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Abstract

The MagnetoHydreoDynamic flow ( MHD ) is one of the most
important topics in mathematical physics due to its wide range of

applications .

In this work we present some analytical and numerical solutions for
some MHD problems . The MHD flow past an impulsively started infinite
horizontal plate in a rotating system and unsteady MHD flow through two

parallel porous flat plates are considered.

In this work an exact analytical solution for these problems based on
Laplace transform method has been constructed and analyzed. This
involves transforming the coupled partial differential equations into a

single equation.

For the numerical treatment of these problems we use the finite
difference scheme and then implementing a computer software “ MAPLE

15 to obtain some numerical results.



Introduction

The MHD is one of the simplest models for describing the
interaction between a perfectly conducting fluid and a magnetic field.
There are various examples of applications for the MHD principle.
Engineers apply MHD principle in fusion reactors, dispersion of metals,
metallurgy, design of MHD pumps, MHD generators and MHD flow
meters. The dynamo and motor is a classical example of MHD principle.
Geophysics encounters MHD characteristics in the interaction of
conducting fluid and magnetic field. MHD convection problems are also
very significant in fields of stellar and planetary magnetospheres,
aeronautics and chemical and electrical engineering. The MHD principle
also finds its application in medicine and biology such as cardiac MRI,

ECG etc [10],[40].

The MHD in its present form is due to the contribution of several
well-known authors like Alfven [2], Cowling [5], Shercliff [33], Ferraro

and plumpton [11], Krammer and Pai [24].

In all the above studies, the influence of Hall current effects on MHD
flow was not considered. That is, if a conductor or a semi — conductor has
current flowing in it because of an applied electric field and a transverse
magnetic field is applied, then there develops a component of electric field
in the direction orthogonal to both the applied electric field and magnetic
field, resulting in voltage difference between the sides of the conductor.

This phenomenon is termed as the Hall effect. In an ionized gas, when the
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strength of the magnetic field is large, one can not neglect the effect of the
Hall current. These Hall currents are particularly important to produce
considerable changes in the flow pattern when the magnetic field is
considerably large. Katugiri [22] has described the effect of Hall current on
the boundary layer flow past a semi-infinite flat plate. Gupta [16] studied
the Hall current effects in the steady hydro-magnetic flow of an electrically
conducting fluid past an infinite porous flat plate. Sakhnoskii [31] has
described the effects of Hall current on the MHD Rayleigh problem.
Pardeep [28] studied the thermal instability of Walter’s viscoelastic fluid
permeated with suspended particles in hydromagnetics in porous medium.
Deka [7] studied the Hall effects on MHD flow past an accelerated plate.
Mostafa et.al. [26] studied laminar fully developed mixed convection with
viscous dissipation in a uniformly heated vertical double —passage channel,
and Sulieman et.al. [37] have studied an MHD flow of viscous fluid past a

uniformly accelerated and insulated infinite plate with Hall effect .

The idea of MHD is that magnetic fields can induce a current in a
moving conductive fluid, which not only creates forces on fluid but also
change the magnetic field itself. For electrically conducting fluids, where
the velocity field V and the magnetic field B are coupled, any movement of
a conducting material in a magnetic field generates an electric currents j,
that is induces a magnetic field in turn. Hence, to describe the MHD
equations, we need to combine Maxwell’s equations of electromagnetic

with Navier-Stokes equations of fluid dynamics, the equation of mass
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continuity, and Ohm’s law , within differential form to result in MHD

equations.

This thesis is organized as follows: In chapter one, we review some
concepts of electromagnetic and fluid dynamic. In chapter two, we
formulate the MHD problems, namely: MHD flow past an impulsively
started infinite horizontal plate in a rotating system and unsteady MHD
flow through two parallel porous flat plates. Chapter three, deals with the
analytical solutions based on Laplace transform method. In chapter four,
we present numerical solutions involving finite difference method for these

problems. Chapter five gives some numerical results and conclusions.



CHAPTER ONE
PRELIMINARIES
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CHAPTER ONE

PRELIMINARIES

1.1 Gauss's law

Gauss's Law is one of the most important fundamental laws of
electricity and magnetism. it is another form of Coulomb's law that allows
one to calculate the electric field of several simple configurations. In this
section we describe a general relationship between the net electric flux
through a closed surface and the charge enclosed by the surface. Let us
consider a positive point charge g located at the center of a sphere of radius
r. From Coulomb's law the magnitude of the electric field everywhere on

the surface of the sphere is

where E is the electric field and k. is the Coulomb's constant,

= 1
¢ 4re,

and €, is the permittivity of free space.

Now, the net flux @5 through the Gaussian surface is [3]

@E = f E.dA.
S

For Gaussian surface the field lines are directed radially outward and

hence perpendicular to the surface at every point on the surface. That is, at
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each surface point, E is parallel to the vector A A; representing a local

element of area A A; surrounding the surface point [32]. Therefore,

and hence

72

k 4mr?
ffE_dAz fEdAzEfdAzM
S

S S

so we have

where €, = 8.85 X 10712 (in farads/meter) is the electric permittivity.

If a closed surface S encloses no charges, then the number of lines
entering must equal the number of lines exiting, since there are no charges

inside for the field lines to stop or start on. That is to say,

jé E.dA= 0
S
So only charges inside the surface can contribute to the flux through
the surface. Positive charges inside produce positive flux; negative charges

produce negative flux. Hence The net flux is due only to the net charge

inside [9]:

75 E.dA = denc (1.1.1)
€o
S
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This is usually referred to be the integral version of Gauss’s Law,
where ¢, denotes the total charge enclosed within the surface. Using the
Divergence theorem allows us to connect the differential and integral forms

directly, This is a general mathematical relationship [17]:

jLE. dA = 75 V.EdV (1.1.2)
S |74

If we use the charge in terms of a charge density p.,

Qenc = jpc av (1.1.3)
%4

using (1.1.2) and (1.1.3) in equation (1.1.1) we have,

1
jLV.EdV= — | p.dV
€o
% 1%

since the volume V is fixed and arbitrary, this implies that

_ Pc
€o

V.E (1.1.4)

This is the differential form of Gauss’s Law. Finally, Gauss’s Law
state that The net number of electric field lines which leave any volume of

space is proportional to the net electric charge in that volume.

1.2 Faraday’s Law

Faraday's law is essentially a statement which gives the relation
between a time-varying magnetic field and the electric field E produced

by it. Earlier we have seen that electric charges are the sources of E. But
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the experiment of Michaels Faraday (1791-1867) , gives another possible

way of producing an electric field [32].

The main idea of Faraday’s law is, changing magnetic flux through a
surface induces an electromotive force (emf) in any boundary path of that
surface, and a changing magnetic field induces a circulating electric field.
The emf induced in a circuit is directly proportional to the time rate of
change of the magnetic flux through the circuit. This statement, known as

Faraday’s law of induction, can be written as

_ _ 4% 1.2.1
emf = — —o (1.2.1)
where @y is the magnetic flux through the circuit.
Faraday’s found that the magnetic flux take the form [13],
Qg = f B.dA (1.2.2)

S

where B is the magnetic field.

Faraday postulated that changing magnetic fields induce an electric
field, from his earlier experiment he found that the loop moving is what
causes the magnetic force that induces an emf. But since the loop is

stationary, there cannot be a magnetic field producing the emf [3].

Therefore, we must conclude that an electric field is created in the
loop as a result of the changing magnetic flux. The emf for any closed path

can be expressed as the line integral of E . dL over that path [32],
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emf = jg E .dL (1.2.3)

combining the equations (1.2.1), (1.2.2) and (1.2.3) we get

—3€EdL— APs _ a5 dA
emf = T de dt
S
then
ffEdL— de dA 1.2.4
dL = - (1.2.4)
S

This is now known as Faraday’s Law in its integral form. Using
Stoke’s Theorem [17], we can recover the law into its differential form by

noting that

7€ E.dL = Sj(v x E).dA (1.2.5)

hence, using (1.2.5) with the equation (1.2.4) we get,

E=—— 1.2.
V X o (1.2.6)

and this is known as Faraday’s Law in its differential form.
1.3 Gauss’s Law for Magnetic Field

Gauss’s law for magnetism is remarkably similar to Gauss’s law for
electricity in form, but means something rather different. Imagine that a

magnet was placed in space, and that a spherical Gaussian surface was
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constructed around it. So we note that Magnetic field lines always close in
themselves. No matter how the (closed) Gaussian surface is chosen, the net

magnetic flux through it always vanishes [32].

Oy = fB.dA
S

there for we have that

j B.dA=0 (1.3.1)
S

Using the Divergence theorem (1.1.2) with the equation (1.3.1), we get
V.B=0 (1.3.2)

That is the Gauss’s Law for Magnetic Field or the Solenoidal

constraint.
1.4 Ampere's law

Ampere’s Law, states that integral of magnetic field along any
closed path is directly proportional to the net electric current crossing any

surface bounded by the closed path.

Jean-Baptiste Biot and Felix Savart (19 th century) determined a
mathematical expression for calculating the magnetic field of a current.

They side that around any current carrying wire results a magnetic field.

The magnitude of dB is proportional to riZ’ where 7 1s the distance from the
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line element ds to the point where we calculate the magnetic field. The

magnitude of dB is proportional to the current and to the length ds [44].

So the Biot-Savart law tells how to calculate the magnetic field due
to a current /. According to this law the magnitude of dB produced at a
point p separated a distance r from a length ds of a wire carrying a current
I is given by [32]:

I ds Xr
ap =2

4 13

where p, is a constant called the permeability constant for the vacuum.

The total magnetic field at p is found by integrating the above
equation along the wire,

I
B—‘HL

= 1.4.1
2mR ( )

where R is the perpendicular distance from the wire.

We will now give a brief derivation of Ampere’s law using the

equation (1.4.1) to obtain the integral form of Ampere’s Law
353 = Mol fdl = uyl (1.4.2)
27mr

This is the integral form of Ampere’s Law: The line integral of B
around a single closed path is equal to the permeability of the medium

times the current enclosed.
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Using the current enclosed I = 1,,. by the Amperian loop, and if we
have a volume current density enclosed (not just a wire carrying current I)

W€ usSe:
Lpe = f J.dA (1.4.3)
S

where J is the volume current density.

Now with the help of Stoke’s theorem (1.2.5) with the equations

(1.4.2) and (1.4.3) we can write Ampere’s law in in differential form
f(VxB)dA= .Uof]-dA
S S

hence,
VXB= pu,f. (1.4.4)
1.5 The Continuity Equation for Charge

In physics, charge conservation is the principle that electric charge
can neither be created nor destroyed. So for a surface S, the total amount of
charge flowing outwards through the surface per unit time must equal the
amount by which the charge is decreasing inside the volume V per unit

time. Hence
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now using (1.1.2) we get

d
jév.j dv = —EjépdV

%4 %4

hence the charge continuity equation,

dp
V.- =0

where J is the volume current density and p is the mobile charge density.

Now if we take the global conservation of charge law, which states

that the total charge of the universe is constant. Then we have
V.J=0

d ) ) :
We have d—i = (0 since the currents are continuous and time

independent. That what we have in magnetostatics.see[3].
1.6 Maxwell's Equations

In 1865, Maxwell published a set of equations that describe
completely the behavior of electromagnetic fields. These equations are used
in a huge range of applications, from the properties of materials, to

properties of radiation (radio waves to gamma rays) [ 14].

However when Maxwell was putting all the equation's together and
studying them, he found one fatal inconsistency that was dealing with

Ampere’s Law [3], when we take the divergence of Ampere’s Law we will
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have V.J = 0 which is very nice if we have a steady currents, but, what if

we have a non-steady currents.

So Maxwell made contribution to Ampere’s Law. The new term
added by Maxwell is called the displacement current. His addition of the
displacement current made Ampere's law agrees with conservation of

charge.

Using this and the above equation's to get the famous equations of

electromagnetism, known as the Maxwell's Equations, as follows,

V.E = % Gauss’s Law,

0
V.B=0 Solenoidal constraint,
VXE = — Z—f Faraday’s Law,

VXB= ugJ+ uop€op Z—f Ampere’s Law.

