦 ≡ 1. If the enclosure is 

not convex, then we have to take into account the shadow function 

𝛼 𝑥, 𝑦  defined as , 
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 𝛼 𝑥, 𝑦 =  
1       𝑖𝑓 𝑥 𝑎𝑛𝑑 𝑦 𝑐𝑎𝑛 𝑠𝑒𝑒 𝑒𝑎𝑐𝑕 𝑜𝑡𝑕𝑒𝑟                    

0                  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 

  (2.18) 

 

 

 

 

 

 

 

Chapter Three 
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Chapter Three 

Investigation of the Fredholm Integral Operator 

Consider the Fredholm integral equation of the second kind(2.16) 

derived in chapter 2. Introducing the Fredholm integral operator 𝐾 defined 

as: 

𝐾 𝑞0 𝑥 = ∫ 𝐿∗  𝑥, 𝑦 
𝜕Ω

𝑞0 𝑦  𝑑Ω𝑦       for  𝑥 ∈ 𝜕Ω     (3.1)  

Before investigating the properties of this integral operator we are 

going to state the following definitions: 

Definition 3.1: 

A linear operator𝐾that maps a normal vector space 𝑋into a normal 

vector space 𝑌 is said to be bounded if there exists a real constant 𝑀 > 0 

such that  𝐾𝑣 𝑌 ≤ 𝑀 𝑣 𝑋   , for all 𝑣 ∈ 𝑋. 

Definition 3.2 : 

A sequence 𝑆𝑛  is said to be convergent or converges to 𝑆 if for every 

𝜖 > 0 , there exist a positive integer 𝑁 = 𝑁 (𝜖)  such that:                              

 𝑆𝑛 − 𝑆 < 𝜖  for all 𝑛 > 𝑁 𝜖 . In this case we write lim𝑛→∞ 𝑆𝑛 = 𝑆 and 𝑆 

is called the limit of 𝑆𝑛 . 

Definition 3.3: 

A compact operator𝐾 is a linear operator that maps a Banach space 𝑋 

into a Banach space 𝑌 with the property that the image under 𝐾  of any 

bounded subset of 𝑋 is a relatively compact subset of 𝑌. 
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Definition 3.4: 

The𝐿𝑝  spaces are function spaces, called Lebesgue spaces defined as a 

space of all measurable functions for which the 𝑝 − 𝑡𝑕  power of the 

absolute value is Lebesgue integrable, with 

 𝑓 𝐿𝑝 [𝑎 ,𝑏] =    𝑓 𝑝
𝑏

𝑎

𝑑𝑥 

1

𝑝

 

 𝑓 𝐿∞ = i𝑛𝑓 𝑐 ≥ 0,  𝑓 𝑥  ≤ 𝑐  𝑓𝑜𝑟 𝑎𝑙𝑚𝑜𝑠𝑡 𝑒𝑣𝑒𝑟𝑦 𝑥  

Definition 3.5: 

The duality between 𝐿𝜇
𝑝

 and 𝐿𝜇
𝑞

 for a Borel measure 𝜇 is defined as: 

 𝑓1, 𝑓2 𝝁 =   𝑓1𝑓2 𝑑𝜇  ,   𝑓1 ∈  𝐿𝜇
𝑝

 𝑎𝑛𝑑 𝑓2  ∈ 𝐿𝜇
𝑞

 

For 1 ≤ 𝑝 ≤ ∞ with 𝑝 𝑎𝑛𝑑 𝑞 are the conjugate exponents, that is 
1

𝑝
+1

𝑞
=1. 

Definition 3.6: 

An operator 𝐾 is said to be positive if 𝑔 ≥ 0 implies 𝐾 ≥ 0. We denote the 

positive and negative parts of a function by either sub – or superscript  

𝑔+ = 𝑔+ = max 𝑔, 0  𝑎𝑛𝑑 𝑔− = 𝑔− = min −𝑔, 0 . 

Lemma 3.1 : 

Suppose that𝜕𝛺 is a piecewise surface of class 𝐶1,𝑚  with 𝑚 ∈  0,1 , 

then for any 𝑥 ∈ 𝜕𝛺 we can show that: 

∫ 𝐿∗ 𝑥, 𝑦 𝑑 Ω𝑦 = 1    
𝜕𝛺

      (3.2)  
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Proof: Our goal is to show that 𝐿∗ 𝑥, 𝑦  is a weakly singular kernel and 

hence integrable. To do that we select a local coordinate in 𝑥 ∈ 𝜕𝛺 such 

that both 𝑥 = (0,0,0)  and the plane (𝑟1, 𝑟2)  are tangent to 𝜕𝛺  in 𝑥. 

Moreover, we let 𝑦 = (𝑟1, 𝑟2, 𝑔(𝑟1, 𝑟2))  to be in the neighborhood of 

𝑟1 = 𝑟2 = 0. Since 𝜕𝛺 ∈ 𝐶1,𝑚 then with the use of Taylor expansion of  𝑦in 

the local coordinate we obtain [17, 23] 

 
𝑛𝑥 .(𝑦−𝑥)

 𝑦−𝑥 2
 ≤  𝑀1 𝑟𝛽  

𝑚−1
  ,  

𝑛𝑦 . 𝑥−𝑦 

 𝑥−𝑦 2
    ≤  𝑀1 𝑟𝛽  

𝑚−1
      (3.3) 

with 𝛽 ∈   1,2  . 

Equation (3.3) implies that 

 𝐿∗(𝑥, 𝑦) ≤  𝑀  𝑟𝛽  
−2 1−𝑚 

        (3.4) 

 This proves that the kernel 𝐿∗(𝑥, 𝑦)  is weakly singular and hence 

integrable.  

 

Next, to calculate ∫ 𝐿∗ 𝑥, 𝑦 𝑑Ω𝑦∂Ω
, we use the divergence theorem [29]. 

