الطرق العددية لحل التفاضلية الحدودية ذات الدرجات العليا

Year: 
2009
Discussion Committee: 
د.سمير مطر - مشرفا رئيسا
د.سائد ملاك - ممتحنا خارجيا
د.محمد نجيب اسعد - ممتحنا داخليا
Supervisors: 
د. سمير مطر
Authors: 
بسمة عثمان العزة
Abstract: 
المعادلات التفاضلية الحدودية واسعة الاستخدام في مجالات متعدد في الحياة و في الدراسات العلمية، ولقد عملت دراسات كثيرة بمناقشتها وعرض طرقا متعددة لحلها و ذاك بشكل خاص لدرجة الثانية منها مع وجود بعض الدراسات و الطرق التي ناقشت أنواع خاصة بدرجات أعلى من هذه المشكلات. أما في أطروحتنا هذه فقد قمنا بـِ: 1-دراسة و حل معادلات حدية خطية ذات درجات عليا من الدرجة الثالثة و حتى السابعة و ذلك بشكلها العام و استخدمنا طريقة الفروق الدقيقة للتوصل إلى نظام من المعادلات خطية بسيطة. 2-حل النظام بطريقة(LU-decomposition) لتقليل العمليات الحسابية. 3-رفعنا درجة الدقة للطريقة و ذلك من خلال استخدام طريقة (Richardson's Extrapolation Method) للحصول على نتائج أكثر دقة دون الحاجة لتقليل طول الفترات الجزئية في المسألة. 4-دراسة معادلة تفاضلية حدية غير خطية خاصة من الدرجة الثامنة و طرق حلها. 5-تطوير بعض الطرق العددية لتكون قادرة على حل أي معادلة تفاضلية غير خطية من نفس النوع لأي درجة زوجية أقل من ثمانية و ذلك من خلال تصميم برنامج حاسبي بلغة (MATLAB 7.0) للتعامل و الحصول على معاملات نظام حل هذه المعادلات. و لقد أوضحت الدراسة أن: - هذه الطريقة المتبعة في البحث تعطي نتائج جيدة. -الخطأ يزداد عندما تكون درجة المعادلة عالية لاسيما أنها تعتمد على جميع المشتقات التي تسبقها فمثلا المعادلة التفاضلية الخامسة تعتمد على المشتقة الأولى حتى الرابعة مما يجعل خطأ التقريب متراكما. - هذه الطريقة تعتمد على القيم الحدية المعطاة فعند غياب القيمة الحدية الابتدائية لطرفي الفترة يصبح الخطأ أعلى.- نوع القيمة الحدية المعطاة في المسألة يؤثر على دقة الحل و الخطأ. فيما إما إذا كانت القيمة الحدية عند مشتقة زوجية، فردية، قريبة أو بعيدة. -حل درجات عليا من المعادلات التفاضلية بهذه الطريقة يحتاج إلى معادلات طويلة تزداد بازدياد الدرجة وإلى جهد وحسابات مطولة يصعب عملها لمرات متكررة إلا باستخدام طرق خاصة على الحاسب.
Pages Count: 
291
الحالة: 
Published