1.7 Navier-Stokes Equations

The Navier-Stokes equations are the fundamental partial differentials
equations that describe the flow of incompressible fluids. The Navier—
Stokes equations are based on the assumption that the fluid, at the scale of
interest, is a continuum, in other words is not made up of discrete particles
but rather a continuous substance. So we assume that the density and
viscosity of the fluid are constant, which gives rise to a continuity

condition.
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In this section, we derive the equation of conservation of mass, the

Euler equations, the Navier-Stokes equations.
1.7.1 Continuity Equation

Let us first consider the flow of mass in and out of a control volume.
The mass flowing out of the area element dA per unit time is pv. dA. So the

time rate of change of mass in the control volume is [42]

aj dv = japdv - j dA
ac) PY T ) Y T py-
174 Vv A

where p is the fluid mass density and v is the fluid velocity. Using (1.1.2),

this becomes

japdv - f V. ov)dV
%4

%4

j(a—p+(v v))dV =0
J ot P

since the volume V is fixed and arbitrary, this implies that

)
a_/t) + V.(pv) = 0 (1.7.1.1)

this is the continuity equation or the conservation of mass to the fluid.
Now if we assume that the fluid is incompressible we have,

p = constant
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using the material derivative which is the rate of change of p in a given

element of fluid as it moves along its trajectory x = x(t) in the flow [12].

Dp 0p
—_= v

pe~ ac T VP
hence, the continuity equation becomes

Dp+ V.v) =0

where
V.pv=w.V)p+ p(V.v)
then the equation (1.7.1.1) is reduced to
Vv=20
which is the continuity equation for incompressible fluid .
1.7.2 Euler's Equation

To obtain the equation of motion for a fluid we appeal to Newton's
second law that the mass of a fluid element times its acceleration is equal to
the net force acting on that fluid element [8]. If we take an element of unit

volume, then we have

Dv

Pﬁ=f

Where p is the fluid mass density, v is the fluid velocity and f is the

force per unit volume on a fluid element.



17

This force may have several contributions. The first is the internal
force which is due to viscous dissipation, which we will ignore for right
now. The second set are body forces which act throughout the volume of
the fluid, such as the gravitational force. The third force is due to pressure

gradients within the fluid.

To see how this works, consider a cube of fluid, with dimensions

Ax ,Ay , and Az, so the force on the top face at position x is pAyAz , while

the force on the bottom that face is [p + Z—ZAx] AyAz ,where p = force ’

area

: : . . .0
subtracting, we see that the net force in the x-direction is — ﬁAxAyAZ , SO

: . @ :
the pressure per unit volume s —£[3]. Repeating  for

the y and z directions, we find the net force per unit volume,

f=-Vp

therefore, if we ignore viscosity and gravity for the moment, we have

Dv

pD—t=—Vp

now we want the acceleration of a particular element of the fluid, the
coordinates of this fluid element change in time as the fluid flows. In a time

interval At , the x-coordinate changes by v,At, the y-coordinate by v, At ,

and the z-coordinate by v,At . The velocity then becomes,
v(x + v, At,y + UyAt,Z + v, At ,t + At)

ov dv dv dv
=v(x,y,z,t) +avat +@vyAt +Evat +§At

therefore from the above we find the acceleration to be,
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Dv Av  v(x+vAt,y +vAt,z 4+ v,At, t+At) — v(x,y,z,t)
Dt At At
v ov v ov

==V, +
ox *

vy+

@ a—sz‘l‘E

then we have,

Dv_6v+( v
Dt ot T WYY

traditionally the operator % is called the material derivative. The material

derivative in our case describes the evolution of a particular fluid blob as it

moves along a certain trajectory as it flows alongside the rest of the fluid

. : d .
[3]. And we see that the acceleration is not simply a—: . The reason for this is

) : : o :
that even if a—: = 0, so that the velocity at a given point is not changing,

that doesn't mean that a fluid element is not accelerating. A good example
is circular flow in a bucket. If the flow is steady, then at a point in the
bucket % = 0, even though a fluid element in the bucket is experiencing a
centripetal acceleration. The term (v .V)v is nonlinear, and it is the source
of all of the difficulties in fluid mechanics. Now Pulling together all of the
pieces, so we have

dv
p E-l—(U.V)U = —-Vp+f

This is known as Euler's equation . This equation and the equation of

continuity are the governing equations of non viscous fluid flow.
1.7.3 Navier-Stokes Equations

Let's expand our work about the force f, and take the internal force

which is due to viscosity of the fluid. On other words we will talk about the
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shear stresses if we take the cube of the fluid and Put it on the boundary of
a flow, like a wall, they found that the fluid velocity on the boundary is
zero, so if we think of a single fluid cube “standing” against the boundary,
the bottom of the fluid cube has velocity zero. However, this does not mean
that the top of the fluid cube has zero velocity. The top of the fluid cube
will have some velocity due to the shear stresses acting on the cube. So the

cube will look as though it is being stretched.

A stress component which acts perpendicular to face is referred to as
normal stress, and a stress component which acts tangential to a face are
called a share stress [29]. If we take the flow to be two directional flow the

shear stress 7, is
T= U —
U dy

] : : : :
where % describes the change in the x component of velocity with respect

to the coordinate y and u is a parameter called the molecular viscosity.

Fluid satisfying this equation is called Newtonian fluids, which are
fluids for whom stress is proportional to strain, with the constant of

proportionality being the molecular viscosity [25].

For the previous equation we can write it in terms of an arbitrary
coordinate system as

avi 617]
Ty = W3- t3

1.7.3.1
an axi ( )

where x; = (x,y,z) and v; = (vx,vy,vz )
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Back to the fluid cube and consider it is in the bottom of the flow

using the equation (1.7.3.1) and put it in the Euler's equation so we get,

azvi

v
p [E+(v.V)v] = —Vp+2u P

2

+ V.t +f

2.,.

0°v;
2
0x;

where —Vp + 2u are the normal stress [29].

+
ox? = 0x;

v
p [—+(v.V)v] = —Vp+2u

azvi 0 avi 017]
ot H

an 6xl-

now if we take the x direction for example,

v, v, v, v,
p[%*”xﬁ*”y 3y "% ]

0%v, 0%v, 0%v, 0%, 62v2>+fx

P2
+“< 0z * 3y2 T oxay T 922 " oxoz

Z

using the continuity equation the incompressibility of the fluid and the
viscosity of being constant across the fluid. With this simplification the

Navier-Stokes equation becomes

av+( V)]— L Vp + YV 4
or TV = =2V vaf

where y = % is the kinematic viscosity. This is a skeletal version of the

Navier-Stokes equation.

Now if the fluid contains electrical charge p. per unit volume, then
there is a force per unit volume of p.E. When an electric current density J

flows through the fluid, there is a force per unit volume of /] X B.

Then, the Navier-Stokes equation becomes,
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v
p [E+(v.V)v]= —Vp+ uV?v+p.E+]JXB +f

But comparing the magnetic force which we called Lorentz force
with the electric force we can neglect the electric force; because the flows
that we are interested in, there speeds are very small compared with the

speed of light ¢ [10].

So we have the Navier-Stokes equations for incompressible viscous

fluid subject to a magnetic field to be
Vv=20

av
p [E-I-(U.V)U]: —Vp+ uV?v+JXB + f

1.8 Ohm's Law

Ohm's law states that the total electric current flowing in a conductor
is proportional to the total electric field. In addition to the field E acting on
a fluid at rest, a fluid moving with velocity v in the presence of a magnetic

field B is subject to an additional electric field v X B. Ohm's law then gives
J=0[E+ vXB]

where the constant of proportionality o is called the electrical conductivity
[10]. Note that Ohm's Law couples the electromagnetic equations to the
fluid motion equations through v, the fluid velocity. For more specific let
us take Lorentz force which is perpendicular to both velocity and the
magnetic field, From experimental observation it has been found that the

foundational force relation in magnetism is
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fmag=Q(v XB)

this law describes the force on a test charge @, when it is moving with
velocity v in magnetic field B. For collisional particles that are forced to
follow the fluid velocity v, the Lorentz force acts on electrons and ions in a
direction perpendicular to the flow, but in opposite directions for positive
and negative charges. The net result is charge separation, leading to electric

fields [40].

In the regime between collisional and collisionless particles, the Hall
effect can be important. Hall effect refers to potential difference (Hall
voltage) on opposite sides of a thin sheet of conducting or semi-conducting
material through which an electric current is flowing, created by a magnetic
field applied perpendicular to the Hall element. Usually the current induced
in the fluid is carried predominantly by electrons, which are considerably

more mobile than ions. So the electron drift velocity [15], given by:
] = neev,

where , n.the number density of electron , v, electron drift velocity and e

is the charge of one electron.

leads to a second component of velocity, and so a secondary force

and electric field:

En= BJXB

L is the Hall constant. The current component created by this

where [ = —
e

electric field, that is to say the Hall current, is given by —u, /] X B, where
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Ue = % is the electron mobility. Where w is the electron cyclotron

frequency and T is the electron collision mean free time [40].

This leads to a more generalized statement of Ohm’s Law including

the Hall effect:

J=0|E+ vXB]—u,JxXB.
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CHAPTER TWO

FORMULATION OF THE PROBLEMS

2.1 MHD Flow Past an Impulsively Started Infinite Horizontal Plate

in a Rotating System without Hall Effect

We consider the unsteady flow of an electrically conducting
incompressible viscous fluid past an Infinite flat plate occupying the plane
z = 0 . Initially the fluid and the plate rotate in unison with a uniform
angular velocity €, about the z-axis normal to the plate. The x-axis is
taken in the direction of the motion of the plate and y-axis lying on the
plate normal to both x and z-axes. Relative to the rotating fluid, the plate is
impulsively started from rest and set into motion with uniform velocity in
its own plane along the x-axis. A uniform magnetic field B, parallel to z-
axis is imposed and the plate is electrically non-conducting. Due to the
horizontal homogeneity of the problem, the flow quantities depend on z
and t only, t being the time variable [7]. The equations describing the

unsteady flow are :
Equation of continuity :
V.q=0 (2.1.1)

Equation of motion:

dq

1V + By +1]><B 2Q x Q
= ——VpT—V'qT— - q-—
p p p

X (Q X 71) (2.1.2)
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The Continuity Equation for Charge:
V.J=0 (2.1.3)
Ohm's law :
J]=0o[E+qXB] (2.1.4)
Gauss's law of magnetism:
V.B=0 (2.1.5)

where q is the velocity vector, Q is the angular velocity of the fluid, r is the
position of the fluid particle considered, p is the fluid density, p is the
pressure, J is the current density, B is the magnetic vector, u is the
coefficient of viscosity, o 1is the electrical conductivity, E is the electric
field, 2Q X q is the Coriolis acceleration, X ( X r) is the centripetal

acceleration.

As the plate is infinite, there is no x and y dependence. So the flow

quantities depend on z and ¢t only, t being the time variable .

From equation (2.1.1) we have that

ow

2z
and as the plate is flat then

w=20

similarly from equation (2.1.3) we have J, = constant, which must equal to

zero as the plate is electrically non-conducting.
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Finally, from equation (2.1.5) we have B, = constant = B,

everywhere in the flow.
Thus :
J=(JxJy,0) g=(u,v,0) B=(By,By,Bg)

we have ignored the ion-slip effects, electron pressure gradient and assume
that the electric field E = 0. Under these assumptions equation (1.2.4)

takes the form :

J=0qxB (2.1.6)
therefore we have :

J, = 0By v (2.1.7)

Jy = —0oByu (2.1.8)

the entire system is rotating with angular velocity Q about the normal to the
plate and |Q| is so small that Q X (Q X r) can be neglected. Magnetic
Reynolds number is small enough to neglect magnetic induction effects [1],
and in the absence of pressure gradient where the pressure is uniform in the

flow field, equation (1.2.2) along with (2.1.7) and (2.1.8) comprises :
foru (z,t) so we have

! JXB = ! J, B

p p Tt

du  d°u oBju
ot ¥ 922 p

+ 2Q,v (2.1.9)
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forv (z,t) so we have

- — 2Q,u (2.1.10)

here u is the axial velocity (along the direction of the plate) and v is the
transverse velocity (transverse to the main flow) and y is the kinematic

viscosity. The initial and boundary conditions are given by :

u=0,v=0 at t< 0 forall =z (2.1.11)

{”zA' v=0 atz=0 (2.1.12)

u->0, v-0atz - »
where (A > 0) is a constant .