Let ∂Ω bea closed surface and choose 𝑦 =  𝑦1 , 𝑦2 , 𝑦3 ∈ ∂Ω. Moreover, let 

3.1 
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𝑄1 𝑦 , 𝑄2 𝑦  𝑎𝑛𝑑 𝑄3 𝑦 be twice differentiable functions of 𝑦1 , 𝑦2 and 𝑦3 

and n is the normal. The divergence theorem implies that: 

 (
𝜕Ω

𝑄1𝑑𝑦1 + 𝑄2𝑑𝑦2 + 𝑄3𝑑𝑦3) 

= ∫   
𝜕𝑄3

𝜕𝑦2
−

𝜕𝑄2

𝜕𝑦3
 𝑛1 𝑦 +   

𝜕𝑄1

𝜕𝑦3
−

𝜕𝑄3

𝜕𝑦1
 𝑛2 𝑦 +  

𝜕𝑄2

𝜕𝑦1
−

𝜕𝑄1

𝜕𝑦2
 𝑛3 𝑦  𝑑Ω.

Ω
(3.5) 

Consider the surface 𝜕Ω as shown in Fig. 3.1, let 𝜕Ω𝑦 = 𝑍 𝑥, 𝑦 ∩ 𝜕Ω be a 

small neighbourhood of the point x, and define 𝜕Ω∗ =  𝜕Ω\ 𝜕Ω𝑦  where  

𝑍 𝑥, 𝑦 is a cylinder given by 𝑥1
2 + 𝑥2

2  ≤  𝑦2 . Hence, the integral 

∫ 𝐿∗
𝜕Ω

(𝑥, 𝑦)𝑑Ω𝑦can bewritten as: 

𝐸𝑦 𝑥 =  ∫ 𝐿∗ 𝑥, 𝑦 𝑑Ω𝑦 =  ∫ 𝐿∗ 𝑥, 𝑦 𝑑Ω𝑦 + ∫ 𝐿∗ 𝑥, 𝑦 𝑑Ω𝑦𝜕Ω∗𝜕Ω𝑦𝜕Ω
(3.6) 

since 𝐿∗(𝑥, 𝑦) is a weakly singular kernel then the first integral vanishes as 

𝑦 → 0. Consequently (3.6) becomes 

𝐸𝑦 𝑥 =  lim𝑦→0 ∫ 𝐿∗ 𝑥, 𝑦 𝑑Ω𝑦∂Ω∗   (3.7) 

Using the divergence theorem we have 

𝐸𝑦 𝑥 =  lim
𝑦→0

 ∇  ×  𝑄   𝑦 . 𝑛𝑦𝑑𝑦
∂Ω∗

 

                               =  lim𝑦→0   𝑄1𝑑𝑦1 + 𝑄2𝑑𝑦2 + 𝑄3𝑑𝑦3 ,
∂Ω∗            

(3.8) 

where  

     𝑄1 𝑦 =  
−𝑛2 𝑥3 − 𝑦3 + 𝑛3(𝑥2 − 𝑦2)

2𝜋 𝑥 − 𝑦 2
, 

𝑄2 𝑦 =  
𝑛1 𝑥3 − 𝑦3 −  𝑛3(𝑥1 − 𝑦1)

2𝜋 𝑥 − 𝑦 2
, 
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    𝑄3 𝑦 =  
−𝑛1 𝑥2 − 𝑦2 + 𝑛2(𝑥1 − 𝑦1)

2𝜋 𝑥 − 𝑦 2
, (3.9) 

Since the normal to the area element is perpendicular to both the x1 and x2-

axes and parallel to the x3- axis, then (3.8) yields 

𝐸𝑦 𝑥 =
1

2𝜋
lim
𝑦→0

 
 𝑥2 − 𝑦2 𝑑𝑦1 −  𝑥1 − 𝑦1 𝑑𝑦2

 𝑥 − 𝑦 2
∂Ω∗

 

   =
1

2𝜋
lim
𝑦→0

 
−𝑦2𝑑𝑦1 + 𝑦1𝑑𝑦2

𝑦1
2 + 𝑦2

2 + 𝑦3
2

∂Ω∗

, (3.10) 

Upon using 𝑦1
2 + 𝑦2

2 = 𝛾2. We can write 

𝐸𝑦 𝑥 = 𝐼1 + 𝐼2 

where   

𝐼1 =
1

2𝜋
lim
𝑦→0

 
1

𝛾2
 (−𝑦2𝑑𝑦1 + 𝑦1𝑑𝑦2)

∂Ω∗
 

and  

𝐼2 =
1

2𝜋
lim
𝑦→0

 
− 𝑦3

2 (− 𝑦2𝑑𝑦1 + 𝑦1𝑑𝑦2)

(𝑦2 + 𝑦3
2)𝛾2

∂Ω∗

 (3.11) 

𝐼1  can be evaluated by using the polar coordinates 𝑦1 = 𝑦 cos 𝜃  and 

𝑦2 = 𝑦 sin 𝜃, then obtain 

       𝐼1 =
1

2𝜋
.

1

𝛾2 ∫ 𝛾2𝑑𝜃 = 1
2𝜋

0
.   (3.12) 

Moreover, one can show that 𝐼2 = 0 [13,14,18]. Hence, ∫ 𝐿∗ 𝑥, 𝑦 𝑑 Ω𝑦 =
∂Ω

1. 
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Lemma 3.2 : 

Suppose that 𝜕𝛺  is a closed surface of class 𝐶2 . Then𝐿∗(𝑥, 𝑦)  is 

bounded, i.e:  

 𝐿∗(𝑥, 𝑦) ≤  𝑀         (3.13) 

Proof: Let 𝜃 be the angle between the normals at the points 𝑥 𝑎𝑛𝑑 𝑦 𝑜𝑛 𝜕Ω 

and 𝑑 be the distance between these two points, then we have [14,22]  

 𝜃 < 𝑐1𝑑,        𝜃 ∈  0, 2𝜋         (3.14) 

where 𝑐1 is a positive number. 

Introducing the orthonormal system (𝑚1, 𝑚2, 𝑚3)  where 𝑚1  is the axis 

normal at the surface point 𝑥0 , with 𝑚2  and 𝑚3  are tangential plane 

containing the point 𝑥0.  Let the corresponding unit vectors be 

𝑒1, 𝑒2 𝑎𝑛𝑑 𝑒3. If we denote the part of the surface that lies inside the sphere 

by the form 𝑚1 = ∅(𝑚1, 𝑚2) and 𝑟 is the radius of a sphere around a point 

𝑥0 then if 𝑟 is sufficiently small then  

𝑐1𝑟 ≤ 1         (3.15)  

If we denote the distance  𝑥0 − 𝑦0  with 𝑑0 𝑎𝑛𝑑 𝜃0 is the angle between the 

normal at 𝑥0 and the normal at any point of the surface, then [15, 17]   

         cos 𝜃0 ≥ 1 −  
1

2
𝜃0

2  ≥ 1 −  
1

2
𝑐1

2𝑑0
2 >

1

2
   (3.16) 

Also we have  

1

cos 𝜃0
=  1 + ∅𝑚1

2 + ∅𝑚2
2 ≤ 1 + 𝑐1

2𝑑0
2  ≤ 2    (3.17) 
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Hence we obtain ,  

       ∅𝑚1

2 + ∅𝑚2

2  ≤   2 𝑐1
2𝑑0

2 + 𝑐1
4𝑑0

2            (3.18) 

Using the polar coordinates 𝑚1 = ζ cos 𝜃 , 𝑚2 = ζ sin 𝜃yields  

∅ζ
2 = (∅𝑚1

cos 𝜃 + ∅𝑚2
sin 𝜃)2  ≤ ∅𝑚1

2 + ∅𝑚2

2         (3.19) 

In virtue of (3.18) and   ∅ ≤   3ζ and 𝑑0 ≤ 2ζ, we obtain 

 ∅ζ ≤ 2 3 𝑐1ζ.         (3.20) 

Also (3.16) yields  

1 − cos 𝜃0 ≤ 2𝑐1
2ζ2           (3.21) 

Consequently  

 cos(𝑛, 𝑒1)  ≤  ∅𝑚1
  ≤   3𝑐1𝑑0         (3.22) 

 cos(𝑛, 𝑒2)  ≤   3𝑐1𝑑0 ,     cos(𝑛, 𝑒3) =  cos 𝜃0     (3.23) 

Summarizing the above estimates, we have 

 ∅  ≤ 𝑐2ζ2 cos 𝑛, 𝑒1  ≤ 𝑐2ζ 

 cos(𝑛, 𝑒2) ≤ 𝑐2ζ cos(𝑛, 𝑒3) ≥  
1

2
            (3.24) 

From (3.22), we get  

 cos( 𝑥 − 𝑦 , 𝑛(𝑥)) =   
𝑛𝑥 .( 𝑥−𝑦)

𝑑
   ≤  ∅𝑚1

 ≤  𝑀1𝑑             (3.25) 

and  

 cos( 𝑦 − 𝑥 , 𝑛(𝑦)) =   
𝑛𝑦 .(𝑦−𝑥)

𝑑
 ≤ 𝑀1𝑑                     (3.26) 
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with 𝑀1 =   3𝑐1. Finally  

 𝐿∗(𝑥, 𝑦) =  
cos ( 𝑥−𝑦 ,𝑛𝑥 ).cos ( 𝑦−𝑥 ,𝑛𝑦 )

𝑑2   ≤ 𝑀   (3.27) 

where 𝑀 =
3𝐶1

2

𝜋
. 

Lemma 3.3 : 

The mapping 𝐾: 𝐿𝑃 𝜕Ω ⟶ 𝐿𝑃 𝜕Ω  is compact for 1 ≤ 𝑝 ≤ ∞ . 

Furthermore, we obtain: 

(a)  ||𝐾 || = 1 in 𝐿𝑃for 1 ≤ 𝑝 ≤ ∞. 

(b) The spectral radius𝜌(𝐾 ) = 1. 

Proof: Since  𝐿∗ 𝑥, 𝑦 is integrable and𝐾  is a weakly singular operator (see 

Lemma 3.1) then the mapping 

𝐾 ∶  𝐿𝑃 𝜕Ω →  𝐿𝑃 𝜕Ω  is compact. For 1 < P < ∞ and 𝑞0 ∈  𝐿𝑃 𝜕Ω  and 

using 1/p + 1/q =1, we have 

 𝐾 𝑞0 𝑥  =    𝐿∗ 𝑥, 𝑦 
1

p
+

1

q 𝑞0 𝑦 𝑑Ω𝑦
𝜕Ω𝑦

  

                    ≤   ∫ 𝐿∗ 𝑥, 𝑦 𝑑Ω𝑦𝜕Ω𝑦
 

1/𝑞

 ∫ 𝐿∗ 𝑥, 𝑦  𝑞0 𝑦  p𝑑Ω𝑦𝜕Ω𝑦
 

1/p

(3.28) 

Since∫ 𝐿∗ 𝑥, 𝑦 𝑑Ω𝑦𝜕Ω𝑦
= 1 then 

 𝐾 𝑞0(𝑥)  ≤  ∫ 𝐿∗ 𝑥, 𝑦  𝑞0 𝑦  p𝑑Ω𝑦𝜕Ω𝑦
 

1/p

 (3.29) 

Moreover, we obtain  

 𝐾 𝑞0 𝑥  
𝐿𝑃

𝑃
=    𝐾 𝑞0 𝑥  

𝑃

𝜕Ω𝑥

𝑑Ω𝑥  
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≤  ∫  𝑞0 𝑦  p
𝜕Ω𝑦

∫ 𝐿∗ 𝑥, 𝑦 𝑑Ω𝑥𝑑Ω𝑦𝜕Ω𝑥
=  𝑞0(𝑥) 𝐿𝑃

𝑃 (3.30) 

Hence we get ||𝐾 || ≤ 1 in 𝐿𝑃 , 1 ≤ p ≤ ∞. Equality can be achieved by taking 

𝑞0 = 1 which is obviously the eigenvector of 𝐾  with the eigenvalue 1.  