Now we introduce the non-dimensional quantities [7]:

1 1
u v A\3 A%\3
U= 1 V = 1 Z=Z(—2> , T =t|— ,
3 3 14 14
(Ay)3 (Ay)3
2 22
I oBgyy3
Q= 92(1)3 ,M? = 1
2pAs3
where M is the Hartman number and Q is the rotation parameter.
Then we have:
oU A% 1 du 02U A 2 0%u
—=(—)3— _2=(_23_2
oT y~ ot d0Z y 0z
oV A% 1 0v 0%V A 2 d%v

-G 5 a7z = G2’ 52
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and the equations ( 2.1.9), (2.1.10) and boundary conditions (2.1.11),
(2.1.12) becomes:

v _ —62U+ 2QV — 2 M2U 2.1.13
aT ~ 972 (2.1.13)
v _ o 2QU — 2 M?V 2.1.14
oT 072 (2.1.14)
U=0,V=0 at T 0 forall Z (2.1.15)

{ U=1 V=0 atZ=0
U -0,

U 50 at 7 o o T>0 (2.1.16)

2.2 MHD Flow Past an Impulsively Started Infinite Horizontal Plate

in a Rotating System Including Hall Effect

We consider the unsteady flow of an electrically conducting,
incompressible viscous fluid past an Infinite flat plate occupying the plane
z =0 . Initially the fluid and the plate rotate in unison with a uniform
angular velocity €, about the z-axis normal to the plate. The x-axis is
taken in the direction of the motion of the plate and y-axis lying on the
plate normal to both x and z-axes. Relative to the rotating fluid, the plate is
impulsively started from rest and set into motion with uniform velocity in
its own plane along the x-axis. A uniform magnetic field B, parallel to z-
axis is imposed and the plate is electrically non-conducting. Due to the

horizontal homogeneity of the problem.
The equations describing the unsteady flow are [7] :

Equation of continuity:
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V.q=0 (2.2.1)

Equation of motion:

dq
ot

1 1
+(q.V)q=—;Vp+%vzq+;]xB—ZQXq—Qx(QXr) (2.2.2)
The Continuity Equation for Charge:

V.J=0 (2.2.3)

General Ohm's law:

1

J+ >]xB=cd[E+qxB+ —Vp,] (2.2.4)
By PeMe
Gauss's law of magnetism:
V.B=0 (2.2.5)

where q is the velocity vector, Q is the angular velocity of the fluid, r is the
position of the fluid particle considered, p is the fluid density, p is the
pressure, / is the current density, B is the magnetic vector, u is the
coefficient of viscosity, o is the electrical conductivity, w is the electron
frequency, 7 is the electron collision time, n, is the number density of
electron, p, is the electron pressure, E is the electric field, 2Q X g is the

Coriolis acceleration, Q X (Q X r) is the centripetal acceleration.

As the plate is infinite, there is no x and y dependence. So the flow

quantities depend on z and t only, t being the time variable .

From equation (2.1.1) we have that



ow 0

0z
and as the plate is flat then

w=0

similarly from equation (2.1.3) we have J, = constant, which must equal to

zero as the plate is electrically non-conducting.

Finally, from equation (2.1.5) we have B, = constant = B,

everywhere in the flow.
Thus:
]Z(in]ylo) q=(u,v,0) B:(Bx,By,BO)

we have ignored the ion-slip effects, electron pressure gradient and assume
that the electric field E = 0. Under these assumption equation (1.2.4)

takes the form :
m
J]=0qXB— —]XB (2.2.6)
By
where m = w 7 is the Hall parameter .
Then we have :
Jx = 0By v—mj, (2.2.7)
Jy = —aByu+mjy (2.2.8)

on solving equation (2.2.7) and (2.2.8) we conclude :
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_ 0By (v+mu)
= At (2.2.9)
J, = 9Bo (mv — u) (2.2.10)

(1+ m?)

the entire system is rotating with angular velocity Q about the normal to
the plate and |Q| is so small that Q X (Q X r) can be neglected, Magnetic
Reynolds number is small enough to neglect magnetic induction effects [1],
and in the absence of pressure gradient where the pressure is uniform in the

flow field, equation (2.2.2) along with (2.2.9) and (2.2.10) comprises:

foru (z,t) sowe have

L ixB=215
p pr°

du  d°u oB§ (mv+ u)+ 20 2911
ot ¥ 922 p(1+ m?2) z¥ (22.11)
forv (z,t) so we have
1 1
;]XB: _;]xBO
v 62v+aB§ (mu — v) 0 2912
ot ¥ 922 p(1+ m2) zt (22.12)

here u is the axial velocity (along the direction of the plate) and v is the
transverse velocity (transverse to the main flow) and y is the kinematic

viscosity. The initial and boundary conditions are given by :

u=0,v=0 at t< 0 forall =z (2.2.13)

{”zA' v=0 az=0 . _, (2.2.14)

u->0, v-o0az - o©
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where (A > 0 ) is a constant .

Now we introduce the non-dimensional quantities [7]:

u

U= 1
(Ay)3

1 1
% A\3 A%\3
B V= 1 =2z <—2> ,T =t|— ,
(Ay)3 Y Y
2
Y21 oB§y3

Q= QZ(Z)§'M2= 1
2pA3

where M is the Hartman number and Q is the rotation parameter.

Hence we have :

ou A? 1 du 02U A2 02u
— = (—)3 R =5 = —2)3 -
oT y~ ot 0Z y 0z
oV A% 1 0v 02V A 2z 9%v
_:(_)3_ _2=(_2)3_2
oT y’~ Ot 0Z y 0z

and the equatio

ns (2.2.11), (2.2.12) and boundary conditions (2.2.13),

(2.2.14) becomes:

ou_ o°U +2V( Q MZm 2 MU (2.2.15)
oT 072 (1 + m2) (1+ m?) -

v _ov 2U0( Q MEm 2 MV 2.2.16
oT  0Z2 (1+ m2) (1+ m?) (2:2.16)

U=0,V=0 at T< 0 forall Z (2.2.17)

U=1 V=0 atZ=0
{U—>0, 0 a7 o TS0 (2.2.18)
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2.3 Unsteady MHD Flow Through Two Parallel Porous Flat Plates

without Hall Effect

We consider unsteady MHD flow of an electrically conducting,
incompressible viscous fluid through two parallel porous flat plates, we
assume that the fluid is being injected into the flow region with constant
velocity v, and being sucked away in the same speed, the plates located at
y =0,y = d. Let the x - axis be taken along the plates and y - axis normal
to the plates, the fluid is subjected to a constant transverse magnetic field of
strength B, in the y direction and we take the flow to be two dimensional.

The equations describing the unsteady flow are :

Equation of continuity:

V.q=0 (2.3.1)
Equation of motion:
dq 1 U 1
—+(q.V)q =—=Vp+ —V?q+ -] xXB (2.3.2)
at p p p
Ohm's law:
J=o0|[E+qXB] (2.3.3)

Gauss's law of magnetism:

V.B=0 (2.3.4)
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where q is the velocity vector, p is the fluid density, p is the pressure, J is
the current density, B is the magnetic vector, u is the coefficient of

viscosity, o is the electrical conductivity and E is the electric field.

We consider E to be neglected, Magnetic Reynolds number is small
enough to neglect magnetic induction effects . Under these assumptions

equations (2.3.2), (2.3.3) takes the form :

J=(Jx.Jy.Jz) q=(u,v5,0) B=(0,B,,0)

J=0qxB (2.3.5)
then we have :
Jx=10 (2.3.6)
J,=0 (2.3.7)
Jz = 0Byu (2.3.8)
for u
z JXB = — 2 JzBo
p P
and for v

1]><B—0
p

hence, the partial differential equations are :

ou Ou 10p 0’u  oBiu

3 Yoy T T pax Yoy o

(2.3.9)
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dv  dv _ 1dp 0%v

— — = — 2.3.1
6t+vay p6y+y6y2 (2.3.10)

subject to the initial and boundary conditions :

uZO,UZO’ tSO
{u: 0,v=v0,y=0’d,t>0 (2311)

where y is the kinematic viscosity.

As the plates are infinite, there is no x dependence [30], using that in

equation (2.3.1) we have

v _ 0
dy
then we have
v = UO

putting this in equations (2.3.9) and (2.3.10) we obtain

ou u 10p 0’u  oBZu

— — = = — 2.3.12

6t+v06y p6x+y6y2 p (23.12)
10p

0=—-——— 2.3.13

>3y ( )

subject to the initial and boundary conditions :

u=0,vr=0, t <0
{u= 0, v=vy5,y=0,d,t>0 (2.3.14)

now we introduce the non-dimensional quantities [23]:



oB3d vod p
PV ' 14 pvh

MZ

where M is the Hartman number and R is Reynolds number.

Hence the partial differential equations with the initial and boundary
conditions become :

au aUu oP 102U

-t = 4 _ M2
aT+ FT% aX+ R T2 MU (2.3.15)
0= op 2.3.16
- aY (' - )

Uu=0, T <0
{U= 0,Y=0,1 ,T>0 (2.3.17)

2.4 Unsteady MHD Flow Through Two Parallel Porous Flat Plates
With Hall Effect

We consider unsteady MHD flow of an electrically conducting,
incompressible viscous fluid through two parallel porous flat plates with
Hall effect, we assume that the fluid is being injected into the flow region
with constant velocity v, and being sucked away in the same speed, the
plates located at y = 0, y = d. Let the x - axis be taken along the plates
and y - axis normal to the plates, the fluid is subjected to a constant
transverse magnetic field of strength B, in the y direction and we take the
flow to be two dimensional. The equations describing the unsteady flow

are:
Equation of continuity:

V.g=0 (2.4.1)
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Equation of motion:

99 4. = —2vp+ Pvig+ Lxn (2.4.2)
5e @V ==+ SV 4.

General Ohm's law:

wT
—J/Xb =0 X
J+ J XB E+qXB+

Vp ] (2.4.3)
BO PeNe ¢

Gauss's law of magnetism:
V.B=0 (2.4.4)

where g is the velocity vector, p is the fluid density, p is the pressure, J is
the current density, B is the magnetic vector, u is the coefficient of
viscosity, o is the electrical conductivity, w is the electron frequency, 7 is
the electron collision time, n, is the number density of electron, p, is the

electron pressure and E is the electric field.

We have ignored the ion-slip effects, electron pressure gradient,
Magnetic Reynolds number is small enough to neglect magnetic induction
effects and assume that the electric field E = 0. Under these assumptions

the equation (1.4.3) takes the form :

J=(Jx.Jy.Jz) q=(u,v5,0) B=(0,B,,0)

]=aq><B—Bm]><B (2.4.5)
0

where m = w t is the Hall parameter .

therefore we have :
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J, =mJ, (2.4.6)
]y =0 (2.4.7)
J], = oByu +mj, (2.4.8)

on solving those equations we conclude :

_ oBymu 249
_ _Tht 2.4.10
]Z - (1 n mZ) ( v )
now equation (2.4.2) along with (2.4.9) and (2.4.10) comprises :
for u
1
-/ XB = » Jz Bo
and for v
— ] XB =
the partial deferential equations are :
ou  du 10p d%u oBiu
=— —— (2.4.11)

E-l_v@_ p6x+y6y2_p(1+ m?2)

6v+ v 16p+ 0%v 2412
ot “ay‘ p oy ”ayz (2.4.12)

subject to the initial and boundary conditions :

— — <
{” 0,v=0, t <0 (2.4.13)

u=0,v=v,y=0,d,t>0

where y is the kinematic viscosity.
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As the plates are infinite, there is no x dependence [30], using that in

equation (2.4.1) we have

ov _ 0

dy
then we have

v = UO

putting this in equations (2.4.11) and (2.4.12) we obtain

ou ou  10p d%u oBiu

ot 9y~ pox - 2.4.14
ot ey T T pa Yoy parmny MY
- (2.4.15)
p oy 4.
subject to the initial and boundary conditions :
u=0,v=0, t <0
{u: 0,v=v,y=0,d,t>0 (2.4.16)

now we introduce the non-dimensional quantities [23]:

Vot u X
r=3 T=p U= X=g
0
oBZd vod
M? = 0 ’ R:L ’P:LZ
v, y pv3

where M is the Hartman number and R is Reynolds number.

Hence the partial differential equation with the initial and boundary

conditions becomes:
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ou au oP 102U M?

- 4 =4 = — 2.4.17
Tty Tax TRz axmn? @4
0= 2P 2.4.18
= = (2.4.18)

U=0, T <0
{U =0,Y=0,1 ,T>0"° (2.4.19)
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ANALYTICAL SOLUTIONS
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CHAPTER THREE

ANALYTICAL SOLUTIONS

3.1 Introduction

In this chapter we solved the problems that have been formulated in

chapter two analytically to obtain exact solution.

3.2 MHD Flow Past an Impulsively Started Infinite Horizontal Plate

in a Rotating System without Hall Effect

In this section an exact solution based on Laplace transform to this

problem is introduced.

Equations (2.1.13) and (2.1.14) along with boundary conditions

(2.1.15) and (2.1.16) are solvable by combining (2.1.13) and (2.1.14) we

get:

80  9%Q
aT ~ a7z W

with the initial and boundary conditions :

Q=0 at T< 0 forall Z

{Q=1, at Z =20
Q -0, at Z - ©

T>0
where Q = U + iVand a=2[ M? +iQ].

Assume

o(T,Z2) = e Q(T,Z)

(3.2.1)
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then we have

99 _ ,arQ

— aT
3T = e aT+ ae* Q
09 _ 00
0z 0z
’¢ . 0%Q

072 ¢ 9vz?

using this in the equation (3.2.1) we obtain

dp  d%¢

a_T _— ﬁ (3.2.2)

with the initial and boundary conditions :

{(p(olz)zol (p(T;0)= eaT (323)
o(T,Z) -»0asZ - o o

now, by taking the Laplace transform of equation (3.2.2) with respect to

the variable T we have [36] :

L3 =5 065.2) - 0(0,2)

L el _ 4L, Z
72| = qzz (5.2

then we have

2

ﬁé(s,z) (3.2.4)

sQ0(s,Z2) =
where

Q(s,2) =L{o(T,2)}



45

and

~ 1
Q(s,0) = L{o(T,0)} = L{e*} =

Zliggo 0(s,2) =0
the auxiliary equation for equation (3.2.4) can be written as :
52—5s=0
§= s
hence
0(s,Z) = c,e?Vs + c,e Vs
claimc¢; = 0.
Proof of claim :
Dividing both sides of equation (3.2.5) by e%Vs
e 25 Q(s,Z) = ¢, + c e 22Vs
now, taking the limit of both sidesas Z — oo
0=1¢+0
c; =0
hence,

Q(s,Z) = c,e™?¥s

(s—a)

(3.2.5)

(3.2.6)
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putting Z = 0 in equation (3.2.6) we have :

~ 1
WO =2 =0y
B 1
2T 5-a)
then we obtain
_ 1 —Z\s
Q(S, Z) - (S _ Cl)

now

o(T,2) = [ {Q(5,2)} = L ———— =2 )
G-

using the Hetnarski algorithm [20], we obtain the inverse Laplace

transform of Q , that is

o(T,Z) = ? [e~2Vaerfc (2% - \/ﬁ) + eZVaerfe (2% + \/ﬁ)]
now
Q(T,Z) =e " o(T,Z)
therefore
Q(T,2) = %[e‘z‘/aerfc (% - W) + eZVerfe (% + x/ﬁ)]
where

erfc(x) =1 —erf (x)
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o) =1— — j gy 2 fd

erjc\x)=1— — e u=— e u .
7= ), 7 )

3.3 MHD Flow Past an Impulsively Started Infinite Horizontal Plate

in a Rotating System Including Hall Effect

In this section an exact solution based Laplace transform to this

problem is introduced.

Equations (2.2.15) and (2.2.16) along with boundary conditions
(2.2.17) and (2.2.18) are solvable by combining (2.2.15) and (2.2.16) we

get:
Q 0%Q
ﬁ = W - ClQ (331)
with boundary conditions :
Q=0 at T< 0 forall Z (3.3.2)

{ Q=1 atZ=0

00 atZ - o T>0 (3.3.3)

2 2
where Q = U +iVand a = 2] i +i(Q— Mm)].

(1+ m2) (1+ m?2)
Assume
o(T,Z) = e“TQ(T,Z) (3.3.4)

now multiplying (3.3.1) by ( e%T) we get :

dp  d%¢

T (3.3.5)

From equations (3.3.2) and (3.3.3) and (3.3.4) we obtain:
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{(p(O,Z) =0, ¢@(T,0)= e

3.3.6
o(T,Z) —»0asZ - 0 ( )

now, by taking the Laplace transform of equation (3.3.5) with respect to
the variable T we have [36]:
9 ~
L{a—?} =s5Q(s,Z)— ¢(0,2)
L A B Z
o72) = azz 959

2

sQ(s,2) = WQ(S,Z) (3.3.7)
where
Q(s,2) = L{o(T,2)}
and
005,00 = LLp(T 00} = Lfe™T} = ——"
lim, 5o Q(s,2) =0 (3.3.8)

the auxiliary equation for equation (3.3.7) can be written as :

§2—-5=0

hence,

Claimc; = 0.
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Proof of claim :
Dividing both sides of equation (3.3.9) by e%Vs
e V50 (s,2) = ¢ + c,e 285

now, taking the limit of both sidesas Z — oo :

0=1¢c¢+0
then
c; =0
hence
0(s,2) = c,e™#s (3.3.10)

putting Z = 0 in equation (3.3.10) we have :

~ 1

s;0)=¢c, =—

Q(s,0) = ¢ Gta)
hence

1
C2=
(s+a)

then we get

~ 1 205

0(s,2) = Gta) e (3.3.11)

now
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o(T,2)=L{Q(s,2)} =LY e~2Vs }

(s+a)

Using the Hetnarski algorithm [20], we obtain the inverse Laplace

transform of Q, that is

o(T,Z) = ? [e~ZVaerfc (% - \/a_T) + eZVerfe (% + \/a_T)]
now
Q(T,Z)=e " o(T,Z)
therefore
Q(T,2) = %[e‘z*/aerfc (2% - W) +eZVaerfc (2% + W)]
where

erfc(x) =1 —erf(x)
erfc(x) =1- i fxe‘”z du = i jwe‘“z du
Vr Jo v Jy |
3.4 The Analytical Solution For The Unsteady MHD Flow Through

Two Parallel Porous Flat Plates Without Hall Effect

In this section we want to solve equations (2.3.15) and (2.3.16)

subject to the initial and boundary conditions (2.3.17).

From equation (2.3.16) we see that the pressure is independent of Y.
So it is a function of T only, but in our case we will take the pressure

gradient as a constant quantity that is
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0P ,
0xX 0

where P, > 0, thus equation (2.3.15) becomes

aU+6U—P 10°U M2 U 3.4.1
oT = dY R QY2 (34.1)

now, by taking the Laplace transform of equation (3.4.1) with respect to

the variable T we obtain :

L{g—g}=sﬁ(s,y)— U(o,Y)

i) = s

LaZU—dzﬁ Y
avz| = ayzU (501

d;z U(s,Y)— RiU(s Y)—R(s+M?») U(s,Y) = — % (3.4.2)
where
U(s,Y)=L{U(T,Y)}
UG,00=0 , U(s,1)=0 (3.4.3)

now we want to solve the linear nonhomogeneous second order differential

equation (3.4.2). We will solve the associated homogeneous equation

2

gy V(s 1) = RS 0(s,¥) = R(s + M2T(s,¥) = 0 (3.4.4)

dY

the auxiliary equation for equation (3.4.4) can be written as :

B?>—RB —R(s+M?*) =0
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then we get
p1=0Q+G
f=Q—G
where
B R
0= 2
and

JRZ + 4R(s + M?)
2

the general homogeneous solution is
U, = ciePY + cefeY
the particular solution is [27],

U,=A0)Y,+ B Y,

where
—Y
A ):j ,zf(Y),d
YlYZ _Y2Y1
Y1 f(»)
By = fylyz’—yzyl’ dy

then we have

RP,

(3.4.5)
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RP, e P
Cs(B— B) B
RP, e B
(B:— B) B

Aly) =

B(y) = S

thus
_ RP, RP,

Vo= T SR = BB 5 (B = BB

_ RP,
0,= — —— (3.4.6)
S B1B-

simplifying equation (3.4.6) where

BB, = %(R + JRZ+4R(s + M?)) (R — VRZ+4R(s + M?))

= —R(s + M?)

the particular solution is

_ P,
U, = ————= 3.4.7
P s(s + M?) ( )

hence, the solution of the linear nonhomogeneous second order differential

equation is

p
U(s,Y) = ce‘811’+ce‘82y+L (3.4.8)
’ ! 2 s(s + M?) o
using (3.4.3) we obtain
Py
0=c+ ¢, (3.4.9)

* s(s + M?)
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B B Fo
0= cieP1 + cyerz +m (3.4.10)
solving equations (3.4.9) and (3.4.10) we get
(ef2 —1) P,
= — 3.4.11
“1 (ePz — eP1)s(s + M?) ( )
B1 _
e 1) P
¢, ( ) Fo (3.4.12)

- (ePz — eP1)s(s + M?)

combining equation (3.4.8) with equations (3.4.11) and (3.4.12) we

obtain
B2 _
—~ e 1) P
U(s,Y) = — ( ) Po eB1Y
(efz — eP1)s(s + M?2)
+ (efr—1) P B, Py

_|_ -
(ePz — eP1)s(s + M?2) ¢ s(s + M?)

simplifying this we have

_ P,
= —(eP2 — B1Y B1 — B2Y
U(s,Y) SCs M) (ePe — of1) [—(efz — 1)ePrY + (ePr — 1)efeY |
§_to 3.4.13
s(s + M?) (3.4.13)
since
eh1 = eQel
efz = eQe=C
therefore
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hence

_(eﬁz — 1)eﬁ1Y + (eﬁl — 1)eﬁ2Y

= e(V+1Q(e(1-1)6 _ o=(1-Y)G) } oQY (o6Y _ o=GY) (3.4.14)

using equation (3.4.14) in our solution (3.4.13) we obtain

_ P,
U(s,Y) = _ QY (,(1-Y)G _ ,-(1-Y)G
(5. 1) s(s+M?)(et — e~%) [ e®(e ¢ )
P
— ,Q(Y-1)(,GY _ ,—GY 0
) (¢ e+ s(s + M?)
therefore,
_ P, .
U(s,Y) = [— e?¥sinh [G(1 - Y)]

s(s + M?)sinh (G)
— e~ 20 YVginh (GY)]

+ _ o (3.4.15)
s(s + M?)
finding the Laplace invers transform. We have
UCT,Y)=L0(s, V)] = L7HK(s, V)] + L_l[s(si—oMz)]
where
K(s,Y)

B Py .
~ s(s + M?)sinh (G) [—e® sinh[G(1 = Y)]

— e7?0-Y) ginh (GY)] (3.4.16)

using [19] we get

- PO _ PO —Mm2
Ll[s(s+M2)]_MZ(1_e M) (3.4.17)
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now to find k(T,Y) we use The complex inversion formula, which is called
Bromwich integral, the Fourier—Mellin integral, and Mellin's inverse

formula, and it given by
1 w+ioo
k(T,Y)=L1K(sY)] = - j K(s,Y)eSTdT
w—ioo
where the integration is done along the vertical line Re(s) = w in
the complex plane such that wis greater than the real part of

all singularities of F(s) = K(s,Y)esT [41],[34].

To find this integral we use the Cauchy’s residue theorem,

w+ico

n
f K(s,Y)esTdT = 2mi X z Res(F(s),s;,)
r=1

w—ico

where Res(F(s),s,) is the residue of F(s) at the isolated singularity s, is

the coefficient of (s — s,) ~! in the Laurent expansion [41],[34].
To find the poles we use the following theorem.

Theorem 3.1 : Suppose that

F(s) = @

q(s)

where p(sy) # 0, and q has a zero of order m at sy.Then F has a pole of

order m at s, [34],[43].
In our case we have

p(s) = Py[—e?" sinh[G(1 — Y)] — e ¢~ sinh(GY) |e*T
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q(s) = s(s + M?)sinh (G)

setting g(s) = 0. We obtain the poles of F(s) as,

and

and

R? + 41%n? + 4ARM?
4R

Sp =

,n=20,1,2,3..

and all of them of order one, that is to say all the poles are simple.
To find the residue of these poles we use the following theorem.

Theorem 3.2 : If F(s) has a simple pole at s then

Res(F(s),sy) = Sl_i)rrsl (s — so) F(s)

If

o
F&)=4®

where p(sy) = q'(sp) # 0and q(sy) = 0 [43],then we have

Res(F(s),sy) =
q

Now for s = 0 we get

Res(F(s),0) = ;ijrg)(s — 0) F(s)
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Res(F(s),0)
Py

= s Q) [— e?¥sinh [Q(1 — V)]

— e~ 2(Ysinh (QY)]

where

simplifying this we obtain

Res(F(s),0)
PO[_eQY(e(l_Y)Q — e_(l_Y)Q) — e_Q(l_Y)(eQY — e_QY)]

2M?sinh (Q)
hence
Py

Res(F(s),0) = — Wz (3.4.18)

fors = — M? we have
Res(F(s),— M?) = limMz(s + M?)F(s)
s— —
Res(F(s),— M?)
Pye=M*T
= — ¢%sinh [G,(1— Y
—M?2sinh (G,,) [~ e®sinh [Gn( )]

— e~ 2(-Ysinh (G,,Y)]

where

_ JRE+4R(—M?+ M?)