Finally, the Hilbert theorem together with 𝐾 1 = 1 implies that the 

Fredholm integral operator 𝐾  has an eigenvalue 𝜆 𝑤𝑖𝑡𝑕  𝜆 =  𝐾  = 1. 
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Chapter Four 

Fixed Point Theorem and Applications to the Radiosity 

Integral Equation 
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Chapter Four  

Fixed Point Theorem and Applications to the Radiosity 

Integral Equation 

Definition 4.1: The number 𝑧 is called a fixed point for a function 𝑓  if 

𝑓 𝑧 = 𝑧. 

Examples 4.1:  

Assume we want to determine the fixed points of the function 𝑓 𝑥 = 𝑥2 −

2. A fixed point 𝑧 for the function 𝑓 has the properties that  

𝑧 = 𝑓 𝑧 = 𝑧2 − 2. This implies that: 

0 = 𝑧2 − 𝑧 − 2 =  𝑧 + 1  𝑧 − 2  

A fixed point for 𝑓 occurs exactly when the graph of  𝑦 = 𝑓(𝑥) intersects 

the graph of 𝑦 = 𝑥, then 𝑓 has the two fixed points, namely;  

                                   𝑧1 = −1  𝑎𝑛𝑑  𝑧2 = 2. 

The following theorem gives sufficient conditions for the existence and 

uniqueness of a fixed point: 

Theorem 4.1: 6 If 𝑓 ∈ 𝐶 𝑎, 𝑏  and 𝑓(𝑥) ∈  𝑎, 𝑏  for every 𝑥 ∈  𝑎, 𝑏 , then 

𝑓 has at least one fixed point in  𝑎, 𝑏 . Moreover, if, in addition, 𝑓  𝑥 exists 

on  𝑎, 𝑏  and a positive constant 𝑘, 0 < 𝑘 < 1 exists such that 

 𝑓  𝑥  ≤ 𝑘                       𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥 ∈  𝑎, 𝑏  

Then, there is precisely one fixed point 𝑧 in  𝑎, 𝑏 . 
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Proof: If 𝑓 𝑎 = 𝑎 𝑎𝑛𝑑 𝑓 𝑏 = 𝑏 then 𝑓 has a fixed point at the end points 

of  𝑎, 𝑏 .  Otherwise, 𝑓 𝑎 > 𝑎  𝑎𝑛𝑑  𝑓 𝑏 < 𝑏.  The function 𝑔 𝑥 =

𝑓 𝑥 − 𝑥  is continuous on  𝑎, 𝑏  with 𝑔 𝑎 = 𝑓 𝑎 − 𝑎 > 0  and 𝑔 𝑏 =

𝑓 𝑏 − 𝑏 < 0. Consequently, the intermediate value theorem implies that 

there exists 𝑧 ∈  𝑎, 𝑏  such that 𝑔 𝑧 = 0. 𝑧 is a fixed point for 𝑓 because 

0 = 𝑔 𝑧 = 𝑓 𝑧 − 𝑧 which implies 𝑓 𝑧 = 𝑧. 

Moreover, we assume that  𝑓  𝑥  ≤ 𝑘 < 1 and 𝑧 and 𝑚 are both fixed 

points in   𝑎, 𝑏 . If 𝑧 ≠ 𝑚 then the Mean Value theorem states that a 

number 𝐿 exists between 𝑧 𝑎𝑛𝑑 𝑚 and hence  𝑎, 𝑏   such that 

𝑓 𝑧 − 𝑓(𝑚)

𝑧 − 𝑚
= 𝑔 (𝐿) 

Thus  

 𝑧 − 𝑚 =  𝑓 𝑧 − 𝑓 𝑚  = 𝑔  𝐿  𝑧 − 𝑚  

≤ 𝑘 𝑧 − 𝑚 <  𝑧 − 𝑚  

which is a contradiction. This proves that 𝑧 = 𝑚 and the fixed point in 

 𝑎, 𝑏  is unique. 

The Banach Fixed Point Theorem 

Definition 4.2: Let (Z,d) be a metric space. A contraction mapping on Z is 

a function  g: Z → Z that satisfies 

 𝑑 𝑔 𝑧  , 𝑔 𝑧  ≦  𝑐1𝑑 𝑧 , 𝑧                            ∀𝑧, 𝑧  𝜖 𝑍 

for some real number  0 < 𝑐1 < 1. 



33 

 
 

Example 4.1: Let  g : ℝ→ℝ be a differentiable real function.  If a real 

number𝑐1 < 1exists such that the derivative g' satisfies | g'(z)| ≦ 𝑐1for all 

z 𝜖ℝ, then g is a contraction with respect to the metric on ℝand 𝑐1  is a 

modulus of contraction for g. This is a consequence of the Mean Value 

Theorem: let z, z'𝜖ℝand supposez<z'; the MVT states that there is a number 

ζ 𝜖 (z,z') such that g(z') – g(z) = g' (ζ) (z' – z), hence 

|g(z' ) –g(z)| = |g' (ζ )||(z'- z)| ≦ 𝑐1 |(z' – z)|. 

Theorem 4.2: Every contraction mapping is continuous.  

Proof:Suppose thatW: Z → Z is a contraction mapping  on a metric space 

(Z,d), with modulus𝑐1, and let 𝑧 ∈ 𝑍. Moreover, let є>0, and δ = є, then 

𝑑 𝑧, 𝑧  <  𝛿 ⟹ 𝑑 𝑊𝑧, 𝑊𝑧  ≦ 𝑐1𝛿 < є. 

Hence,W is continuous at 𝑧 . Since 𝑧  is arbitrary, thenWis continuous 

on Z.The above proof actually assures that a contraction mapping is 

uniformly continuous. 

Definition 4.3:Suppose that (A,dA) and (B,dB) are metric spaces.  A 

function h : A → Bis uniformly continuous if for every є> 0 there  is  δ> 0 

such that 

𝑑𝐴 𝑎 , 𝑎 < 𝛿 ⟹ 𝑑𝐵 𝑕 𝑎 , 𝑕 𝑎   < є.                    ∀𝑎, 𝑎  𝜖 𝐴  
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Theorem 4.3: [12]  Every contraction mapping is uniformly continuous.  