Gm >

Q
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thus we have

Res(F(s),— M?)
~ Pye” M2T
~ —M2sinh (Q)

|- e%sinh [Q(1 — Y)]
— e~ 20 Vginh (QY)]
this can be rewritten as

Res(F(s),— M?)
Poe—MZT[_eQY(e(l—Y)Q — e=(7NQ) _ g-Q(-N) (oY _ o-0Y)]

—2M? sinh(Q)
hence
Pye~ M°T
RBS(F(S),— Mz) = T (3419)
fors = s, ,
p(sp)
Res(F(s),s,) = ——=
( ( ) n) q (Sn)
where

p(sp) = Py[—e? sinh[G,(1 —Y)] — e~ 211 sinh(G,Y) |esn”
and
G, = inn
simplifying this

p(sy) = PyesT[e? cosh[inn]sinh[irnY] — e~¢A~Y) sinh(irnY) |
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p(sn) = Poesn[ (—1)" €@ — e~20-]; « sin (znY)

now

s(s + M?) cosh(G)R
(2G)

q'(s) = (2s + M?)sinh(G) +

hence

s, (s, + M?) cosh(G,) R
(2Gy)

C[’(Sn) =

this can be simplified to

) 1 (R? +4n*n?)(R? + 4n?n? + 4M?R)(—1)"
q (Sn) = 3_2 :

IRm

therefore

Res(F(s),s;)
esnT[ (—1)"e~?0~Y) — ¢@]sin (nnY)

= 32P,R
o TRz ¥ 4n2n?)(R? + 4n?n? + 4MZR)

(3.4.20)

finally we combine equations (3.4.18) , (3.4.19) and (3.4.20) with

equation (3.4.16) to obtain the required solution

P, PyeMT
k(T Y)= -5+ —0

< esnT[ (—=1)"e 21~ — Q] sin(mnY)

32P,R
T 32FoRT . (R? + 4m?n?)(R? + 4mn” — 4M°R)
n=

. (3.4.21)

Now combine equation (3.4.17) and (3.4.21) we obtain

® esnT[ (=1)"e~01) — ¢Q"] sin(nnY)

U(T,Y) = 32PR
(1.7) O L (R + 4nPn?) (R + 4wPn? — 4MPR)
n=
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3.5 The Analytical Solution For The Unsteady MHD Flow Through
Two Parallel Porous Flat Plates With Hall Effect

In this section we want to solve equations (2.4.17) and (2.4.18)

subject to the initial and boundary conditions (2.4.19).

From equation (2.4.18) we see that the pressure is independent of Y.
So it is a function of T only, but in our case we will take the pressure

gradient as a constant quantity that is

opP

—= —Pp
0X 0

where P, > 0, thus equation (2.4.17) becomes

ou 6U_P+162U U 31
or oy ~ 0T Rayz ¢ (3:5.1)
where
MZ

a:
1+ m?

now, by taking the Laplace transform of equation (3.5.1) with respect to

the Variable 1 we Obtain .
{ iT S S; ( ) )

L= Lo,y
{GY}_dY (s.7)

LaZU dzﬁ Y
oz~ arzl(s D)

@ O(s,Y) RdU( Y)—R(s +a) U(s,Y) = R 352
dYZ S, dY S, (S a) S, - S ( o N )




62

where
U(,Y)=L{U(T,Y)}
UG,00=0 , U(s,1)=0 (3.5.3)

now we want to solve the linear nonhomogeneous second order differential

equation (3.5.2). We will solve the associated homogeneous equation

2

d* d _ _
mU(s,Y)—Rd—YU(s,Y)—R(s+a)U(s,Y)—0 (3.5.4)

the auxiliary equation for equation (3.5.4) can be written as :

f?—RB—R(s+a)=0

then we get
pf1=0Q+G
.32 =Q—-G
where
B R
Q= 2
and

JRZ +4R(s + a)
2

the general homogeneous solution is

U, = c,efY + c,eb2Y (3.5.5)
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the particular solution is [27],
U,=A0) Y1+ B(Y) Y,

where

[ —Rf)
Aly) = fm dy

Y1 f(»)

20 = | gy

RP,
Y, =efY Y,=ePY  f(y)= — —9

then we have

RP, e Fw
s(Bz— B1) B
RP, e B
(B2— B1) B2

Ay) = -

B(y) = .

thus

_ RP, RP,

Vo= T S (B = BB s (B = BB
_ RP,

U = s B1B:

simplifying equation (3.5.6) where

(3.5.6)

BB, = %(R + JRZ + 4R(s + a)) (R — JRZ+4R(s + a))

= —R(s+a)

the particular solution is



64

0, = —0 3.5.7
P s(s+a) (3:57)

hence, the solution of the linear nonhomogeneous second order differential
equation is

—~

U\(S,Y) = ﬁh+ Up

_ Py
U(s,Y) = Cleﬁly + CZGBZY + m (3.5.8)
using (3.5.3) we obtain
0= c,+ cy b —22 3.5.9
- aT o s(s+a) (3:59)
B B Fo
0= ciePr1+ ce’z + m (3.5.10)
solving equations (3.5.9) and (3.5.10) we get
= (-1 P 3.5.11
U7 T e — ePr)s(s + a) (3.2.11)
B1 —
e 1) P
¢, ( ) Fo (3.5.12)

- (efz — eP1)s(s + a)

combining equation (3.5.8) with equations (3.5.11) and (3.5.12) we

obtain
B2 _ B1 —
~ e 1) P e 1) P,
(efz — eP1)s(s + a) (efz — eP1)s(s + a)
P
+ 0
s(s+a)

this can be rewritten to
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U(s,Y) = ST a)(jfz — [—(eP> — 1)ehY + (ePr — 1)efeY |
f (3.5.13)
s(s+a)

since

ef1 = eQel

ef2 = Q=G
therefore

efr — e = —Q (ef — ¢7)

hence

_(eﬁz — 1)eﬁly + (eﬁl — 1)6‘82Y

= e(*DQ((1-Y)G _ o=(1-Y)GY | pQY (oGY _ p=GY) (3 5.14)

using equation (3.5.14) in our solution (3.5.13) we obtain

_ P,
U(s,Y) = _ QY (,(1-Y)G _ ,-(1-Y)G
(5. ¥) s(s+M?)(et — e~%) [ e®(e ¢ )
P,
_ ,Q(Y-1)(,GY _ _-GY o
° (e ¢ )] * s(s +a)
therefore ,
U(s,Y) = Fo [—e? sinh[G(1 — V)] — e "V sinh(GY)]
’ s(s + a) sinh(G)
Py
Tera) (3.5.15)

Finding the Laplace invers transform, we obtain
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UCT,Y)=L"0(@s, V)] = L7YK(s, V)] + L_l[S(Si—OMZ)]
where
K.Y= 567 a)I:(i)nh @Gy e sinhlG(1 = V)]
— e 901 ginh (GY)] (3.516)
using [19] we get
L1 [S(sp—ia) _ %(1— e=aT) (3.5.17)

now to find k(T,Y) we use The complex inversion formula, which is called
Bromwich integral, the Fourier—Mellin integral, and Mellin's inverse

formula, and it given by

w+ico

k(T,Y)=L‘1[K(s,Y)]=% j K(s,Y)eSTdT

w—ico

where the integration is done along the vertical line Re(s) = w in
the complex plane such that wis greater than the real part of

all singularities of F(s) = K(s,Y)esT [41],[34].

To find this integral we use the Cauchy’s residue theorem,

w+ico n
f K(s,Y)eTdT = 2mi X z Res(F(s),s;,)
w—ioo r=1

where Res(F(s),s,) is the residue of F(s) at the isolated singularity s, is

the coefficient of (s — s,.) ~! in the Laurent expansion [41],[34].
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To find the poles we use theorem ( 3.1 ). In our case we have
p(s) = Py[—e? sinh[G(1 — V)] — e ¢V sinh(GY) |esT
q(s) = s(s + a)sinh (G)

setting g(s) = 0. We obtain the poles of F(s) as,

R? + 41?n? + 4Ra
4R

Sp =

,n=0,12, ..

and all of them of order one, that is to say all the poles are simple.
To find the residue of these poles we use theorem ( 3.2 ).
Now for s = 0, we get

Res(F(s),0) = ;i_r>r(1)(s — 0) F(s)

Res(F(s),0)

= T@smn(gy | ¢ sinh (@@ =]

— e~ Q(-Ysinh (QY)]

where

v
2

Go = =0

simplifying this we obtain
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Res(F(s),0)
PO[_eQY(e(l_Y)Q — e_(l_Y)Q) — e_Q(l_Y)(eQY — e_QY)]

2a X sinh (Q)

hence
Py
Res(F(s),0) = — " (3.5.18)
for s = — a we have
Res(F(s),—a) = lim (s+ a) F(s)
S—>—-a
Res(F(s),— a)
_ Poe—MZT [ sinh [G,,(1 - Y)
~ —a x sinh (G, e sinh [Gr, |
— ¢~ Q(-Ysinh (G,,)]
where

JRZ+4R(—a + a)
m = 2 =

thus we have

Res(F(s),— a)

_ P()e_MZT Q' ginh 1—y
~ —a x sinh (Q) [—e sinh [Q(1 =1)]

— e~ 2(-Ysinh (QY)]
this can be rewritten as

Res(F(s),—a)
Poe_aT [_eQY(e(l_Y)Q — e_(l_Y)Q) — e_Q(l_Y)(eQY — e_QY)]

—2a X sinh(Q)
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hence
Poe—MzT
Res(F(s),—a) = — (3.5.19)
Fors = s, ,
p(sp)
Res(F(s),s,) = ——=<
( ( ) n) q (Sn)
where

p(sp) = Po[—e? sinh[G,(1 —Y)] — e %1V sinh(G,Y) |esrT
and
G, = imn
simplifying this
p(sy) = PyesT[e? cosh[inn]sinh[irnY] — e ¢~V sinh(irnY) |
p(sy) = PoesrT[ (—1)" e — e~eAN]i x sin (znY)

now

s(s+ a)cosh(G)R
(2G)

q'(s) = (2s + a) sinh(G) +

hence

Sp(s, + a) cosh(G,) R
(2Gy)

C[’(Sn) =

this can be rewritten as
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1 (R? +4n%*n?)(R? + 4n%n? + 4aR) (- 1"
32 IR

q (Sn) =
therefore
Res(F(s),s,)

esnT[ (—1)"e Q0= — ¢Q¥]sin (7nY)
(R? + 4m°n?)(R? + 4m?n? + 4aR)

= 32P,Rn (3.5.20)

finally we combine equations (3.5.18) , (3.5.19) and (3.5.20) with
equation (3.5.16) to obtain the required solution

P, Pye 9T
k(T,Y)=—Z°+ 0

a

snT —1"e-Q0-Y) _ oQY]sin(nyY
ssanan Y LI Lo

. (3.5.21
(R? + 4m°n?)(R? + 4m°n? — 4aR) ( )

Now combine equation (3.5.17) and (3.5.21) we obtain

snT ( 1)"e" Q(1-Y) _ eQY] sin(nnY)
(R? + 4n?n?)(R? + 41?n? — 4aR)

U(T,Y) = 32P,Rn Z
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CHAPTER FOUR
NUMERICAL METHODS
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CHAPTER FOUR

NUMERICAL METHODS

In this chapter we find numerical solution to problems formulated in
chapter two . This involves using the finite difference method and then we
will use the computer software “ MAPLE 15 ” to obtain some numerical

results.
4.1 Finite Difference

In this section we discuss the finite difference approximation method
(FDM) used mainly to solve partial differential equations . This method
was first developed by A. Thom in the 1920s under the title “the method of

square” to solve nonlinear hydrodynamic equations [38].

Finite difference procedures approximate the derivative appearing in
a partial differential equation by sums and differences of function values at
a set of discrete points. These approximations are based on Taylor series

expansions of a function of one or more variables [18].
Using the Taylor series expansion we have [35],

the forward — difference formula for approximating f'(x,)

1(x0) ~ f(xO + Ax) - f(xo)

A
f . +0@x)
the backward — difference formula
Xn) — f(xg — Ax
oy 2 JOD =S G080

Ax
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and the central — difference formula

f(xo + Ax) — f(xo — Ax)

2
DA% + 0(Ax)

f(xo) =

and we have also

flxo+Ax) — 2f(xo) + f(xo — Ax)

11(x0) ~
f - sz

+ 0(Ax)%.

To find a numerical solution to a partial differential equation with
finite difference methods, we first need to define a set of grid points in the

domain D as follows:

Choose a state step size Ax = h = b;}—a (N is an integer) and a time
step size At, draw a set of horizontal and vertical lines across D, and get all
intersection lines across D, and get all intersection points (x;,t,), or
simply (j,n), where x; = a + jdx,j =0,...,N,and t, = ndt,

n =0,1,... If D = [a,b] X[0,T] then choose At =k = % (M is an

integer) and t, = ndt, n = 0,...,M [6].

4.2 MHD Flow Past an Impulsively Started Infinite Horizontal Plate

in a Rotating System
4.2.1 Without Hall Effect

In this section we will solve numerically the parabolic partial
differential equation ( 3.2.1 ) we introduced in chapter three,

9Q _ 9%Q
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with the initial and boundary conditions

Q=0 at T< 0 forall Z

{Qzl, at Z =0

Q -0, at Z — oo r>0

where Q = U + iVand a=2[ M* +iQ].

We use the finite difference method for solving this equation . To be
more specific, we use the implicit method, which we call the backward

difference method .

Thus we use the following difference quotient

QZ:i,T;) —Q(Z;,T;- ko*Q .
a_T(Zi;Tj): 1) k( ]1)_§aTz(Zi»Tj)

where T is € (Tj_1,T; ) .

02 Q(Z ,T')—ZQ(Z',T')-FQ(Z-_,T-) hza4Q *
P ) - L DR ) 0

where 2%, 1S € (Z;_1,Z;41 ) -

Using the above difference quotient in our partial differential

equation ( 4.2.1.1) we get

Wij = Wij1 Wi = 2W;; + Wiq
k h?2

— aw; j
where w; ; approximates Q(Z;, T;).
With the local truncation error for this difference quotient

ko*u h? 0*u
Tij = 35z Lo T) ~ 53 Z 0 T)
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and the truncation error is of order 0 (k) + O (h?) [21].

Solving this for w; ;_; we obtain

Wi,j—l = -1 Wi+1,j + (1 + ak + 2/1) Wi,j — )'Wi—l,j

where
k
A = ﬁ
putting this in matrix form we obtain
[l+ak+24 -4 0 - 0 11 Wi [le_1+/1]
: S _2 l | ;
l 0 - 0 —/1 1+ ak + 2/1J -1, Wm-1,j-1
4.2.2 With Hall Effect

In this section we will solve numerically the parabolic partial

differential equation ( 3.3.1 ) we introduced in chapter three,

9Q _ 9%Q

with the initial and boundary conditions

Q=0 at T< 0 forall Z

{Q:L atZ=0 .

Q -0, atZ - oo

2 2
where Q = U + iV and a=2[(1:4m2) +i(Q— am )].
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We will use the implicit method for solving this equation . Thus we

use the following difference quotient

Q Q(Zl-,T-)—Q(Zi,T-_) k 92Q
ar i) = e g &)

where T is € (Tj_1,T; ) .

92 Q(z; ,T-)—ZQ(Z-,T-)+Q(Z-_,T-) 2ot
a7z G Ty) == - S (2 T)

where 2%, 1S € (Z;_1,Zi41 ) -

Using the above difference quotient in our partial differential
equation ( 4.2.2.1) we get

Wij = Wij1  Wigqj = 2W;; + Wiq
k h?

—aw;;
where w; ; approximates Q(Z;, T;).

With the local truncation error for this difference quotient

k 82y h?d%u ,
Tij = zatz( o T5) =~ 3320 T)

and the truncation error of order 0 (k) + 0(h?) [21].

Solving this for w; ;_; we obtain
Wi,j—l =—-A Wi+1,j + (1 + ak + ZA) Wi,j — /'lWi—l,j

where
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putting this in matrix form we obtain

1+ak+212 -2 0 - 0 } [ Wi ] [Wl,j_1+/’l]
-1 : : :
0 . " v O ‘ . ‘ = |
[ 5 e | S
0 - 0 =12 1+ak+22 le—lJJ le—l,j—l J

4.2.3 Stability for the difference scheme

We will investigate the stability condition. A numerical algorithm is
said to be stable if a small error at any stage produces a smaller cumulative

error. Otherwise, it is unstable [4].

To determine whether a finite difference scheme is stable we use the

Fourier method, we assume that [39]:
Upj = wie™d
where
I=+-1
we define the amplification of the error at time step n + 1 as
whHl = 5wt
for the scheme to be stable it is necessary that
| K| <1
thus we have

Wj_lerxil = _ijeTXi+1I + (1 + ak + ZA)Wjerxil _ ijerxi—ll
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(Ae™™ il — (1 + ak 4+ 22)e™ ! + Ae™i-1Nw; = — w;_ e™

now
erxi+11 — er(xl-+h)1 — erxilerhl
then we get
(Ae™ile™ — (1 + ak + 22)e™ i 4+ Qe ile MW, = —w;_ o™
(Ae™ — (1 + ak +22) + e 7w = —w;_,
(2Acos(rh) — 1 —ak — 2)w; = —wj_4
(—2A(1 = cos(rh)) — 1 — ak)w; = —w;j_,
., (Th
(—4Asin (7> —1—-ak)w; =—w;_4
_ Wi-1
Wi = rhy°
(4Asin (7) + 1 + ak)
W] = ij—l
where
1
:}(’ —_

T ten (1

(44sin? () + 1+ ak)
for the solution to remain bounded and stable as j — oo we need
| K| <1

that 1s
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1
-1< <1

- 4)sin? (%) +1+ak -

rh
4)sin? (7) < —2—ak

or
rh
—ak < 42sin? (7>
now
rh
0 < 4sin? (—)
2
and

hence the condition holds, and does not depend on A. This implies that the

method is stable .

4.3 The Numerical Solution For The Unsteady MHD Flow Through

Two Parallel Porous Flat Plates
4.3.1 Without Hall Effect

In this section we will solve numerically the parabolic partial
differential equation (3.4.1) we had in chapter three,

aU+6U—P+162U M2 U 43.1.1
oT o9y ' ° Ray?2 (4.3.1.1)

with the initial and boundary conditions
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{U=0, T <0
uvu=0,Y=0,1 ,T>0

using similar approach as before, we use the backward difference method

and the following difference quotient

ou u(y,T,)-U(Y,Ti.y) ko%*U .
o (1) = = ———F= = o= (%, T")

where T €(Tj_1,T; ) .

02U U(Yier ;) —20(Y, ) + Y (Yo, T;) R 0%U

7z W T) = 2 Zaps o T)
oU U(Yie1, T;) —U(Yi—1, T;)  h20°%U,_ .
o (7)) = T ——— v G )

where Y*; € (Yi—1,Yi41) .

Using the above difference quotient in the partial differential

equation (4.3.1.1) we get

Wij = Wij-1 | Wit = Wi
k 2h
=ht g n? -

2
M Wi,j

where w; ; approximates U(Y;, T;).
With the local truncation error for this difference quotient
k %u h? 0*u h? d3u
T = 53z W Th) ~ 5aa (V) + =55 T)
and the truncation error of order 0 (k) + 0(h?) [4].

Solving for w; j_; we have
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Wi,j—l =A Wi+1,j + B Wi,j — FWi—l,j — kPO

where

A—(h 1)/1
~\2 R

21
B=1+kM2+?

= (3+3)?
- \2 R
k
A = ﬁ
putting in matrix form we obtain
r A 0 vee O'l Wl,j [ Wl,j—1+kPO ]
RS e N
i I
; o | I O
0 0 —F B Wm—lj _Wm—l,j—l + kP()_

4.3.2 With Hall Effect

In this section we will solve numerically the parabolic partial

differential equation (3.5.1) we had in chapter three,

W g 22Uy (4.3.2.1)
or "oy °T Rayz ¢
where
MZ
a=1+m2

subject to initial and boundary conditions
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{U=0, T <0
uvu=0,Y=0,1 ,T>0

using similar approach as before, we use the backward difference method

and the following difference quotient

ou u(y,T,)-U(Y,Ti.y) ko%*U .
o (1) = = ———F= = o= (%, T")

where T €(Tj_1,T; ) .

02U U(Yier ;) —20(Y, ) + Y (Yo, T;) R 0%U

7z W T) = 2 Zaps o T)
oU U(Yie1, T;) —U(Yi—1, T;)  h20°%U,_ .
o (7)) = T ——— v G )

where Y*; € (Yi—1,Yi41) .

Using the above difference quotient in the partial differential

equation (4.3.2.1) we get

Wij = Wij-1 | Wity = Wi
k 2h
=ht g h? -

aw; ;
where w; ; approximates U(Y;, T;).
With the local truncation error for this difference quotient
= 5 (6T) = Ty (FaT)) + e 55 (0 T)
and the truncation error of order 0 (k) + 0(h?) [4].

Solving for w; ;_; we have
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Wi,j—l =A Wi+1,j + B Wi,j — FWi—l,j — kPO

where

A—(h Ay
2 R)

27
B=1+ka+—

R
F= (h + 1>/1
- \2 R
k
A = ﬁ
putting in matrix form we obtain
r A 0 vee O'l Wl,j [ Wl,j—l + kPO ]
RS e N
| H -
; A1 -
0 0 —F B Wm—lj _Wm—l,j—l + kP()_

4.3.3 Stability for the difference scheme

Investigate the stability we use the fourier method in similar

approach as before . Assume that :

where
[ = V-1
we find the implication factor of the error of the form

Wn+1 =K Wn
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And to have the scheme stable it is necessary that

| K| <1

thus we have

Wj_lerxil — AWjeTxi+11 + BWjerin _ FWjerxi—ll

(Aerxi+11 + BeTXiI _ FeTxi_ll)Wj — Wj—lerxil

now

rx;l ,ThI

TXip1l — er(xl-+h)1 —e e

e

then

(Aerxilerhl + Berxil _ Ferxile—rhl)wj — Wj_lerxil

(Aerhl + B — Fe_rhl)wj = Wj—l
h 1 Bl 21 h 1 vl
(G-g)2em + (14 ka+ ) = (54 ) 20|y = Wi

hA A 21
[(e”” — e~ ThI - (e™ 4 g~ThI) 2t (1 + ka + ?)] W = Wwj_q
_ 21 21
[h/llsm(rh) — Fcos(rh) + (1 + ka + F)] Wi = Wiy
_ 21
[hl]sm(rh) + " (1—cos(rh)) +1+ ak)] Wi = Wj_q
, 20 . (rh
[h/llsm(rh) + 7 Sin (7> +1+ ak] Wi = Wj_4

Wj—l

Wi . 21 __, (Th
(hAlsin(rh) + ?sm2 (7) + 1+ ak)
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W] = ij—l

where

1

K= rh

(hAlsin(rh) + —/15m2 ( 5

)+1+ak)

now for the solution to remain bounded and stable as j — oo we must have

| K| <1
thus
1
| K | =
rh
\/(hﬂsm(rh)) + ( sin? ( 5 ) + 1+ ak)?
1
|32 = 2 _
(h/lsin(rh)) + (—s n2 ( 5 ) + 1 + ak)?
1
| K |? =
h%A%sin?(rh) + (2% sin? (rzh) + 1 + ak)?
1
| K |? = - — - _
4h?)*(sin? (7) — sin* (7)) + (? sin? (7) + 1 + ak)?
= o (Thy A . Tlh (1+ ak) . . (Th
(1 + ak)? + 4Asin? (T) (ﬁsm2 (7) + R + h2A(1 — sin? (7))
Ak
_ 1
(1 + ak)? + 42sin? (%) (l(%sinz (rzh) + K2 <1 — sin? ( )>) n (a ‘;ak))

hence it is necessary that
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| K> <1
that is
1
1+ 2ak + a?k? + 4Asin? (rh) [A(RZ sin? (rzh) + h? <1 sin? (rh)>) + (a -;ak)

<1

rh
0 < 2ak + a?k? + 42sin? (2 )

agpsin () 1 150 (7))

1+ ak)
+ T)
now
0 < ak + a%k?
thus
. rh . (Th (1 + ak)
0 < 4Asin? ( )(l(—sm ( ) + h? | 1 — sin? (—) )+ —)
2 2 R
hence
rh
0 < 4Asin? (—)
2
and
0<i 1 '2<rh>+h2 . (rh) +(1+ak)
= (stm 5 sin > ) B

hence the condition holds | X | <1, and does not depend on A. This

implies that the method is stable .