Theorem4.4. (Banach Fixed Point Theorem): 

Every contraction mapping on a complete metric space has a unique fixed 

point. (This is also called the Contraction Mapping Theorem). 

Proof:Suppose thatW: Z → Z is  contraction mapping on the complete 

metric space  (Z,d), and let 𝑐1 be a contraction modulus of W. First we want 

to show that W can have at most one fixed point. We construct a sequence 

which converges and show that its limit is a fixed point of W.  

(a)  Assume thatz and z' are fixed points of W. Then   

d(z, z') = d(𝑊𝑧,𝑊𝑧')  ≦ 𝑐1 d(z,𝑧′); since 𝑐1< 1, this implies that  

d(z, z') = 0. i.e., z = z'. 

(b) Let z0 Z, and define a sequence {zn} as follows:  

z1=Wz0 ,  z2 = Wz1 = W
2
z0 ,  … , zn = Wzn-1 = W

n
z0, … 

We show that adjacent terms of {zn} grow arbitrarily close to one 

another – in particular, d(zn, zn+1) ≦ 𝑐1
 n 

d(z0, z1):  

 𝑑 𝑧1, 𝑧2 ≦  𝑐1𝑑 𝑧0, 𝑧1  

𝑑 𝑧2, 𝑧3 ≦  𝑐1𝑑 𝑧1, 𝑧2 ≦  𝑐1
2𝑑 𝑧0, 𝑧1  

… 

  𝑑 𝑧𝑛 , 𝑧𝑛+1 ≦ 𝑐1𝑑 𝑧𝑛−1, 𝑧𝑛 ≦ 𝑐1
𝑛𝑑 𝑧0, 𝑧1  

Next we show that ifn< m then 𝑑 𝑧𝑛  , 𝑧𝑚 < 𝑐1
𝑛 1

1−𝑐1
 𝑑 𝑧0 , 𝑧1 : 
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𝑑 𝑧 , 𝑧𝑛+1 ≦ 𝑐1
𝑛𝑑 𝑧0 , 𝑧1  

𝑑 𝑧𝑛  , 𝑧𝑛+2 ≦ 𝑑 𝑧𝑛  , 𝑧𝑛+1 +  𝑑 𝑧𝑛+1 , 𝑧𝑛+2  

≦ 𝑐1
𝑛𝑑 𝑧0 , 𝑧1 + 𝑐1

𝑛+1𝑑 𝑧0 , 𝑧1 = 𝑑 𝑐1
𝑛 + 𝑐1

𝑛+1 𝑑 𝑧0 , 𝑧1  

….. 

𝑑 𝑧𝑛  , 𝑧𝑚 ≦  𝑐1
𝑛 + 𝑐1

𝑛+1 + ⋯ + 𝑐1
𝑚−1 𝑑 𝑧0 , 𝑧1  

                   = 𝑐1
𝑛 1 + 𝑐1 + 𝑐1

2 + ⋯ + 𝑐1
𝑚−1−𝑛 𝑑 𝑧0 , 𝑧1  

< 𝑐1
𝑛 1 + 𝑐1 + 𝑐1

2 + ⋯  𝑑 𝑧0 , 𝑧1  

                    = 𝑐1
𝑛

1

1 − 𝑐1
 𝑑 𝑧0 , 𝑧1 . 

Therefore {zn} is Cauchy sequence, that is, : for є > 0, let N be large 

enough such that 𝑐1
𝑁 1

1−𝑐1
𝑑 𝑧0 , 𝑧1 < є , which ensures that n,m >N 

⟹ 𝑑 𝑧𝑛  , 𝑧𝑚 < є.Since the metric space (Z,d) is complete, the Cauchy 

sequence{zn} converges to a point z
*
Z. We show that  z

*
 is a fixed point 

of W: since zn → z
*
and W is continuous, we have W𝑧𝑛→ W𝑧∗ — i.e., zn+1→ 

W𝑧∗.Since  zn+1→ z
*
and zn+1  →W𝑧∗, we have W𝑧∗= z

*
. 

First Cournot Equilibrium Example: 

Suppose that two factories are producing goods at output levels p1and p2. 

Each factory responds to the other factory's production level when 

choosing its own level of output. In particular (with c1, c2, d1, d2 all 

positive), we have 

p1=r1(p2) = c1 – d1p2 
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p2=r2(p1) = c2 – d2p1 

but pi = 0if the above expression for pi is negative. The function 𝑟𝑖 ∶  ℝ+ →

ℝ+ is factoryi's reaction function. Define 𝑟 ∶  ℝ+
2 → ℝ+

2  by 𝑟 ∶  𝑝1, 𝑝2 =

 𝑟1 𝑝2 , 𝑟2 𝑝1  . The function𝑟  is a contraction with respect to the city-

block metric if 𝑑1, 𝑑2 < 1:  

𝑑(𝑟  𝑝 , 𝑟  𝑝  ) =  𝑟 1 𝑝 − 𝑟 1 𝑝   +  𝑟 2 𝑝 − 𝑟 2 𝑝    

   =  (𝑐1 − 𝑑1𝑝2) − (𝑐1 − 𝑑1𝑝 2) +  (𝑐2 − 𝑑2𝑝1) −  (𝑐2 − 𝑑2𝑝 1)  

               = 𝑑1 𝑝 2 − 𝑝2 + 𝑑2 𝑝 1 − 𝑝1  

              ≦ max 𝑑1, 𝑑2 (  𝑝1 − 𝑝 1 ) +  𝑝2 − 𝑝 2  ) 

              = max 𝑑1, 𝑑2 d( 𝑝, 𝑝 ).  

Therefore we have an "existence and uniqueness result" for Cournot 

equilibrium in this example: 𝑟  has a unique fixed point p
*
— a unique 

Cournt equilibrium — if each di<1. 