87

CHAPTER FIVE

NUMERICAL RESULTS AND
CONCLUSIONS
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CHAPTER FIVE

NUMERICAL RESULTS AND CONCLUSIONS

5.1 Numerical Results

5.1.1 MHD Flow Past an Impulsively Started Infinite Horizontal Plate

in a Rotating System

In order to study the effect of magnetic field , Hall current , rotation
of the fluid and the normal coordinate, we have carried out some numerical
calculations for the primary velocity U and secondary velocity V for
different values of the rotation parameter () , Hartman Number M , Hall
parameter m and normal coordinate Z keeping the value of time T fixed at

T = 1.

5.1.1.1 rotation parameter ()

The effect of the rotation parameter () on the variation of primary
velocity U and secondary velocity V in the absence of Hall parameter
m = 0 and in the presence of Hartman number M = 0.5 are presented in
Figures 1 and 2. Figures 3 and 4 take into account the presence of Hall

parameter m and the Hartman number M.
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Figure (1) : primary velocity profiles for several values of Q withm=0, M = 0.5
andT=1.



90
T=1

PR R
[ T [
esee
RUIW =

Figure (2) : secondary velocity profiles for several values of (Q withm=0, M= 0.5
and T=1.
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Figure (3) : primary velocity profiles for several values of Q with m=0.5, M =0.5
andT=1.
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Figure (4) : secondary velocity profiles for several values of ) withm=0.5M=0.5
andT=1.

5.1.1.2 Hartman number M

The effect of the Hartman number on the variation of primary and
secondary velocity U and V respectively in the absence of Hall parameter
m = 0 and in the presence of rotation parameter {1 = 0.1 are presented in
Figures 5 and 6. Figures 7 and 8 take into account the presence of the Hall

and rotation parameters.
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Figure (5) : primary velocity profiles for several values of M with m=0, Q= 0.1
andT=1.
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Figure (6) : secondary velocity profiles for several values of M withm=0, (1 =0.1
andT=1.
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Figure (7): primary velocity profiles for several values of M with m=0.5, Q=0.1
and T=1.
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Figure (8) : secondary velocity profiles for several values of M withm=0.5, Q=
0.1and T=1.

5.1.1.3 Hall parameter m

Figures 9 and 10 show the effect of Hall parameter on the fluid

velocities with the assigned valuesof M =0.5,Q0=0.1 and T = 1.
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Figure (9): primary velocity profiles for several values of m with M = 0.5, Q=
0Oland T=1.
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Figure (10) : secondary velocity profiles for several values of m with M = 0.5, ()
=0.1and T=1.

5.1.2 The Unsteady MHD Flow Through Two Parallel Porous Flat

Plates

A numerical calculations for the primary velocity U for different
values of Hartman Number M , Hall parameter m and normal coordinate Y

keeping the value of time T fixed at T = 0.5 are presented.
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The effect of Hartman Number M on the variation of primary
velocity U in the absence of Hall parameter m = 0 are shown in Figure 11.

Figure 12 takes into account the presence of Hall parameter.

Finally, Figure 13 shows the effect of Hall parameter on the fluid

velocity with the assigned valuesof M =2 andT = 0.5.
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0 02 04 06 08 1
¥
M=05
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M=2
M=3

Figure (11) : primary velocity profiles for several values of M with m=0and T =
05.
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Figure (12) : primary velocity profiles for several values of M withm=1and T =
05.
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Figure (13) : primary velocity profiles for several values of m withM =2 and T =
05.

5.2 Conclusions

In this thesis we have presented analytical and numerical solutions
to some MHD flow problems. The analytical solution is based on Laplace
transform. The finite difference method 1is used to obtain the numerical

solutions.
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The numerical results show the following observations:

1) Figures 1 and 2 show that the primary velocity U decreases as ()
increases from 0.1 to 0.8, while the secondary velocity V increases. Figures
3 and 4 show the same result. A presence of Hall parameter in the values
M=05, m=05 and Q =0.1 shows that the secondary velocity

vanishes and the flow is in the direction of the plate only. That is because

M?*m M?*m
Tem?) 0.1 . In general where Q= )

in these values ) = for

all values of m and M we have similar conclusion.

2) Figures 5 and 6 show that the primary and the secondary velocities U
and V decrease as the values of M increase. On the other hand, we
observed in figures 7 and 8 that the primary velocity still decreases as M

increases, but the secondary velocity increases as M increases.

3) Figures 9 and 10 show that due to an increase in the Hall parameter,
there is a rise in both the primary and secondary velocity components U

and V .

4) Figure 11 confirms that the primary velocity U increases as M increases
from 0.5 to 3. Figure 12 also shows the same result, but in the presence of

Hall parameter the maximum value decreases.

5) Figure 13 presents that the primary velocity U decreases as the values of

m increases.
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Appendix

Maple codes

> # MHD Flow Past an Impulsively Started Infinite Horizontal Plate
in a Rotating System without hall effect(different values of the rotation

parameter)
> restart;
> with(LinearAlgebra):with(plots):

> Q:=100: N:=400: L:=4.5: T:= 2.0: h:=evalf(L/F): k:= T/N: lam:=k/(h"2):
oml:=0.1:M:=0.5:0m2:=0.3:0m3:=0.5:0m4:=0.8:m:=0:

> for E from 1 to 4 do

>a(E) =2*(M"2+I*om(E) ):

>Y:=Vector(Q-1):

>t := Vector(N):

> for1from I to N do
>w(E)(1) := Vector(Q-1);
> t[i]:=1*k:
>u(E)(1):= Vector(Q-1);

> od:

> fori1from 1 to Q-1 do
>u(E)(1)(1):=0:
> Y[1]:=(i-1)*h:

> y(i):= Vector(N):
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> od:
>u(E)(1)(1):=lam:
> A:=evalf(-lam) : B(E) := evalf(1+k*a(E)+2*lam) : F:=evalf(-lam):
> z(E):= Matrix(Q-1):
> for i from 1 to Q-1 do
> for j from 1 to Q-1 do

> if i=j then z(E)(i,)):=B elif (j=i+1) then z(E)(i,j):=A
elif (j=i-1) then z(E)(i,j):=F end if;

> od;
> od;
> for i from 1 to N do
> w(E)(i):=evalf( MatrixInverse(z(E)).u(E)(i));
> u(E)(i+1):=(W(E)(1));
>u(E)(i+1)(1):=w(E)(i)(1)+lam;
> od:
> U(E):=Vector(Q):
> for i from 1 to Q-1 do
> U(E)[1]:=Re(wW(E)(200)(1));
> U(E)[1]:=1;
> od:

> v(E):=-Im(W(E)(200)):
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> od:

> r:=plot( Y,U(1) ,Z,u,color="Black",legend = ["Omega = 0.1" ]):
> rl:=plot(Y,U(2),color="Blue",legend = ["Omega =0.3"]) :

> r2:=plot ( Y,U(3) ,color="Red",legend = ["Omega = 0.5" ]):

> r3:=plot ( Y,U(4) ,color="Green",legend = ["Omega = 0.8" ]):

> display(r,r1,r2,r3 title ="T =1"):

> r4d:=plot( Y,v(1),Z,V ,color="Black",legend = ["Omega = 0.1" ]):
> r5:=plot(Y,v(2),color="Blue",legend = ["Omega = 0.3" ]) :

> r16:=plot ( Y,v(3) ,color="Red",legend = ["Omega = 0.5" ]):

> r7:=plot ( Y,v(4) ,color="Green",legend = ["Omega = 0.8" ]):

> display(r4,r5,r6,17 title ="T = 1"):

> # MHD Flow Past an Impulsively Started Infinite Horizontal Plate
in a Rotating System with hall effect(different values of the rotation

parameter)
> restart;
> with(LinearAlgebra):with(plots):

> Q:=100: N:=400: L:=4.5: T:= 2.0: h:=evalf(L/F): k:= T/N: lam:=k/(h"2):
oml:=0.1:M:=0.5:0m2:=0.3:0m3:=0.5:0m4:=0.8:m:=0.5:

> for E from 1 to 4 do
>a(E) = 2*(M"2/(1+m”"2) + I*(om(E)-(M"2*m)/(1+m"2)));

>Y:=Vector(Q-1):
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>t := Vector(N):
> forifrom 1 to N do
>w(E)(1) := Vector(Q-1);
> t[i]:=1*k:
>u(E)(1):= Vector(Q-1);
> od:
> forifrom 1 to Q-1 do
>u(E)(1)(1):=0:
> Y[i]:=(i-1)*h:
> y(i):= Vector(N):
> od:
>u(E)(1)(1):=lam:
> A:= evalf(-lam) : B(E) := evalf(1+k*a(E)+2*lam) : F:=evalf(-lam):
> 7(E):= Matrix(Q-1):
>for1from 1 to Q-1 do
> for j from 1 to Q-1 do

> if i=j then z(E)(i,)):=B elif (j=i+1) then z(E)(i,j):=A
elif (j=i-1) then z(E)(i,j):=F end if;

> od;
> od;

> for1 from 1 to N do
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> w(E)(1):=evalf( MatrixInverse(z(E)).u(E)(1));
>u(E)(i+1)=(w(E)(1));
>u(E)+1)(1):=w(E)(1)(1)+lam;
> od:
> U(E):=Vector(Q):
> for1 from 1 to Q-1 do
> U(E)[i]:=Re(w(E)(200)(1));
>U(E)[1]=1;
> od:
> v(E):=-Im(w(E)(200)):
> od:
> r:=plot( Y,U(1) ,Z,u,color="Black",legend = ["Omega = 0.1" ]):
> rl:=plot(Y,U(2),color="Blue",legend = ["Omega = 0.3"]) :
> r2:=plot ( Y,U(3) ,color="Red",legend = ["Omega = 0.5" ]):
> r3:=plot ( Y,U(4) ,color="Green",legend = ["Omega = 0.8" ]):
> display(r,r1,r2,r3,title ="T = 1"):
> r4d:=plot( Y,v(1),Z,V ,color="Black",legend = ["Omega = 0.1" ]):
> r5:=plot(Y,v(2),color="Blue",legend = ["Omega = 0.3" ]) :
> 16:=plot ( Y,v(3) ,color="Red",legend = ["Omega = 0.5" ]):
> r7:=plot ( Y,v(4) ,color="Green",legend = ["Omega = 0.8" ]):

> display(r4,r5,r6,17 title ="T = 1"):
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> # MHD Flow Past an Impulsively Started Infinite Horizontal Plate
in a Rotating System without hall effect (different values of the
Hartman Number M)

> restart;
> with(LinearAlgebra):with(plots):

> Q:=100: N:=400: L:=4.5: T:= 2.0: h:=evalf(L/F): k:= T/N: lam:=k/(h"2):
om:=0.1:M1:=0.5:M2:=2:M3:=5:M4:=10:m:=0:

> for E from 1 to 4 do

> a(E) :=2*(M(E) "2+I*om):

>Y:=Vector(Q-1):

>t := Vector(N):

> for 1 from 1 to N do
>w(E)(1) := Vector(Q-1);
> t[i]:=1*k:
>u(E)(1):= Vector(Q-1);

> od:

> for1from 1 to Q-1 do
>u(E)(1)(1):=0:
> Y[1]:=(i-1)*h:
> y(i):= Vector(N):

> od:

> w(E)(1)(1):=lam:



> od:
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> A:= evalf(-lam) : B(E) := evalf(1+k*a(E)+2*lam) : F:=evalf(-lam):
> z(E):= Matrix(Q-1):
> for i from 1 to Q-1 do
> for j from 1 to Q-1 do

> if i=j then z(E)(i,)):=B elif (j=i+1) then z(E)(i,j):=A
elif (j=i-1) then z(E)(i,j):=F end if;

> od;
> od;
> for i from 1 to N do
> w(E)(i):=evalf( MatrixInverse(z(E)).u(E)(i));
> u(E)(i+1)=(w(E)(1));
> u(E)A+1)(1)=w(E)(i)(1)+lam;
> od:
> U(E):=Vector(Q):
> for i from 1 to Q-1 do
> U(E)[i]:=Re(w(E)(200)(1));
> U(B)[1]:=1;
> od:

> v(E):=-Im(w(E)(200)):

> r:=plot( Y,U(1) ,Z,u,color="Black",legend = ["M= 0.5" ]):
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> rl:=plot(Y,U(2),color="Blue",legend = ["M =2"]) :
> r2:=plot ( Y,U(3) ,color="Red",legend = ["M = 5" ]):
> r3:=plot ( Y,U(4) ,color="Green",legend = ["M = 10" ]):
> display(r,r1,r2,r3,title ="T = 1"):
> r4d:=plot( Y,v(1),Z,V ,color="Black",legend = ["M = 0.5" ]):
> r5:=plot(Y,v(2),color="Blue",legend = ["M = 2" ]) :
> 16:=plot ( Y,v(3) ,color="Red",legend = ["M = 5" ]):
> r7:=plot ( Y,v(4) ,color="Green",legend = ["M = 10" ]):

> display(r4,r5,r6,17 title ="T = 1"):

> # MHD Flow Past an Impulsively Started Infinite Horizontal Plate
in a Rotating System with hall effect(different values of the Hartman

Number M)
> restart;
> with(LinearAlgebra):with(plots):

> Q:=100: N:=400: L:=4.5: T:= 2.0: h:=evalf(L/F): k:= T/N: lam:=k/(h"2):
om:=0.1:M1:=0.5:M2:=2:M3:=5:M4:=10:m:=0.5:

> for E from 1 to 4 do
> a(E) = 2*(M(E)*2/(1+m"2) + I*(om-(M(E)"2*m)/(1+m"2)));
>Y:=Vector(Q-1):
>t := Vector(N):

> for 1 from 1 to N do
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>w(E)(@) := Vector(Q-1);
> t[i]:=1*k:
>u(E)(1):= Vector(Q-1);

> od:
> forifrom 1 to Q-1 do
>u(E)(1)(1):=0:
> Y[1]:=(i-1)*h:
> y(i):= Vector(N):
> od:
>u(E)(1)(1):=lam:
> A:= evalf(-lam) : B(E) := evalf(1+k*a(E)+2*lam) : F:=evalf(-lam):
> z(E):= Matrix(Q-1):
> for1from 1 to Q-1 do
> for j from 1 to Q-1 do

> 1if i=j then z(E)(i,)):=B elif (j=i1+1) then z(E)(i,j):=A
elif (j=i-1) then z(E)(i,)):=F end if;

> od;
> od;
> for 1 from 1 to N do
> w(E)(1):=evalf( MatrixInverse(z(E)).u(E)(1));

> WE)+1D):=(W(E)D);
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>u(E)(+1)(1):=w(E)(i)(1)+lam;
> od:
> U(E):=Vector(Q):
> for i from 1 to Q-1 do
> U(E)[i]:=Re(w(E)(200)(1));
>U(E)[1]=1;
> od:
> v(E):= Im(w(E)(200)):
> od:
> r:=plot( Y,U(1) ,Z,u,color="Black",legend = ["M = 0.5" ]):
> rl:=plot(Y,U(2),color="Blue",legend = ["M =2"]) :
>r2:=plot ( Y,U(3) ,color="Red",legend = ["M = 5" ]):
> r3:=plot ( Y,U(4) ,color="Green",legend = ["M = 10" ]):
> display(r,r1,12,r3,title ="T = 1"):
> r4:=plot( Y,v(1),Z,V ,color="Black",legend = ["M = 0.5" ]):
> r5:=plot(Y,v(2),color="Blue",legend = ["M =2" ]) :
> 16:=plot ( Y,v(3) ,color="Red",legend = ["M = 5" ]):
> r7:=plot ( Y,v(4) ,color="Green",legend = ["M = 10" ]):

> display(r4,r5,r6,17 title ="T = 1"):



118

> # MHD Flow Past an Impulsively Started Infinite Horizontal Plate
in a Rotating System with hall effect(different values of the Hall

parameter)
> restart;
> with(LinearAlgebra):with(plots):

> Q:=100: N:=400: L:=4.5: T:= 2.0: h:=evalf(L/F): k:= T/N: lam:=k/(h"2):
om:=0.1:M:=0.5: m1:=0.5:m2:=1:m3:=5:m4:=10:

> for E from 1 to 4 do
> a(E) := 2#(M"2/(1+m(E)"2) + I*(om-(M*2*m(E))/(1+m(E)"2)));
> Y:=Vector(Q-1):
> t := Vector(N):
> for i from 1 to N do
> w(E)(i) := Vector(Q-1);
> t[i]:=i*k:
> u(E)(i):= Vector(Q-1);
> od:
> for i from 1 to Q-1 do
> u(E)(1)(i):= 0:
> Y[i]:=(i-1)*h:
> y(i):= Vector(N):
> od:

> w(E)(1)(1):=lam:
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> A:= evalf(-lam) : B(E) := evalf(1+k*a(E)+2*lam) : F:=evalf(-lam):
> z(E):= Matrix(Q-1):
> for i from 1 to Q-1 do
> for j from 1 to Q-1 do

> if i=j then z(E)(i,)):=B elif (j=i+1) then z(E)(i,j):=A
elif (j=i-1) then z(E)(i,j):=F end if;

> od;
> od;
> for i from 1 to N do
> w(E)(i):=evalf( MatrixInverse(z(E)).u(E)(i));
> u(E)(i+1)=(w(E)(1));
> u(E)A+1)(1)=w(E)(i)(1)+lam;
> od:
> U(E):=Vector(Q):
> for i from 1 to Q-1 do
> U(E)[1]:=Re(w(E)(200)(1));
> U(B)[1]:=1;
> od:
> v(E):=-Im(w(E)(200)):
> od:

> r:=plot( Y,U(1) ,Z,u,color="Black",legend = ["Omega = 0.1" ]):
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> rl:=plot(Y,U(2),color="Blue",legend = ["Omega = 0.3"]) :
> r2:=plot ( Y,U(3) ,color="Red",legend = ["Omega = 0.5" ]):
> r3:=plot ( Y,U(4) ,color="Green",legend = ["Omega = 0.8" ]):
> display(r,r1,r2,r3,title ="T = 1"):
> r4d:=plot( Y,v(1),Z,V ,color="Black",legend = ["Omega = 0.1" ]):
> r5:=plot(Y,v(2),color="Blue",legend = ["Omega = 0.3" ]) :
> 16:=plot ( Y,v(3) ,color="Red",legend = ["Omega = 0.5" ]):
> r7:=plot ( Y,v(4) ,color="Green",legend = ["Omega = 0.8" ]):

> display(r4,r5,r6,17 title ="T = 1"):

> # The Unsteady MHD Flow Through Two Parallel Porous Flat Plates
Without Hall Effect (different values of the Hartman Number M)

> restart;
> with(LinearAlgebra):with(plots):

> Q= 50: N:=210: L=1: T:= 1.0: h:=evalf(l/M); k== T/N;
lam:=k/(h"2);R:=2*Pi;p:=1;M1:=0.5;M2:=1:M3:=2:M4:=3:

> for E from 1 to 4 do
> Y:=Vector(Q-1):
>t := Vector(N):
> for i from 1 to N do
>w(E)(1) := Vector(Q-1);

> {[i]:=i*k:
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>u(E)(1):= Vector(Q-1);
> od:
> q:= Vector(Q-1):
> for i from 1 to Q-1 do
> u(E)(1)(i):= p*k:
> Y[i]:=(i-1)*h:
> y(i):= Vector(N):
> q[i]:=p*k:
> od:
> Y[M]:=1:

> A:= evalf(((h/2)-1/R)*lam) : B(E):= evalf(1-k*M(E)"2+2*lam/R) :
F:=evalf(((h/2)+1/R)*lam):

> 7(E):= Matrix(Q-1):
> forifrom 1 to Q-1 do
> for j from 1 to Q-1 do

> if i=j then z(E)(i,)):=B elif (j=i+1) then z(E)(i,j):=A
elif (j=i-1) then z(E)(i,j):=-F end if;

> od;
> od;
> forifrom 1 to N do
> w(E)(1):=evalf( MatrixInverse(z(E)).u(E)(1));

> W(E)E+D:=(wWE)D+ q);
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> od:
> W:=Vector(Q):
> for i from 1 to Q-1 do
> W(E)[i+1]:=(w(E)(105)(1));
>W(E)[1]:=0:
> W(E)[M]:=0;
> od:
> od:
> r:=plot( Y,W(1),Y,U,color="Black",legend = ["M = 0.5" ]):
> rl:=plot(Y,W(2),color="Blue",legend = ["M =1"]) :
> r2:=plot ( Y,W(3) ,color="Red",legend = ["M = 2" ]):
> r3:=plot ( Y,W(4) ,color="Green",legend = ["M = 3" ]):

> display(r,rl,r2,r3,title ="T = 0.5"):

> # The Unsteady MHD Flow Through Two Parallel Porous Flat Plates
With Hall Effect (different values of the Hartman Number M)

> restart;
> with(LinearAlgebra):with(plots):

> Q:= 50: N:=210: L=1: T:= 1.0: h:=evalf(/M); k= T/N;
lam:=k/(h"2);R:=2*Pi;p:=1;M1:=0.5;M2:=1:M3:=2:M4:=3:m:=1:

> for E from 1 to 4 do

> a(E):=M(E)*2/(1+m"2);
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>Y:=Vector(Q-1):
>t := Vector(N):
> for1from 1 to N do
>w(E)(1) := Vector(Q-1);
> t[i]:=1*k:
>u(E)(1):= Vector(Q-1);
> od:
> q:= Vector(Q-1):
> for1from 1 to Q-1 do
>u(E)(1)(1):=p*k:
> Y[1]:=(i-1)*h:
> y(1):= Vector(N):
> q[i]:=p*k:
> od:
>Y[M]:=1:

> A:= evalf(((h/2)-1/R)*lam) : B(E):= evalf(1-k* a(E)+2*lam/R) :
F:=evalf(((h/2)+1/R)*lam):

> z(E):= Matrix(Q-1):
> for1from 1 to Q-1 do
> for j from 1 to Q-1 do

> 1if i=j then z(E)(i,)):=B elif (j=1+1) then z(E)(i,j):=A
elif (j=i-1) then z(E)(i,j):=-F end if;
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> od;
> od;
> for1from 1 to N do
> w(E)(1):=evalf( MatrixInverse(z(E)).u(E)(1));
> u(E)(i+D):=(wW(E)D+ 9);
> od:
> W:=Vector(Q):
> for i from 1 to Q-1 do
> WE)[i+1]:=(w(E)(105)(1));
>W(E)[1]:=0:
> W(E)[M]:=0;
> od:
> od:
> r:=plot( Y,W(1),Y,U,color="Black",legend = ["M = 0.5" ]):
> rl:=plot(Y,W(2),color="Blue",legend = ["M = 1" ]) :
> r2:=plot ( Y,W(3) ,color="Red",legend = ["M = 2" ]):
> r3:=plot ( Y,W(4) ,color="Green",legend = ["M = 3" ]):

> display(r,r1,r2,r3title ="T = 0.5"):
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> # The Unsteady MHD Flow Through Two Parallel Porous Flat Plates
With Hall Effect (different values of the Hall parameter)

> restart;
> with(LinearAlgebra):with(plots):

> Q= 50: N:=210: L=1: T:= 1.0: h:=evalf(i/M); k== T/N;
lam:=k/(h"2);R:=2*P1;p:=1;M:=2;m1:=0.5:m2:=1:m3:=2:m4:=3:

> for E from 1 to 4 do

> a(E):=M"2/(1+m(E)"2);

> Y:=Vector(Q-1):

>t := Vector(N):

> for i from 1 to N do
>w(E)(1) := Vector(Q-1);
> t[i]:=1*k:
>u(E)(1):= Vector(Q-1);

> od:

> q:= Vector(Q-1):

> for1from 1 to Q-1 do
>u(E)(1)(1):= p*k:
> Y[1]:=(i-1)*h:
> y(i):= Vector(N):
> q[1]:=p*k:

> od:
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> Y[M]:=1:

> A:= evalf(((h/2)-1/R)*lam) : B(E):= evalf(1-k* a(E)+2*lam/R) :
F:=evalf(((h/2)+1/R)*lam):

> z(E):= Matrix(Q-1):
> for i from 1 to Q-1 do
> for j from 1 to Q-1 do

> if i=j then z(E)(i,)):=B elif (j=i+1) then z(E)(i,j):=A
elif (j=i-1) then z(E)(i,j):=-F end if;

> od;
> od;
> for i from 1 to N do
> w(E)(i):=evalf( MatrixInverse(z(E)).u(E)(i));
> u(E)(i+1):=(wW(E)D)+ q);
> od:
> W:=Vector(Q):
> for i from 1 to Q-1 do
> W(E)[i+1]:=(w(E)(105)(1));
> W(E)[1]:=0:
> W(E)[M]:=0;
> od:
> od:

> r:=plot( Y,W(1),Y,U,color="Black",legend = ["m = 0.5" ]):
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> rl:=plot(Y,W(2),color="Blue",legend = ["m=1"]) :
> r2:=plot ( Y,W(3) ,color="Red",legend = ["m = 2" ]):
> r3:=plot ( Y,W(4) ,color="Green",legend = ["m = 3" ]):

> display(r,rl,r2,r3,title ="T = 0.5"):
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