4.1. Successive Approximation Method( Picard Iteration ) 

  For any initial pointz0  Z, the sequence 𝑧𝑛 = 𝑊(𝑧𝑛−1) converges to the 

fixed point z
*
, than the previous one. Consequently, starting from any 

arbitrary point in Z, we can iteratively apply the function W to the current 

approximationof z
*
to obtain a better approximation and each approximation 

converges to z
*
. This  provides a straightforward computation of z

*
. 

Theorem 4.5: [20] Let (X, d) be a complete metric and T: X→ X a strict 

contraction, that is, there exists a, 0 ≤ a <1 such that  
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𝑑 𝑇𝑥, 𝑇𝑦 ≤ 𝑎. 𝑑(𝑥, 𝑦) for all x, y ∈ X 

Then the Picard iteration (the sequence of successive approximation)  𝑥𝑛 , 

given by  

𝑥𝑛 = 𝑇 𝑥𝑛−1 =  𝑇𝑛 𝑥0 , 𝑛 = 1, 2, …. 

converges to the unique fixed point x
*
of T, 

𝑑 𝑥𝑛 , 𝑥∗ ≤
𝑎𝑛

1 − 𝑎
. 𝑑 𝑥0, 𝑥1 , 𝑛 ≥ 1; 

𝑑 𝑥𝑛 , 𝑥∗ ≤
𝑎

1 − 𝑎
. 𝑑 𝑥𝑛 , 𝑥𝑛−1 , 𝑛 ≥ 1; 

Banach fixed point theorem for the radiosity Fredholm integral 

equation: 

A straightforward  method for the existence of the solution of the 

integral equation (2.16) is the application of Banach’s fixed point theorem. 

The successive approximation  method ( Picard's iteration ) can be used and 

the convergence of the Neumann series can be proved. We want to show 

first that the integral operator 

𝐾 =  1 − 𝜀 𝐾 : 𝐿𝑃(∂Ω) → 𝐿𝑃(∂Ω) for 1<P< ∞.        (4.1) 

defines a contraction mapping, that is, there exists a constant 0 ≤ 𝑐1< 1 such 

that  

 𝐾𝑞0 − 𝐾𝑞0  𝐿𝑃 (∂Ω) ≤ 𝑐1 𝑞0 − 𝑞0  𝐿𝑃 (∂Ω)        (4.2) 

is satisfies. From the definition of 

𝐾𝑞0 − 𝐾𝑞0 = (1 − 𝜀) ∫ 𝑀 𝑥, 𝑦 .  𝑞0 𝑦 − 𝑞0  𝑦  𝑑Ω𝑦∂Ω
       (4.3) 
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and the application of Holder’s inequality follows  

 𝐾𝑞0 − 𝐾𝑞0  ≤  (1 − 𝜀)  ∫ 𝑀 𝑥, 𝑦 𝑑Ω𝑦∂Ω
 

1/𝑞

.  ∫ 𝑀 𝑥, 𝑦  𝑞0 − 𝑞0  𝑃𝑑Ω𝑦∂Ω
 

1/𝑃

 

(4.4) 

with the conjugate exponent 1/p+1/q = 1. Since ∫ 𝑀 𝑥, 𝑦 𝑑Ω𝑦 = 1 
∂Ω

(see 

Lemma (3.1), we get 

 𝐾𝑞0 − 𝐾𝑞0  ≤  (1 − 𝜀)  ∫ 𝑀 𝑥, 𝑦  𝑞0(𝑦) − 𝑞0 (𝑦) 𝑃𝑑Ω𝑦∂Ω
 

1/𝑃

(4.5) 

Then we obtain 

 𝐾𝑞0 − 𝐾𝑞0  
𝐿𝑃 (∂Ω)
𝑃 ≤  (1 − 𝜀) 𝑃 . ∫  𝑞0(𝑦) − 𝑞0 (𝑦) 𝑃

∂Ω𝑦
∫ 𝑀 𝑥, 𝑦 𝑑 ∂Ω𝑥𝑑Ω𝑦∂Ω𝑥

 (4.6) 

Consequently we have 

 𝐾𝑞0 − 𝐾𝑞0  𝐿𝑃(∂Ω)
𝑃

≤  1 − 𝜀 𝑃.  𝑞
0
 𝑦 − 𝑞

0
  𝑦  

𝐿𝑃 ∂Ω 
. (4.7) 

Since  0 <<1, then for the constant 𝑐1, we obtain 

𝑐1 ≔  1 − 𝜀 𝑃 < 1Hence the integral operator K is contractive on 𝐿𝑝(Γ) 

and the iteration scheme 𝑞0,𝑛+1 = 𝐾𝑞0,𝑛   for  n= 1, 2, … is  convergent. 

The sequence  𝑞0,𝑛  converges to some 𝑞0  in the space 𝐿𝑃(∂Ω) , which 

solves the equation 𝐾𝑞0 = 𝑞0 in 𝐿𝑃(∂Ω). The uniqueness of 𝑞0 ∈ 𝐿𝑃(∂Ω)  

follows directly from the contraction of K due to 

0 <  𝑞0 − 𝑞0  𝐿𝑃 (∂Ω) =  𝐾𝑞0 − 𝐾𝑞0  𝐿𝑃(∂Ω) ≤ 𝑐1 𝑞0 − 𝑞0  𝐿𝑃 ∂Ω , 𝑐1 < 1(4.8) 

Consequently, we have 

 1 − 𝑐1 .   𝑞0 − 𝑞0   
𝐿𝑃(∂Ω)

≤ 0        (4.9)  

Since𝑞0 and 𝑞0  are two fixed point of K with (1−𝑐1)> 0 and  
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 𝑞0 − 𝑞0  > 0, then implies 𝑞0 =  𝑞0  and we obtain the result. 

 

 

 

 

 

 

 

 

 

 

 

Chapter Five 

The Conductive – Radiative Heat Transfer Model 
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Chapter Five  

The Conductive – Radiative Heat Transfer Model 

Consider a heat radiative exchange in a non-convex enclosure Ω ⊂ℝ3, 

which consist of two conducting enclosures that are bounded by 

diffuse-grey surfaces. In this case Ω = Ω1 ∪ Ω2. The boundary 𝜕Ω  of  Ω 

can be represented as 𝜕Ω = 𝑆 ∪ Γ where Γis a part of the boundary where 

the heat radiation is taking place. Let T be the absolute temperature and 𝑞0 

is the reflected energy leaving the surface, then the boundary value 

problem (BVP):  

−∇.  𝑘 ∇ 𝑇 = 𝑔0       in        Ω,        (5.1) 

where k is the heat conductivity coefficient and 𝑔0 is the internal heat 

source. 

Also, we have the boundary condition  

T = T0   (5.2) 

with T is the absolute temperature and T0 is the effective external radiation 

temperature. 

On the boundary Γ we have 

−𝑘
𝜕𝑇

𝜕𝑛
= 𝑞𝑟 =  𝑞0 − 𝑞𝑖     on   Γ   (5.3) 

The outgoing radiation q0 and the incoming  radiation  qi  are related by   

𝑞𝑖 =  𝐾 𝑞0, 𝑞0 =  𝜀𝜍𝑇4 + 𝜌𝑞𝑖 = 𝜀𝜍𝑇4 + (1 −  𝜀) 𝐾 𝑞0   (5.4) 
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Lemma 5.1: 

 Let 1 ≤ p ≤ ∞ and 0 < ≤ 1. Then the operator I – (1 − 𝜀)𝐾  from 𝐿𝑃(Γ)into 

itself is invertible and this inverse is nonnegative.  

Proof: We will show that the spectral radius of the operator ( 1 − 𝜀 ) 

𝐾 isstrictly less than one. Then the inverse exists and can be written as 

Neumann series  

(𝐼 −  1 − 𝜀 𝐾 )−1 =   ( 1 − 𝜀 𝐾 )𝑖

∞

𝑖=0

 

which shows that the inverse is positive. 

 Since ( 1 − 𝜀 )𝐾 is compact, it is sufficient to prove that 1 is not an 

eigenvalue of (1 − 𝜀)𝐾 . Thus, suppose that there is 𝑞0 ∈  𝐿𝑝(Γ)such that 

(1 − 𝜀) 𝐾 𝑞0 = 𝑞0. Then since (1 − 𝜀) 𝐾  is a positive and compact operator, 

we have 𝑞0 ≥ 0 and hence according to Lemma 3.3 we obtain  

∫ 𝑞0𝑑Γ
Γ

= ∫ (1 −  ) 𝐾 
Γ

𝑞0𝑑Γ = ∫ 𝑞0𝑑Γ
Γ

−  ∫ 𝜀
Γ

𝐾 𝑞0𝑑Γ (5.5) 

Therefore, 𝜀𝐾 𝑞0 = 0 on Γ  and hence 𝐾 𝑞0 = 𝑞0 . Moreover from Lemma 

3.3 and sine the eigenvalue 𝜆0  of  𝐾  is simple it follows that 𝑞0  is a 

constant, but since (1 − 𝜀)𝐾 𝑞0 =  𝑞0, this constant has to be zero.  

5.1 The weak form and some existence results 

The weak formulation  

Before we consider the weak formulation of the problem (5.1) – (5.4) we 

can solve for the intensity 𝑞0 in equation (5.4) to obtain 
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𝑞𝑟 =  𝐼 − 𝐾  𝑞0 =  𝐼 − 𝐾  (𝐼 −  1 − 𝜀 𝐾 )−1𝜀𝜍𝑇4 = 𝐺𝜍𝑇4  ,     (5.6) 

An alternative formulation can be obtained by rearranging the terms in 

equation (5.4)  

𝑞𝑟 = 𝜀𝜍𝑇4 − 𝜀𝑞𝑖 =  𝜀𝜍𝑇4 − 𝜀𝐾 (𝐼 −  1 − 𝜀 𝐾 )−1𝜀𝜍𝑇4,  (5.7) 

which physically means that 𝑞𝑟  is composed of the difference between the 

emitted and the absorbed radiation. The non-local operator G in equation 

(5.6) is called the Gebhart factor ]31,32[. Consequently, the boundary 

condition (5.3) can now with the use of (5.6) be rewritten to yield the non-

local condition 

𝑘
𝜕𝑇

𝜕𝑛
+ 𝐺 𝜍𝑇4  = 0      onΓ   (5.8) 

 The weak formulation of the system (5.1) – (5.4) together with (5.8) reads:  

      𝑎 𝑇, 𝑤0 + 𝑏 𝑇, 𝑤0 =  𝑔, 𝑤0  ,                   ∀𝑤0 ∈ 𝑋  (5.9) 

with  

          𝑎 𝑇, 𝑤0 = ∫ 𝑘 ∇𝑇 ∇𝑤0Γ
    (5.10)      

𝑏 𝑇, 𝑤0 = ∫ 𝐺(𝜍 𝑇 3𝑇)𝑤0,
Γ

   (5.11) 

and  𝑔, 𝑤0  is the duality pairing between X and 𝑋 . 

If was set 𝑋 =  𝐿2(Γ) then the weak form (5.9) is well defined (in the three- 

dimensional case) and T is defined in X ]31, 32[.  

Lemma 5.2:]16[ The operator G from 𝐿𝑝(Γ)  into itself is positive semi-

definite.  
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Lemma 5.3:]31[The problem  

       𝑎 𝑇, 𝑤0 + ∫ 𝜀
Γ

𝜍 𝑇 3𝑇𝑤0 =   𝑔, 𝑤0 ,       ∀𝑤0, 𝑇 ∈ 𝑋, (5.12) 

has a unique solution TX for all f 𝑋 . 

Theorem 5.1. LetΩ  be a three dimensional enclosure with  Γ  is 𝐶1,𝑚  a 

Lyapunov surface where 𝑚 ∈  0,1 , and suppose that 𝑇0 ∈  𝐿2 Γ , 𝑔 ∈

 𝑋 and there exist two functions ∅1 ≤  ∅2 , ∅1 , ∅2 ∈ 𝐿2(Γ), such that 

𝑎 ∅1 , 𝑤0 + 𝑏 ∅1, 𝑤0 ≤  𝑔, 𝑤0        ∀𝑤0  ∈  𝑋+  (5.13) 

           𝑎 ∅2 , 𝑤0 + 𝑏 ∅2, 𝑤0 ≥  𝑔, 𝑤0        ∀𝑤0  ∈  𝑋+  (5.14) 

Then (5.9) has a unique solution T. Furthermore ∅1 ≤ 𝑇 ≤  ∅2  in Ω and 

∅1 ≤ 𝑇0 ≤  ∅2  on Γ . We denote by 𝑋+ the cone of the non-negative 

elements of X:   𝑋+ =   𝑤0 ∈ 𝑋, 𝑤0 ≥ 0 . 

The proof of theorem (5.1) is a consequence of the following Lemmas:  

Lemma 5.4: [16] Let  𝑢 = max ⁡( 𝑢 − ∅2 +, min  0, − ∅1 − 𝑢 + ) and 

𝑐 𝑢, 𝑤0 = ∫  𝑢 4𝑤0Γ
 then the modified problem reads as:  

𝐴 𝑇, 𝑤0 = 𝑎 𝑇, 𝑤0 + 𝑏 𝑇, 𝑤0 + 𝑐 𝑇, 𝑤0 =  𝑔, 𝑤0 ,      𝑇, 𝑤0  ∈ 𝑋(5.15) 

and has a unique solution.  

Proof. We shall prove that 𝐴  is monotone. Let 𝑇1, 𝑇2 ∈ 𝑋 be arbitrary 

temperatures. Then the following estimate holds: 

𝐴 𝑇1, 𝑇1 − 𝑇2 − 𝐴 𝑇2, 𝑇1 − 𝑇2 = 𝑎(𝑇1 − 𝑇2, 𝑇1 − 𝑇2)  (5.16) 
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+  𝐺(𝜍 𝑇1
4 − 𝑇2

4 )(𝑇1 − 𝑇2)
Γ

 

+  ( 𝑇1 4

Γ

−  𝑇2 4) 𝑇1 − 𝑇2  

≥ 𝑐 𝑇1 − 𝑇2 𝐿2(Γ),
2  

where c is the coercivity constant of a. In (5.16) the estimation of the first 

and third term is quite obvious [16], however, for the non-local term we use 

the monotony law simply by writing 𝑇1
4 − 𝑇2

4 = 4 𝑇  
3

(𝑇1 − 𝑇2). Then one 

obtains  

 𝐺(𝜍 𝑇1
4 − 𝑇2

4 )(𝑇1 − 𝑇2)
Γ

=   𝐺(𝜍𝑓 𝑇1 − 𝑇2 )(𝑇1 − 𝑇2)
Γ

≥ 0 

Since 𝑓 = 4 𝑇  
3

≥ 0  on Γ  and Lemma (5.2) holds for G. As 𝐴  is 

hemicontinuous and the additional term is also coercive in X, it implies the 

existence of at least one solution [16]. Moreover, because 𝐴  is strictly 

coercive in 𝐿2, the solutions is also unique.  

Lemma 5.5: 

 The solution of the modified problem (5.15) is also a solution of the 

original problem (5.9).  

Proof.  We need to show that the solution T of the modified problem (5.15) 

satisfies ∅1 ≤ 𝑇 ≤  ∅2 in Ω ∪ Γ. Thus it is sufficient to prove that 𝑇 ≤  ∅2 

then the other inequality follows directly using similar procedure. 

Subtracting the modified problem (5.15) from the condition imposed on∅2 

yields 
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𝑎 ∅2 − 𝑇, 𝑤0 + 𝑏 ∅2, 𝑤0 − 𝑏 𝑇, 𝑤0 ≥ 𝑐 𝑇, 𝑤0 ,      ∀𝑤0 ∈ 𝑋+.    (5.17)  

Now,  

𝑏 ∅2, 𝑤0 − 𝑏 𝑇, 𝑤0 =   𝐺  𝜍 ∅2
4 − 𝑇4  𝑤0.

Γ

 

Since∅2 and T are defined in 𝐿2(Γ), there exists a function 𝑔 ≥ 0 such that 

∅2
4 − 𝑇4 = 𝑓 ∅2 − 𝑇  on Γ . Let 𝑏  𝑢, 𝑤0 =  ∫ 𝐺 𝜍𝑓𝑢 𝑤0Γ

 then (5.17) 

takes the form  

 𝑎 ∅2 − 𝑇, 𝑤0 + 𝑏  ∅2 − 𝑇, 𝑤0 ≥  𝑐 𝑇, 𝑤0          ∀𝑤0  ∈  𝑋+            (5.18) 

If we choose 𝑤0 =  ∅2 − 𝑇 −then (5.18) gives  

−𝑎( ∅2 − 𝑇 −,  ∅2 − 𝑇 −) − 𝑏 ( ∅2 − 𝑇 −,  ∅2 − 𝑇 −)  

+𝑏 ( ∅2 − 𝑇 +,  ∅2 − 𝑇 −) 

 ≥  ∫   ∅2 − 𝑇 − 5
Γ

 

≥  0.            (5.19) 

Again,  

𝑏   ∅2 − 𝑇 +,  ∅2 − 𝑇 − =    𝑓𝜍𝜀 ∅2 − 𝑇 + ∅2 − 𝑇 −

Γ

 

−    𝐻(𝑓𝜍𝜀 ∅2 − 𝑇 +) ∅2 − 𝑇 −

Γ

 

≤  0. 

as H is nonnegative operator [31]. Hence it follows from the coercivity of a 

and the semi-coercivity of 𝑏  that  ∅2 − 𝑇 − = 0. 

It must be indicated that when Ω is a two-dimensional enclosure then the 

non-linear boundary term is well defined for all 𝐿2(Ω) temperature fields 

and according to [14, 16] there exists a unique solution T for (5.9). 
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